Characterization of the Morphological and Chemical Profile of Different Families of Microplastics in Samples of Breathable Air
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Characteristics
- da = Aerodynamic diameter
- ρp = Density of the particle material
- ρ0 = Standard density (1 g cm−3)
- de = Volume equivalent to diameter
- Xv = Dynamic shape factor
- S = Sphericity
- V = Volume of the particles
- SA = Surface area
2.2. Identification of MPs by DSC
2.3. Confirmation of Chemical Composition of MPs by Py-GC-MS
Calibration
3. Materials and Methods
3.1. Materials
3.2. Place of Sampling; Collection and Treatment of Samples
Breathing Air Samples
3.3. Microplastic Quantification and Morphological Profile
3.3.1. Morphological Profile
3.3.2. Identification of Microplastics
Differential Scanning Calorimetry (DSC)
Py-GC-MS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, G.; Feng, Q.; Wang, J. Mini-Review of Microplastics in the Atmosphere and Their Risks to Humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eerkes-Medrano, D.; Leslie, H.A.; Quinn, B. Microplastics in Drinking Water: A Review and Assessment. Curr. Opin. Environ. Sci. Health 2019, 7, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Castelvetro, V.; Corti, A.; Biale, G.; Ceccarini, A.; Degano, I.; La Nasa, J.; Lomonaco, T.; Manariti, A.; Manco, E.; Modugno, F.; et al. New Methodologies for the Detection, Identification, and Quantification of Microplastics and Their Environmental Degradation by-Products. Environ. Sci. Pollut. Res. 2021, 28, 46764–46780. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Yuan, Z.; Nag, R.; Cummins, E. Human Health Concerns Regarding Microplastics in the Aquatic Environment—From Marine to Food Systems. Sci. Total Environ. 2022, 823, 153730. [Google Scholar] [CrossRef]
- Jiang, B.; Kauffman, A.E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J.R.; Chatterjee, S.; Scott, G.I.; Xiao, S. Health Impacts of Environmental Contamination of Micro- and Nanoplastics: A Review. Environ. Health Prev. Med. 2020, 25, 29. [Google Scholar] [CrossRef]
- Kannan, K.; Vimalkumar, K. A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front. Endocrinol. 2021, 12, 724989. [Google Scholar] [CrossRef]
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics 2021, 9, 224. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public. Health 2020, 17, 1212. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P.; Verma, A.; Jha, P.K.; Singh, P.; Gupta, P.K.; Chandra, R.; Prasad, P.V.V. Effect of Physical Characteristics and Hydrodynamic Conditions on Transport and Deposition of Microplastics in Riverine Ecosystem. Water 2021, 13, 2710. [Google Scholar] [CrossRef]
- Chubarenko, I.; Bagaev, A.; Zobkov, M.; Esiukova, E. On Some Physical and Dynamical Properties of Microplastic Particles in Marine Environment. Mar. Pollut. Bull. 2016, 108, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Chubarenko, I.; Esiukova, E.; Bagaev, A.; Isachenko, I.; Demchenko, N.; Zobkov, M.; Efimova, I.; Bagaeva, M.; Khatmullina, L. Chapter 6—Behavior of Microplastics in Coastal Zones. In Microplastic Contamination in Aquatic Environments; Zeng, E.Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 175–223. ISBN 978-0-12-813747-5. [Google Scholar]
- Sitti, M. Physical Intelligence as a New Paradigm. Extreme Mech. Lett. 2021, 46, 101340. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Santos, T.; Duarte, A.C. Characterization and Analysis of Microplastics; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-444-63899-1. [Google Scholar]
- Cowger, W.; Gray, A.; Christiansen, S.H.; De Frond, H.; Deshpande, A.D.; Hemabessiere, L.; Lee, E.; Mill, L.; Munno, K.; Sarau, G.; et al. Critical Review of Processing and Classification Techniques for Images and Spectra in Microplastic Research. Appl. Spectrosc. 2020, 74, 989–1010. [Google Scholar] [CrossRef]
- Dierkes, G.; Lauschke, T.; Földi, C. Analytical Methods for Plastic (Microplastic) Determination in Environmental Samples. In Plastics in the Aquatic Environment–Part I: Current Status and Challenges; Stock, F., Reifferscheid, G., Brennholt, N., Kostianaia, E., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2022; pp. 43–67. ISBN 978-3-030-84118-8. [Google Scholar]
- Shim, W.J.; Hong, S.H.; Eo, S.E. Identification Methods in Microplastic Analysis: A Review. Anal. Methods 2017, 9, 1384–1391. [Google Scholar] [CrossRef]
- Chen, G.; Fu, Z.; Yang, H.; Wang, J. An Overview of Analytical Methods for Detecting Microplastics in the Atmosphere. TrAC Trends Anal. Chem. 2020, 130, 115981. [Google Scholar] [CrossRef]
- Primpke, S.; Christiansen, S.H.; Cowger, W.; De Frond, H.; Deshpande, A.; Fischer, M.; Holland, E.B.; Meyns, M.; O’Donnell, B.A.; Ossmann, B.E.; et al. Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics. 2020. Available online: https://journals.sagepub.com/doi/10.1177/0003702820921465 (accessed on 13 October 2022).
- Hernández, J.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. [Google Scholar] [CrossRef]
- Hernández-Fernandez, J.; Rodríguez, E. Determination of Phenolic Antioxidants Additives in Industrial Wastewater from Polypropylene Production Using Solid Phase Extraction with High-Performance Liquid Chromatography. J. Chromatogr. A 2019, 1607, 460442. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [Google Scholar] [CrossRef]
- Hernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. [Google Scholar] [CrossRef]
- Hernández-Fernández, J. Quantification of Oxygenates, Sulphides, Thiols and Permanent Gases in Propylene. A Multiple Linear Regression Model to Predict the Loss of Efficiency in Polypropylene Production on an Industrial Scale. J. Chromatogr. A 2020, 1628, 461478. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J. Quantification of Arsine and Phosphine in Industrial Atmospheric Emissions in Spain and Colombia. Implementation of Modified Zeolites to Reduce the Environmental Impact of Emissions. Atmos. Pollut. Res. 2021, 12, 167–176. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and Elimination of Substituted Synthetic Phenols and Volatile Organic Compounds in the Wastewater Treatment Plant during the Production of Industrial Scale Polypropylene. Chemosphere 2021, 263, 128027. [Google Scholar] [CrossRef]
- Joaquin, H.-F.; Juan, L. Quantification of Poisons for Ziegler Natta Catalysts and Effects on the Production of Polypropylene by Gas Chromatographic with Simultaneous Detection: Pulsed Discharge Helium Ionization, Mass Spectrometry and Flame Ionization. J. Chromatogr. A 2020, 1614, 460736. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [Google Scholar] [CrossRef]
- Hernandez-Fernandez, J.; Rayon, E.; Lopez, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [Google Scholar] [CrossRef]
- Chacon, H.; Cano, H.; Hernández Fernández, J.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. [Google Scholar] [CrossRef]
- Pavon, C.; Aldas, M.; Hernandez-Fernandez, J.; Lopez-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2021, 139, e51734. [Google Scholar] [CrossRef]
- Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171. [Google Scholar] [CrossRef]
- Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Castro-Suarez, J.; Toloza, C. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808. [Google Scholar] [CrossRef]
- Cui, J.; Chen, C.; Gan, Q.; Wang, T.; Li, W.; Zeng, W.; Xu, X.; Chen, G.; Wang, L.; Lu, L.; et al. Indoor microplastics and bacteria in the atmospheric fallout in urban homes. Sci. Total Environ. 2022, 852, 158233. [Google Scholar] [CrossRef] [PubMed]
- Abràmoff, M.D. Image Processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Igathinathane, C.; Pordesimo, L.O.; Batchelor, W.D. Major Orthogonal Dimensions Measurement of Food Grains by Machine Vision Using ImageJ. Food Res. Int. 2009, 42, 76–84. [Google Scholar] [CrossRef]
- Igathinathane, C.; Pordesimo, L.O.; Columbus, E.P.; Batchelor, W.D.; Methuku, S.R. Shape Identification and Particles Size Distribution from Basic Shape Parameters Using ImageJ. Comput. Electron. Agric. 2008, 63, 168–182. [Google Scholar] [CrossRef]
- Stolze, N.; Bader, C.; Henning, C.; Mastin, J.; Holmes, A.E.; Sutlief, A.L. Automated Image Analysis with ImageJ of Yeast Colony Forming Units from Cannabis Flowers. J. Microbiol. Methods 2019, 164, 105681. [Google Scholar] [CrossRef]
- Guida, G.; Viggiani, G.M.B.; Casini, F. Multi-Scale Morphological Descriptors from the Fractal Analysis of Particle Contour. Acta Geotech. 2020, 15, 1067–1080. [Google Scholar] [CrossRef]
- dos Reis, E.; Canales, B.G.; de Andrade, M.F.F. Assessment of Mathematical Expressions for Morphological Parameters of Solid Particles Based on Common Geometric Shapes. Powder Technol. 2020, 370, 215–225. [Google Scholar] [CrossRef]
- DeCarlo, P.F.; Slowik, J.G.; Worsnop, D.R.; Davidovits, P.; Jimenez, J.L. Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Sci. Technol. 2004, 38, 1185–1205. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Wang, J.; Wang, H. Three-Dimensional Sphericity, Roundness and Fractal Dimension of Sand Particles. Géotechnique 2018, 68, 18–30. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, E.G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E.Y.; Shi, H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environ. Sci. Technol. 2020, 54, 3740–3751. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C. Airborne Microplastics: Consequences to Human Health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef]
- Law, B.D.; Bunn, W.B.; Hesterberg, T.W. Solubility of Polymeric Organic Fibers and Manmade Vitreous Fibers in Gambles Solution. Inhal. Toxicol. 1990, 2, 321–339. [Google Scholar] [CrossRef]
- Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic Effects of Commonly Used Nanomaterials and Microplastics on Cerebral and Epithelial Human Cells. Environ. Res. 2017, 159, 579–587. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue Accumulation of Microplastics in Mice and Biomarker Responses Suggest Widespread Health Risks of Exposure. Sci. Rep. 2017, 7, 46687. [Google Scholar] [CrossRef] [Green Version]
- Efimova, I.; Bagaeva, M.; Bagaev, A.; Kileso, A.; Chubarenko, I.P. Secondary Microplastics Generation in the Sea Swash Zone With Coarse Bottom Sediments: Laboratory Experiments. Front. Mar. Sci. 2018, 5, 313. [Google Scholar] [CrossRef] [Green Version]
- Ngo, P.L.; Pramanik, B.K.; Shah, K.; Roychand, R. Pathway, Classification and Removal Efficiency of Microplastics in Wastewater Treatment Plants. Environ. Pollut. 2019, 255, 113326. [Google Scholar] [CrossRef]
- Martínez Silva, P.; Nanny, M.A. Impact of Microplastic Fibers from the Degradation of Nonwoven Synthetic Textiles to the Magdalena River Water Column and River Sediments by the City of Neiva, Huila (Colombia). Water 2020, 12, 1210. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, S.; Wang, X.; Yang, X.; Zhang, C.; Qi, Y.; Guo, X. The Occurrence and Distribution Characteristics of Microplastics in the Agricultural Soils of Shaanxi Province, in North-Western China. Sci. Total Environ. 2020, 720, 137525. [Google Scholar] [CrossRef] [PubMed]
Size | Morphological Parameters Identified | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
µm | Sphericity | Compactness | Roundness | Ellipse Ratio | Circularity | Solidity | Concavity | Convexity | Extent | Transparency |
1500–2000 | 0.92 | 0.802 | 0.642 | 0.573 | 0.847 | 0.964 | 0.036 | 0.983 | 0.912 | 0.051 |
1000–1500 | 0.648 | 0.638 | 0.407 | 0.572 | 0.42 | 0.786 | 0.214 | 0.785 | 0.619 | 0.117 |
900–1000 | 0.624 | 0.436 | 0.19 | 0.218 | 0.39 | 0.709 | 0.291 | 0.763 | 0.627 | 0.185 |
800–900 | 0.734 | 0.682 | 0.465 | 0.485 | 0.538 | 0.807 | 0.193 | 0.872 | 0.657 | 0.176 |
700–800 | 0.898 | 0.744 | 0.554 | 0.231 | 0.807 | 0.923 | 0.077 | 0.958 | 0.916 | 0.153 |
600–700 | 0.905 | 0.632 | 0.399 | 0.509 | 0.819 | 0.942 | 0.058 | 0.965 | 0.617 | 0.146 |
500–600 | 0.64 | 0.31 | 0.096 | 0.13 | 0.41 | 0.67 | 0.33 | 0.854 | 0.511 | 0.255 |
400–500 | 0.792 | 0.549 | 0.301 | 0.299 | 0.627 | 0.856 | 0.144 | 0.938 | 0.766 | 0.229 |
300–400 | 0.832 | 0.519 | 0.269 | 0.283 | 0.692 | 0.847 | 0.153 | 0.949 | 0.801 | 0.22 |
200–300 | 1 | 0.432 | 0.186 | 0.22 | 1 | 0.983 | 0.017 | 0.998 | 0.668 | 0.267 |
100–200 | 0.895 | 0.754 | 0.569 | 0.815 | 0.801 | 0.991 | 0.009 | 0.999 | 0.632 | 0 |
50–100 | 0.886 | 0.796 | 0.634 | 1 | 0.784 | 1 | 0 | 1 | 0.705 | 0 |
40–50 | 0.664 | 0.505 | 0.255 | 0.286 | 0.441 | 0.86 | 0.14 | 0.996 | 0.488 | 0.389 |
30–40 | 0.385 | 0.337 | 0.113 | 0.247 | 0.148 | 0.301 | 0.699 | 0.891 | 0.203 | 0.388 |
20–30 | 0.342 | 0.291 | 0.085 | 0.237 | 0.117 | 0.248 | 0.752 | 0.893 | 0.168 | 0.414 |
10–20 | 0.199 | 0.173 | 0.03 | 0.854 | 0.04 | 0.097 | 0.903 | 0.879 | 0.055 | 0.4 |
5–10 | 0.085 | 0.089 | 0.01 | 0.128 | 0.01 | 0.01 | 0.01 | 0.57 | 0.011 | 0.53 |
1–5 | 0.046 | 0.51 | 0.008 | 0.085 | 0.005 | 0.005 | 0.004 | 0.46 | 0.004 | 0.68 |
Neighborhood | Size Range (µm) | ||||
---|---|---|---|---|---|
PP | PE | PET | LDPE | PS | |
Pasacaballo | 1 to >2000 | ||||
Albornoz | 1 to 2000 | ||||
20 de Julio | 1 to >2000 | 1 to 300 | 1 to >2000 | ||
Campestre | 1 to >2000 | N/I * | 1 to >2000 | 1 to >2000 | |
Caracoles | 1 to >2000 | 1 to 5 and 500 to >2000 | N/I | ||
Las palmeras | 1 to 100 | ||||
Líbano | 1 to 100 | 1 to 5 | 1 to 100 | ||
La esperanza | 1 to 900 | ||||
Lo amador | 1 to 40 | ||||
Torises | 1 to 400 | 1 to 40 | 1 to 400 | ||
El reposo | 1 to 100 | 1 to 5 | 1 to 100 | 1 to 5 | |
San Pedro martir | 1 to 500 | 1 to 5 | 1 to 500 | ||
Santa clara | 1 to 500 | 1 to 5 | 1 to 600 | ||
Ceballo | 1 to 600 | 1 to 5 | 1 to 600 | ||
Los Corales | 1 to 600 | 1 to 5 | 1 to 600 | ||
San diego | 1 to 50 | N/I | 1 to 50 | ||
Bocagrande | 1 to 100 | 1 to 5 | 1 to 100 | ||
Castillogrande | 1 to 700 | ||||
Crespo | 1 to 50 | ||||
La boquilla | 1 to 20 |
Polymer | Marker | m/z | RI | RI (Theoretical) | Equation | R2 |
---|---|---|---|---|---|---|
PS | 2,4-diphenyl-1-butene | 208 | 1729 | 1749 | y = 3.3 × 103x + 1.2 × 104 | 0.993 |
PP | 2,4-dimethyl-1-heptene | 43 | 837 | 845 | y = 8.5 × 103x + 6.1 × 104 | 0.993 |
PE | n-tetradec-1-ene | 55 | 1392 | 1392 | y = 5.4 × 102x + 1.1 × 103 | 0.996 |
PET | vinyl benzoate | 105 | 1137 | 1143 | y = 2.7 × 103x − 2.3 × 104 | 0.878 |
divinyl terephthalate | 175 | 1570 | 1577 | y = 3.5 × 103x − 1.0 × 104 | 0.958 |
Groups | Identified Compounds | RI | Qualification Ions (m/z) | Polymers |
---|---|---|---|---|
1 | benzene | – | 51, 52, 78 | PET |
vinylbenzoate | 1137 | 77, 105, 148 | PET | |
benzoic acid | 1214 | 77, 105, 122 | PET | |
diphenyl | 1379 | 76, 153, 154 | PET | |
divinyl terephthalate | 1567 | 76, 104, 175 | PET | |
ethandiol dibenzoate | 2190 | 77, 105, 227 | PET | |
2-(benzoyloxy) ethylvinylterephthalate | 2662 | 105, 149, 297 | PET | |
2 | 2,4,6-trimethyl-1-nonene | 1079 | 41, 69, 168 | PP |
2,4,6,8-tetramethyl-1-undecene | 1307 | 43, 69, 154 | PP | |
2,4,6,8,10-pentamethyl-1-tridecene | 1527 | 43, 69, 196 | PP | |
2,4-dimethyl-1-heptene | 837 | 43, 70, 126 | PP | |
3 | styrene | 898 | 51, 78, 104 | PS |
α-methylstyrene | 982 | 103, 117, 118 | PS | |
1,3-diphenylpropane | 1659 | 92, 105, 196 | PS | |
styrene dimer | 1726 | 91, 104, 208 | PS | |
styrene trimer | 2510 | 91, 117, 312 | PS | |
4 | n-pentadec-1-ene | 1497 | 43, 55, 210 | PE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Fernández, J.; Puello-Polo, E.; Castro-Suarez, J.R. Characterization of the Morphological and Chemical Profile of Different Families of Microplastics in Samples of Breathable Air. Molecules 2023, 28, 1042. https://doi.org/10.3390/molecules28031042
Hernández-Fernández J, Puello-Polo E, Castro-Suarez JR. Characterization of the Morphological and Chemical Profile of Different Families of Microplastics in Samples of Breathable Air. Molecules. 2023; 28(3):1042. https://doi.org/10.3390/molecules28031042
Chicago/Turabian StyleHernández-Fernández, Joaquín, Esneyder Puello-Polo, and John R. Castro-Suarez. 2023. "Characterization of the Morphological and Chemical Profile of Different Families of Microplastics in Samples of Breathable Air" Molecules 28, no. 3: 1042. https://doi.org/10.3390/molecules28031042
APA StyleHernández-Fernández, J., Puello-Polo, E., & Castro-Suarez, J. R. (2023). Characterization of the Morphological and Chemical Profile of Different Families of Microplastics in Samples of Breathable Air. Molecules, 28(3), 1042. https://doi.org/10.3390/molecules28031042