The Enantioselective Potential of NicoShell and TeicoShell Columns for Basic Pharmaceuticals and Forensic Drugs in Sub/Supercritical Fluid Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Organic Modifier
2.2. Effect of MP Additives
2.3. Effect of Temperature
2.4. Enantioselectivity for Derivatives of Pyrovalerone
2.5. Enantioselectivity for Derivatives of Cathinone
2.6. Enantioselectivity for Derivatives of Ketamine
2.7. Enantioselectivity for Others
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Chromatographic Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Berkecz, R.; Tanács, D.; Péter, A.; Ilisz, I. Enantioselective Liquid Chromatographic Separations Using Macrocyclic Glycopeptide-Based Chiral Selectors. Molecules 2021, 26, 3380. [Google Scholar] [CrossRef] [PubMed]
- Hancu, G.; Papp, L.A.; Szekely-Szentmiklosi, B.; Kelemen, H. The Use of Antibiotics as Chiral Selectors in Capillary Electrophoresis: A Review. Molecules 2022, 27, 3601. [Google Scholar] [CrossRef] [PubMed]
- Folprechtová, D.; Kalíková, K. Macrocyclic Glycopeptide-Based Chiral Selectors for Enantioseparation in Sub/Supercritical Fluid Chromatography. Anal. Sci. Adv. 2021, 2, 15–32. [Google Scholar] [CrossRef]
- Kalíková, K.; Šlechtová, T.; Vozka, J.; Tesařová, E. Supercritical Fluid Chromatography as a Tool for Enantioselective Separation; A Review. Anal. Chim. Acta 2014, 821, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Mangelings, D.; Eeltink, S.; Vander Heyden, Y. Chapter 9—Recent Developments in Liquid and Supercritical Fluid Chromatographic Enantioseparations. In Handbook of Analytical Separations; Valkó, K.L., Ed.; Separation Methods in Drug Synthesis and Purification; Elsevier Science B.V.: Amsterdam, The Netherlands, 2020; Volume 8, pp. 453–521. [Google Scholar]
- Folprechtová, D.; Kozlov, O.; Armstrong, D.W.; Schmid, M.G.; Kalíková, K.; Tesařová, E. Enantioselective Potential of Teicoplanin- and Vancomycin-Based Superficially Porous Particles-Packed Columns for Supercritical Fluid Chromatography. J. Chromatogr. A 2020, 1612, 460687. [Google Scholar] [CrossRef]
- Scriba, G.K.E. Chiral Recognition in Separation Sciences. Part II: Macrocyclic Glycopeptide, Donor-Acceptor, Ion-Exchange, Ligand-Exchange and Micellar Selectors. TrAC Trends Anal. Chem. 2019, 119, 115628. [Google Scholar] [CrossRef]
- Khater, S.; West, C. Characterization of Three Macrocyclic Glycopeptide Stationary Phases in Supercritical Fluid Chromatography. J. Chromatogr. A 2019, 1604, 460485. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Xie, S.-M.; Yuan, L.-M. Recent Progress in the Development of Chiral Stationary Phases for High-Performance Liquid Chromatography. J. Sep. Sci. 2022, 45, 51–77. [Google Scholar] [CrossRef]
- Schmid, M.G.; Hägele, J.S. Separation of Enantiomers and Positional Isomers of Novel Psychoactive Substances in Solid Samples by Chromatographic and Electrophoretic Techniques—A Selective Review. J. Chromatogr. A 2020, 1624, 461256. [Google Scholar] [CrossRef]
- Ismail, O.H.; Felletti, S.; Luca, C.D.; Pasti, L.; Marchetti, N.; Costa, V.; Gasparrini, F.; Cavazzini, A.; Catani, M. The Way to Ultrafast, High-Throughput Enantioseparations of Bioactive Compounds in Liquid and Supercritical Fluid Chromatography. Molecules 2018, 23, 2709. [Google Scholar] [CrossRef] [Green Version]
- Roskam, G.; van de Velde, B.; Gargano, A.; Kohler, I. Supercritical Fluid Chromatography for Chiral Analysis, Part 2: Applications. LCGC Eur. 2022, 35, 118–128. [Google Scholar] [CrossRef]
- Kalíková, K.; Folprechtová, D.; Kadlecová, Z. Sub/superkritická fluidní chromatografie pro analýzu chirálních sloučenin. Chem. Listy 2022, 116, 146–151. [Google Scholar] [CrossRef]
- Losacco, G.L.; DaSilva, J.O.; Haidar Ahmad, I.A.; Mangion, I.; Berger, T.A.; Regalado, E.L. Parallel Chiral Sub/Supercritical Fluid Chromatography Screening as a Framework for Accelerated Purification of Pharmaceutical Targets. J. Chromatogr. A 2022, 1674, 463094. [Google Scholar] [CrossRef] [PubMed]
- Harps, L.C.; Joseph, J.F.; Parr, M.K. SFC for Chiral Separations in Bioanalysis. J. Pharm. Biomed. Anal. 2019, 162, 47–59. [Google Scholar] [CrossRef] [PubMed]
- West, C. Recent Trends in Chiral Supercritical Fluid Chromatography. TrAC Trends Anal. Chem. 2019, 120, 115648. [Google Scholar] [CrossRef]
- Roskam, G.; van de Velde, B.; Gargano, A.; Kohler, I. Supercritical Fluid Chromatography for Chiral Analysis, Part 1: Theoretical Background. LCGC Eur. 2022, 35, 83–92. [Google Scholar] [CrossRef]
- Kolderová, N.; Neveselý, T.; Šturala, J.; Kuchař, M.; Holakovský, R.; Kohout, M. Enantioseparation of Chiral Sulfoxides on Amylose-Based Columns: Comparison of Normal Phase Liquid Chromatography and Supercritical Fluid Chromatography. Chromatographia 2017, 80, 547–557. [Google Scholar] [CrossRef]
- Roy, D.; Tarafder, A.; Miller, L. Effect of Water Addition to Super/Sub-Critical Fluid Mobile-Phases for Achiral and Chiral Separations. TrAC Trends Anal. Chem. 2021, 145, 116464. [Google Scholar] [CrossRef]
- Gazárková, T.; Plachká, K.; Svec, F.; Nováková, L. Current State of Supercritical Fluid Chromatography-Mass Spectrometry. TrAC Trends Anal. Chem. 2022, 149, 116544. [Google Scholar] [CrossRef]
- West, C. Optimization Strategies in Packed- C Olumn Supercritical Fluid Chromatography (SFC). In Optimization in HPLC; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 87–105. ISBN 978-3-527-83748-9. [Google Scholar]
- Roy, D.; Tarafder, A.; Miller, L. Additives in Chiral Packed Column Super/Subcritical Fluid Chromatography: A Little Goes a Long Way. J. Chromatogr. A 2022, 1676, 463216. [Google Scholar] [CrossRef]
- Si-Hung, L.; Bamba, T. Current State and Future Perspectives of Supercritical Fluid Chromatography. TrAC Trends Anal. Chem. 2022, 149, 116550. [Google Scholar] [CrossRef]
- West, C.; Melin, J.; Ansouri, H.; Mengue Metogo, M. Unravelling the Effects of Mobile Phase Additives in Supercritical Fluid Chromatography. Part I: Polarity and Acidity of the Mobile Phase. J. Chromatogr. A 2017, 1492, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Wahab, M.F.; Berger, T.A.; Armstrong, D.W. Ramifications and Insights on the Role of Water in Chiral Sub/Supercritical Fluid Chromatography. Anal. Chem. 2019, 91, 14672–14680. [Google Scholar] [CrossRef] [PubMed]
- Khvalbota, L.; Roy, D.; Wahab, M.F.; Firooz, S.K.; Machyňáková, A.; Špánik, I.; Armstrong, D.W. Enhancing Supercritical Fluid Chromatographic Efficiency: Predicting Effects of Small Aqueous Additives. Anal. Chim. Acta 2020, 1120, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Farooq Wahab, M.; Talebi, M.; Armstrong, D.W. Replacing Methanol with Azeotropic Ethanol as the Co-Solvent for Improved Chiral Separations with Supercritical Fluid Chromatography (SFC). Green Chem. 2020, 22, 1249–1257. [Google Scholar] [CrossRef]
- Folprechtová, D.; Kalíková, K.; Kadkhodaei, K.; Reiterer, C.; Armstrong, D.W.; Tesařová, E.; Schmid, M.G. Enantioseparation Performance of Superficially Porous Particle Vancomycin-Based Chiral Stationary Phases in Supercritical Fluid Chromatography and High Performance Liquid Chromatography; Applicability for Psychoactive Substances. J. Chromatogr. A 2021, 1637, 461846. [Google Scholar] [CrossRef]
- Roy, D.; Armstrong, D.W. Fast Super/Subcritical Fluid Chromatographic Enantioseparations on Superficially Porous Particles Bonded with Broad Selectivity Chiral Selectors Relative to Fully Porous Particles. J. Chromatogr. A 2019, 1605, 360339. [Google Scholar] [CrossRef]
- Folprechtová, D.; Tesařová, E.; Kalíková, K. The Effect of Tandem Coupling of NicoShell and TeicoShell Columns in Sub/Supercritical Fluid Chromatography on Enantioresolution. J. Sep. Sci. 2021, 44, 4048–4057. [Google Scholar] [CrossRef] [PubMed]
NicoShell | TeicoShell | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | log P | tR1 a | R b | α c | MP d | f e | T f | tR1 a | R b | α c | MP d | f e | T f |
I g | |||||||||||||
4-F-PV8 | 4.40 | 3.34 | 0.91 | 1.10 | C/M/H2O (80/20/1.0) | 1.00 | 25 | 1.54 | 1.05 | 1.11 | C/E/P/H2O/TFA/TEA (85/12/3/0.25/0.2/0.2) | 1.20 | 25 |
α-PVP | 3.36 | 3.56 | 0.33 | 1.10 | C/M/TFA/IPA (90/10/0.1/0.01) | 1.00 | 25 | 2.38 | 0.93 | 1.10 | C/E/P/H2O/TFA/TEA (85/12/3/0.25/0.2/0.2) | 1.20 | 25 |
4-Cl-PVP | 3.97 | 4.76 | 1.50 | 1.10 | C/M/H2O (80/20/1.25) | 1.00 | 25 | 2.20 | 0.84 | 1.10 | C/E/P/H2O/TFA/TEA (85/12/3/0.25/0.2/0.2) | 1.20 | 25 |
4-F-PVP | 3.51 | 2.84 | 0.62 | 1.12 | C/M/TFA/IPA (90/10/0.1/0.01) | 1.00 | 25 | 2.00 | 0.87 | 1.10 | C/E/P/TFA/TEA (85/12/3/0.2/0.2) | 1.20 | 25 |
4-MeO-α-PVP | 3.21 | 4.22 | S k | 1.10 | C/M/H2O/TFA/IPA (90/10/0.5/0.1/0.01) | 1.00 | 25 | 2.66 | 1.40 | 1.12 | C/E/P/H2O/TFA/TEA (85/12/3/0.5/0.2/0.2) | 1.20 | 25 |
4-MPrC | 3.88 | 3.65 | 0.67 | 1.11 | C/M/AcA/TEA (90/10/0.2/0.02) | 1.00 | 40 | 2.60 | 1.53 | 1.10 | C/E/P/H2O/TFA/TEA (85/12/3/0.25/0.2/0.2) | 1.20 | 25 |
α-PPP | 2.40 | 1.28 | 3.30 | 1.34 | C/M/TEA (90/10/0.1) | 1.00 | 40 | 14.66 | 1.33 | 1.11 | C/M/TFA/DEA (90/10/0.5/0.01) | 1.00 | 40 |
M-PPP | 2.91 | 1.44 | 3.00 | 1.29 | C/M/TEA (90/10/0.1) | 1.00 | 40 | 13.54 | 1.00 | 1.10 | C/M/TFA/DEA (90/10/0.5/0.01) | 1.00 | 40 |
α-PiHP | 3.65 | 1.47 | 0.98 | 1.10 | C/M/AcA/TEA (90/10/0.5/0.01) | 1.00 | 40 | 2.24 | 0.66 | 1.10 | C/E/P/TFA/TEA (85/12/3/0.2/0.2) | 1.20 | 25 |
naphyrone | 4.35 | 5.54 | 0.92 | 1.13 | C/M/TFA/DEA (90/10/0.1/0.05) | 1.00 | 40 | 2.96 | 1.03 | 1.10 | C/E/P/H2O/TFA/TEA (85/12/3/0.5/0.2/0.2) | 1.20 | 25 |
TH-PVP | 4.82 | 3.65 | 0.67 | 1.11 | C/M/AcA/TEA (90/10/0.2/0.02) | 1.00 | 40 | 2.59 | 1.50 | 1.10 | C/E/P/H2O/TFA/TEA (85/12/3/0.25/0.2/0.2) | 1.20 | 25 |
PV9 | 4.70 | 2.87 | 0.64 | 1.10 | C/M/TFA/IPA (90/10/0.1/0.01) | 1.00 | 25 | 2.00 | 0.85 | 1.10 | C/E/P/TFA/TEA (85/12/3/0.2/0.2) | 1.20 | 25 |
PV10 | 5.14 | 2.80 | 0.53 | 1.10 | C/M/TFA/IPA (90/10/0.1/0.01) | 1.00 | 25 | 1.95 | 0.80 | 1.10 | C/E/P/TFA/TEA (85/12/3/0.2/0.2) | 1.20 | 25 |
5-DBFPV | 3.25 | 6.05 | 0.53 | 1.10 | C/M/AcA/TEA (90/10/0.2/0.02) | 1.00 | 40 | 2.29 | 1.50 | 1.10 | C/E/H2O/TFA/TEA (85/15/0.5/0.1/0.1) | 2.00 | 25 |
4-M-PHP | 4.32 | 3.00 | S k | 1.10 | C/M/TFA/IPA (90/10/0.1/0.01) | 1.00 | 25 | 1.91 | 1.22 | 1.10 | C/E/P/H2O/TFA/TEA (85/12/3/0.25/0.2/0.2) | 1.20 | 25 |
3,4-MD-PHP | 3.43 | 1.37 | 1.50 | 1.12 | C/M/H2O/AcA/TEA (90/10/0.5/0.1/0.01) | 1.00 | 25 | X m | |||||
II h | |||||||||||||
4-CBC | 3.54 | 6.18 | 1.74 | 1.11 | C/M/H2O (80/20/1.0) | 1.00 | 25 | 0.69 | 1.23 | 1.17 | C/E/P/TFA/TEA (85/12/3/0.2/0.2) | 1.20 | 25 |
4-CIC | 2.99 | 3.02 | 0.81 | 1.10 | C/M/H2O (80/20/1.0) | 1.00 | 35 | 1.61 | 1.85 | 1.14 | C/E/H2O/TFA/TEA (85/15/0.5/0.1/0.1) | 2.00 | 25 |
4-CDC | 2.60 | 1.33 | 1.53 | 1.12 | C/M/H2O/AcA/TEA (90/10/0.5/0.1/0.01) | 1.00 | 25 | X m | |||||
III i | |||||||||||||
N-ethylketamine | 3.70 | 1.25 | 1.50 | 1.18 | C/M/AcA/TEA (90/10/0.5/0.01) | 1.00 | 40 | 4.56 | 1.64 | 1.11 | C/M/TFA/TEA (90/10/0.5/0.01) | 1.00 | 40 |
DXE | 2.74 | 7.98 | 1.62 | 1.12 | C/M/H2O/AcA/TEA (90/10/0.5/0.1/0.01) | 1.00 | 25 | 5.26 | 0.57 | 1.10 | C/M/A/TFA/DEA (90/8/2/0.05/0.05) | 1.00 | 40 |
2-MeO-ketamine | 2.94 | 5.36 | S k | 1.10 | C/M/H2O (80/20/1.0) | 1.00 | 35 | 1.01 | 1.53 | 1.10 | C/E/H2O/TFA/TEA (85/15/0.5/0.1/0.1) | 2.00 | 25 |
IV j | |||||||||||||
amphetamine | 1.80 | X m | X m | ||||||||||
methamphetamine | 2.24 | X m | 2.34 | S k | 1.10 | C/E/TFA/IPA (90/10/0.2/0.02) | 2.00 | 40 | |||||
citalopram | 3.76 | 2.62 | 0.95 | 1.10 | C/M/DEA (90/10/0.1) | 1.00 | 40 | X m | |||||
modafinil | 1.53 | 1.12 | 2.56 | 1.25 | C/M/H2O (80/20/1.0) | 1.00 | 25 | 1.27 | 1.55 | 1.11 | C/E/H2O/TFA/TEA (85/15/0.5/0.1/0.1) | 2.00 | 25 |
praziquantel | 2.30 | 0.86 | 0.95 | 1.12 | C/M/AcA/TEA (90/10/0.5/0.01) | 1.00 | 40 | 1.03 | 0.83 | 1.10 | C/M/AcA/TEA (90/10/0.2/0.02) | 1.00 | 40 |
chlorthalidone | 1.60 | 24.78 | S k | 1.10 | C/M/AcA/IPA (90/10/0.1/0.01) | 2.00 | 40 | 4.19 | 1.57 | 1.12 | C/E/H2O/TFA/TEA (85/15/0.5/0.1/0.1) | 2.00 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folprechtová, D.; Schmid, M.G.; Armstrong, D.W.; Kalíková, K. The Enantioselective Potential of NicoShell and TeicoShell Columns for Basic Pharmaceuticals and Forensic Drugs in Sub/Supercritical Fluid Chromatography. Molecules 2023, 28, 1202. https://doi.org/10.3390/molecules28031202
Folprechtová D, Schmid MG, Armstrong DW, Kalíková K. The Enantioselective Potential of NicoShell and TeicoShell Columns for Basic Pharmaceuticals and Forensic Drugs in Sub/Supercritical Fluid Chromatography. Molecules. 2023; 28(3):1202. https://doi.org/10.3390/molecules28031202
Chicago/Turabian StyleFolprechtová, Denisa, Martin G. Schmid, Daniel W. Armstrong, and Květa Kalíková. 2023. "The Enantioselective Potential of NicoShell and TeicoShell Columns for Basic Pharmaceuticals and Forensic Drugs in Sub/Supercritical Fluid Chromatography" Molecules 28, no. 3: 1202. https://doi.org/10.3390/molecules28031202
APA StyleFolprechtová, D., Schmid, M. G., Armstrong, D. W., & Kalíková, K. (2023). The Enantioselective Potential of NicoShell and TeicoShell Columns for Basic Pharmaceuticals and Forensic Drugs in Sub/Supercritical Fluid Chromatography. Molecules, 28(3), 1202. https://doi.org/10.3390/molecules28031202