An Aluminum-Based Microfluidic Chip for Polymerase Chain Reaction Diagnosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Morphology of the Coated Area of Chips
2.2. Surface Elemental Analysis of the Chips
2.3. Thermodynamic Characterization of Coated Aluminum Chips
2.4. Real-Time PCR Tests in the Aluminum-Based Chips
2.5. The Chemical State of the Chip Surface
2.6. Metal Ions Escape Analysis (ICP-OES)
3. Materials and Methods
3.1. Materials
3.2. Fabrication of Aluminum-Based Chips
3.3. Surface Morphology, Elemental Characterization, and Chemical State of the Chip Surface
3.4. Heating Properties Monitoring
3.5. Real-Time PCR Test in Aluminum-Based Chips
3.6. Metal Ions Escape Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saiki, R.; Scharf, S.; Faloona, F.; Mullis, K.; Horn, G.; Erlich, H.; Arnheim, N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985, 230, 1350–1354. [Google Scholar] [CrossRef] [PubMed]
- Mullis, K.; Faloona, F.; Scharf, S.; Saiki, R.; Horn, G.; Erlich, H. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. In Proceedings of the Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1986; pp. 263–273. [Google Scholar]
- Saiki, R.K.; Bugawan, T.L.; Horn, G.T.; Mullis, K.B.; Erlich, H.A. Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature 1986, 324, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Saiki, R.; Gelfand, D.; Stoffel, S.; Scharf, S.; Higuchi, R.; Horn, G.; Mullis, K.; Erlich, H. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988, 239, 487–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, J.; Petersen, C.; McClelland, M. Polymorphisms generated by arbitrarily primed PCR in the mouse: Application to strain identification and genetic mapping. Nucleic Acids Res. 1991, 19, 303–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, L.; Mamon, H.; Kulke, M.H.; Berbeco, R.; Makrigiorgos, G.M. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat. Med. 2008, 14, 579–584. [Google Scholar] [CrossRef]
- Hoshika, S.; Chen, F.; Leal, N.A.; Benner, S.A. Artificial Genetic Systems: Self-Avoiding DNA in PCR and Multiplexed PCR. Angew. Chem. 2010, 122, 5686–5689. [Google Scholar] [CrossRef]
- Schaefer, B.C. Revolutions in rapid amplification of cDNA ends: New strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal. Biochem. 1995, 227, 255–273. [Google Scholar] [CrossRef]
- Jobling, M.A.; Gill, P. Encoded evidence: DNA in forensic analysis. Nat. Rev. Genet. 2004, 5, 739–751. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, X.; Li, X.; Shu, P.; Wang, H.; Hou, T.; Wang, Y.; Song, F.; Zhang, J. A proof-of-principle study on implementing polymerase chain displacement reaction (PCDR) to improve forensic low-template DNA analysis. Forensic Sci. Int. Genet. 2022, 56, 102609. [Google Scholar] [CrossRef]
- Higuchi, R.; Fockler, C.; Dollinger, G.; Watson, R. Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions. Nat. Biotechnol. 1993, 11, 1026–1030. [Google Scholar] [CrossRef]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Mackay, I.M.; Arden, K.E.; Nitsche, A. Real-time PCR in virology. Nucleic Acids Res. 2002, 30, 1292–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elnifro, E.M.; Ashshi, A.M.; Cooper, R.J.; Klapper, P.E. Multiplex PCR: Optimization and Application in Diagnostic Virology. Clin. Microbiol. Rev. 2000, 13, 559–570. [Google Scholar] [CrossRef]
- Bernard, P.S.; Wittwer, C.T. Real-Time PCR Technology for Cancer Diagnostics. Clin. Chem. 2002, 48, 1178–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherpillod, P.; Schibler, M.; Vieille, G.; Cordey, S.; Mamin, A.; Vetter, P.; Kaiser, L. Ebola virus disease diagnosis by real-time RT-PCR: A comparative study of 11 different procedures. J. Clin. Virol. 2016, 77, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Dadgar, N.; Gonzalez-Suarez, A.M.; Fattahi, P.; Hou, X.; Weroha, J.S.; Gaspar-Maia, A.; Stybayeva, G.; Revzin, A. A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies. Microsyst. Nanoeng. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Huggett, J.F.; French, D.; O’Sullivan, D.M.; Moran-Gilad, J.; Zumla, A. Monkeypox: Another test for PCR. Eurosurveillance 2022, 27, 2200497. [Google Scholar] [CrossRef]
- Xiao, A.T.; Tong, Y.X.; Zhang, S. Profile of RT-PCR for SARS-CoV-2: A Preliminary Study From 56 COVID-19 Patients. Clin. Infect. Dis. 2020, 71, 2249–2251. [Google Scholar] [CrossRef]
- Njiru, Z.K.; Constantine, C.C.; Ndung’u, J.M.; Robertson, I.; Okaye, S.; Thompson, R.C.A.; Reid, S.A. Detection of Trypanosoma evansi in camels using PCR and CATT/T. evansi tests in Kenya. Vet. Parasitol. 2004, 124, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Cocolin, L.; Rajkovic, A.; Rantsiou, K.; Uyttendaele, M. The challenge of merging food safety diagnostic needs with quantitative PCR platforms. Trends Food Sci. Technol. 2011, 22, S30–S38. [Google Scholar] [CrossRef]
- Liao, C.-S.; Lee, G.-B.; Wu, J.-J.; Chang, C.-C.; Hsieh, T.-M.; Huang, F.-C.; Luo, C.-H. Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases. Biosens. Bioelectron. 2005, 20, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Wilding, P.; Shoffner, M.A.; Kricka, L.J. PCR in a silicon microstructure. Clin. Chem. 1994, 40, 1815–1818. [Google Scholar] [CrossRef]
- Kopp, M.U.; Mello, A.J.; Manz, A. Chemical amplification: Continuous-flow PCR on a chip. Science 1998, 280, 1046–1048. [Google Scholar] [CrossRef] [Green Version]
- Ahrberg, C.D.; Manz, A.; Chung, B.G. Polymerase chain reaction in microfluidic devices. Lab A Chip 2016, 16, 3866–3884. [Google Scholar] [CrossRef] [Green Version]
- Podbiel, D.; Laermer, F.; Zengerle, R.; Hoffmann, J. Fusing MEMS technology with lab-on-chip: Nanoliter-scale silicon microcavity arrays for digital DNA quantification and multiplex testing. Microsyst. Nanoeng. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Zec, H.C.; Zheng, T.; Liu, L.; Hsieh, K.; Rane, T.D.; Pederson, T.; Wang, T.-H. Programmable microfluidic genotyping of plant DNA samples for marker-assisted selection. Microsyst. Nanoeng. 2018, 4, 17097. [Google Scholar] [CrossRef]
- Basiri, A.; Heidari, A.; Nadi, M.F.; Fallahy, M.T.P.; Nezamabadi, S.S.; Sedighi, M.; Saghazadeh, A.; Rezaei, N. Microfluidic devices for detection of RNA viruses. Rev. Med. Virol. 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Chen, W.; Luo, H.; Zeng, L.; Pan, Y.; Parr, J.B.; Jiang, Y.; Cunningham, C.H.; Hawley, K.L.; Radolf, J.D.; Ke, W.; et al. A suite of PCR-LwCas13a assays for detection and genotyping of Treponema pallidum in clinical samples. Nat. Commun. 2022, 13, 1–11. [Google Scholar] [CrossRef]
- Kim, J.; Byun, D.; Mauk, M.G.; Bau, H.H. A disposable, self-contained PCR chip. Lab Chip 2009, 9, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Gao, Y.; Yu, B.; Ren, H.; Qiu, L.; Han, S.; Jin, W.; Jin, Q.; Mu, Y. Self-priming compartmentalization digital LAMP for point-of-care. Lab A Chip 2012, 12, 4755. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.Q.M.; Wang, M.; Maria, N.A.; Li, A.Y.; Tan, H.Y.; Xiong, G.M.; Tan, M.-K.M.; Bhagat, A.A.S.; Ong, C.W.M.; Lim, C.T. Modular micro-PCR system for the onsite rapid diagnosis of COVID-19. Microsyst. Nanoeng. 2022, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Lin, L.-I.; Chen, S.-Y.; Chao, S.-H.; Zhang, W.; Meldrum, D.R. Real-time PCR of single bacterial cells on an array of adhering droplets. Lab A Chip 2011, 11, 2276. [Google Scholar] [CrossRef] [PubMed]
- Oblath, E.A.; Henley, W.H.; Alarie, J.P.; Ramsey, J.M. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab A Chip 2013, 13, 1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Kodzius, R.; Xiao, K.; Qin, J.; Wen, W. Fast detection of genetic information by an optimized PCR in an interchangeable chip. Biomed. Microdevices 2012, 14, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Song, Q.; Zhang, B.; Gao, Y.; Lou, K.; Liu, Y.; Wen, W. A Rapid Digital PCR System with a Pressurized Thermal Cycler. Micromachines 2021, 12, 1562. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, D. Thermal Conductivity of Polypropylene-Based Materials; IntechOpen: London, UK, 2020. [Google Scholar]
- Kaufman, J. Properties and Characteristics of Aluminum and Aluminum Alloys; ASM International: Geauga, OH, USA, 2016; pp. 1–9. [Google Scholar]
- Mišković-Stanković, V.B.; Stanić, M.R.; Dražić, D.M. Corrosion protection of aluminium by a cataphoretic epoxy coating. Prog. Org. Coat. 1999, 36, 53–63. [Google Scholar] [CrossRef]
- Van den Brand, J.; Van Gils, S.; Beentjes, P.C.J.; Terryn, H.; Sivel, V.; de Wit, J.H.W. Improving the adhesion between epoxy coatings and aluminium substrates. Prog. Org. Coat. 2004, 51, 339–350. [Google Scholar] [CrossRef]
- Cheng, Z.; Gu, Y.; Li, S.; Wang, Y.; Chen, H.; Cheng, J.; Liu, P. Enclosed casting of epoxy resin for rapid fabrication of rigid microfluidic chips. Sens. Actuators B Chem. 2017, 252, 785–793. [Google Scholar] [CrossRef]
- Sobhani, S.; Jannesari, A.; Bastani, S. Effect of molecular weight and content of PDMS on morphology and properties of silicone-modified epoxy resin. J. Appl. Polym. Sci. 2012, 123, 162–178. [Google Scholar] [CrossRef]
- Ng, W.; Seet, H.; Lee, K.; Ning, N.; Tai, W.; Sutedja, M.; Fuh, J.; Li, X. Micro-spike EEG electrode and the vacuum-casting technology for mass production. J. Mater. Process. Technol. 2009, 209, 4434–4438. [Google Scholar] [CrossRef]
- Patel, N. Study on computer numerical control (CNC) technology. Int. Res. J. Eng. Technol. (IRJET) 2020, 7, 2883–2887. [Google Scholar]
- Mamadjanov, A.M.; Yusupov, S.M.; Sadirov, S. Advantages and the future of cnc machines. Sci. Prog. 2021, 2, 1638–1647. [Google Scholar]
- Song, Q.; Sun, X.; Dai, Z.; Gao, Y.; Gong, X.; Zhou, B.; Wu, J.; Wen, W. Point-of-care testing detection methods for COVID-19. Lab A Chip 2021, 21, 1634–1660. [Google Scholar] [CrossRef] [PubMed]
- Cozma, A.; Jakobsen, H. Chapter 24-Anodic bonding. In Handbook of Silicon Based MEMS Materials and Technologies, 3rd ed.; Tilli, M., Paulasto-Krockel, M., Petzold, M., Theuss, H., Motooka, T., Lindroos, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 581–592. [Google Scholar]
- Vijayan, P.P.; Formela, K.; Saeb, M.R.; Chithra, P.G.; Thomas, S. Integration of antifouling properties into epoxy coatings: A review. J. Coat. Technol. Res. 2022, 19, 269–284. [Google Scholar] [CrossRef]
- Kodzius, R.; Xiao, K.; Wu, J.; Yi, X.; Gong, X.; Foulds, I.G.; Wen, W. Inhibitory effect of common microfluidic materials on PCR outcome. Sens. Actuators B Chem. 2012, 161, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Li, R.; Luo, W.; Chen, Y.; Zou, H.; Liang, M.; Li, Y. The preparation and properties study of polydimethylsiloxane-based coatings modified by epoxy resin. J. Polym. Res. 2016, 23, 1–10. [Google Scholar] [CrossRef]
- Vilčáková, J.; Kutějová, L.; Jurča, M.; Moučka, R.; Vícha, R.; Sedlačík, M.; Kovalcik, A.; Machovský, M.; Kazantseva, N. Enhanced Charpy impact strength of epoxy resin modified with vinyl-terminated polydimethylsiloxane. J. Appl. Polym. Sci. 2018, 135, 45720. [Google Scholar] [CrossRef]
- Nishimoto, S.K.; Nishimoto, M.; Park, S.-W.; Lee, K.-M.; Kim, H.-S.; Koh, J.-T.; Ong, J.L.; Liu, Y.; Yang, Y. The effect of titanium surface roughening on protein absorption, cell attachment, and cell spreading. Int. J. Oral Maxillofac. Implant. 2008, 23, 675–680. [Google Scholar]
- Tong, R.; Zhang, L.; Song, Q.; Hu, C.; Chen, X.; Lou, K.; Gong, X.; Gao, Y.; Wen, W. A fully portable microchip real-time polymerase chain reaction for rapid detection of pathogen. Electrophoresis 2019, 40, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, Y.; Song, Q.; Li, B.; Chen, X.; Luo, X.; Wen, W. A new dynamic deep learning noise elimination method for chip-based real-time PCR. Anal. Bioanal. Chem. 2022, 414, 3349–3358. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Doré Hansen, M.; Halgunset, J.; Skorpen, F.; Krokan, H.E. Low Copy Number DNA Template Can Render Polymerase Chain Reaction Error Prone in a Sequence-Dependent Manner. J. Mol. Diagn. 2005, 7, 36–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Liu, Y.; Zhan, X.; Gao, Y.; Sun, Z.; Wen, W.; Zheng, W. Ultrafast PCR Detection of COVID-19 by Using a Microfluidic Chip-Based System. Bioengineering 2022, 9, 548. [Google Scholar] [CrossRef]
- Yang, S.; Wen, W. Lyophilized Ready-to-Use Mix for the Real-Time Polymerase Chain Reaction Diagnosis. ACS Applied Bio Materials 2021, 4, 4354–4360. [Google Scholar] [CrossRef]
Uncoated Chip | Coated Chip (Convex Surface) | Coated Chip (Coated Surface) | ||||
---|---|---|---|---|---|---|
Element | Wt % | Atomic % | Wt % | Atomic % | Wt % | Atomic % |
C | 8.34 | 16.72 | 7.71 | 14.35 | 61.04 | 70.48 |
N | 0 | 0 | 0 | 0 | 0.09 | 0.09 |
O | 2.35 | 3.54 | 16.07 | 22.47 | 27.41 | 23.76 |
Al | 89.31 | 79.74 | 76.22 | 63.18 | 0.26 | 0.14 |
Si | 0 | 0 | 0 | 0 | 11.20 | 5.53 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Template (ng/Reaction) | Al-Based Chips (Cq) | PP Tubes (Cq) |
---|---|---|
NTC | N/A | N/A |
10−2 | 18.74 | 19.07 |
10−3 | 22.23 | 22.51 |
10−4 | 26.04 | 25.83 |
10−5 | 29.39 | 29.03 |
10−6 | 33.45 | 32.18 |
10−7 | 35.51 | 34.76 |
10−8 | 38.88 | 37.34 |
Al (nmol/Unit) | Fe (nmol/Unit) | Cu (nmol/Unit) | Cr (nmol/Unit) | Zn (nmol/Unit) | Mn (nmol/Unit) | |
---|---|---|---|---|---|---|
Solution 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Solution 2 | 0.01 | 0 | 0.01 | 0 | 0 | 0 |
Solution 3 | 3.23 | 0.02 | 0.04 | 0.01 | 0 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zhang, Z.; Xian, Q.; Song, Q.; Liu, Y.; Gao, Y.; Wen, W. An Aluminum-Based Microfluidic Chip for Polymerase Chain Reaction Diagnosis. Molecules 2023, 28, 1085. https://doi.org/10.3390/molecules28031085
Yang S, Zhang Z, Xian Q, Song Q, Liu Y, Gao Y, Wen W. An Aluminum-Based Microfluidic Chip for Polymerase Chain Reaction Diagnosis. Molecules. 2023; 28(3):1085. https://doi.org/10.3390/molecules28031085
Chicago/Turabian StyleYang, Siyu, Ziyi Zhang, Qingyue Xian, Qi Song, Yiteng Liu, Yibo Gao, and Weijia Wen. 2023. "An Aluminum-Based Microfluidic Chip for Polymerase Chain Reaction Diagnosis" Molecules 28, no. 3: 1085. https://doi.org/10.3390/molecules28031085
APA StyleYang, S., Zhang, Z., Xian, Q., Song, Q., Liu, Y., Gao, Y., & Wen, W. (2023). An Aluminum-Based Microfluidic Chip for Polymerase Chain Reaction Diagnosis. Molecules, 28(3), 1085. https://doi.org/10.3390/molecules28031085