Hydrothermal Liquefaction: How the Holistic Approach by Nature Will Help Solve the Environmental Conundrum
Abstract
:1. Introduction
2. Hydrothermal Liquefaction Process
2.1. Principles and Reaction Pathways
2.2. Key Process Parameters
2.3. Catalysts and Their Role in HTL
2.4. Biocrude Upgrade
3. Reactor Designs and Operation Modes
4. Feedstock Selection and Preprocessing
5. Applications of Hydrothermal Liquefaction
6. Economic Viability and Life-Cycle Assessment
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Awogbemi, O.; Von Kallon, D.V. Valorization of agricultural wastes for biofuel applications. Heliyon 2022, 8, e11117. [Google Scholar] [CrossRef] [PubMed]
- Chalak, A.; Abou-Daher, C.; Chaaban, J.; Abiad, M.G. The global economic and regulatory determinants of household food waste generation: A cross-country analysis. Waste Manag. 2016, 48, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Saqib, N.U.; Sharma, H.B.; Baroutian, S.; Dubey, B.; Sarmah, A.K. Valorisation of food waste via hydrothermal carbonisation and techno-economic feasibility assessment. Sci. Total Environ. 2019, 690, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Millati, R.; Cahyono, R.B.; Ariyanto, T.; Azzahrani, I.N.; Putri, R.U.; Taherzadeh, M.J. Agricultural, industrial, municipal, and forest wastes: An overview. In Sustainable Resource Recovery and Zero Waste Approaches; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–22. [Google Scholar]
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food waste-to-energy conversion technologies: Current status and future directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Marzbali, M.H.; Kundu, S.; Halder, P.; Patel, S.; Hakeem, I.G.; Paz-Ferreiro, J.; Madapusi, S.; Surapaneni, A.; Shah, K. Wet organic waste treatment via hydrothermal processing: A critical review. Chemosphere 2021, 279, 130557. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A review of thermochemical conversion of waste biomass to biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Funkenbusch, L.T.; Mullins, M.E.; Vamling, L.; Belkhieri, T.; Srettiwat, N.; Winjobi, O.; Shonnard, D.R.; Rogers, T.N. Technoeconomic assessment of hydrothermal liquefaction oil from lignin with catalytic upgrading for renewable fuel and chemical production. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e319. [Google Scholar] [CrossRef]
- Brown, R.C. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 2003, 91, 87–102. [Google Scholar] [CrossRef]
- Oudenhoven, S.R.; Kersten, S.R. Thermochemical conversion: An introduction to fast pyrolysis. In Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 359–387. [Google Scholar]
- Mortensen, P.M.; Grunwaldt, J.-D.; Jensen, P.A.; Knudsen, K.; Jensen, A.D. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 2011, 407, 1–19. [Google Scholar] [CrossRef]
- Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 2011, 36, 2328–2342. [Google Scholar] [CrossRef]
- Gollakota, A.; Kishore, N.; Gu, S. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2018, 81, 1378–1392. [Google Scholar] [CrossRef]
- Savage, P.; Levine, R.; Huelsman, C. Hydrothermal processing of biomass. In Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals; Royal Society of Chemistry: London, UK, 2010; Volume 1, pp. 192–221. [Google Scholar]
- Valdez, P.J.; Savage, P.E. A reaction network for the hydrothermal liquefaction of Nannochloropsis sp. Algal Res. 2013, 2, 416–425. [Google Scholar] [CrossRef]
- Torri, C.; Garcia Alba, L.; Samori, C.; Fabbri, D.; Brilman, D.W. Hydrothermal treatment (HTT) of microalgae: Detailed molecular characterization of HTT oil in view of HTT mechanism elucidation. Energy Fuels 2012, 26, 658–671. [Google Scholar] [CrossRef]
- Yang, J.; Niu, H.; Corscadden, K.; Astatkie, T. Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration. Appl. Energy 2018, 228, 1618–1628. [Google Scholar] [CrossRef]
- Yin, S.; Dolan, R.; Harris, M.; Tan, Z. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil. Bioresour. Technol. 2010, 101, 3657–3664. [Google Scholar] [CrossRef]
- Barreiro, D.L.; Prins, W.; Ronsse, F.; Brilman, W. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass Bioenergy 2013, 53, 113–127. [Google Scholar] [CrossRef]
- Hao, B.; Xu, D.; Jiang, G.; Sabri, T.A.; Jing, Z.; Guo, Y. Chemical reactions in the hydrothermal liquefaction of biomass and in the catalytic hydrogenation upgrading of biocrude. Green Chem. 2021, 23, 1562–1583. [Google Scholar] [CrossRef]
- Mawhood, R.; Gazis, E.; de Jong, S.; Hoefnagels, R.; Slade, R. Production pathways for renewable jet fuel: A review of commercialization status and future prospects. Biofuels Bioprod. Biorefin. 2016, 10, 462–484. [Google Scholar] [CrossRef]
- Pedersen, T.H.; Rosendahl, L.A. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems. Biomass Bioenergy 2015, 83, 206–215. [Google Scholar] [CrossRef]
- Savage, P.E. Organic chemical reactions in supercritical water. Chem. Rev. 1999, 99, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Savage, P.E.; Gopalan, S.; Mizan, T.I.; Martino, C.J.; Brock, E.E. Reactions at supercritical conditions: Applications and fundamentals. AIChE J. 1995, 41, 1723–1778. [Google Scholar] [CrossRef]
- Dunn, K.G.; Hobson, P.A. Hydrothermal liquefaction of lignin. In Sugarcane-Based Biofuels and Bioproducts; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 165–206. [Google Scholar]
- Gai, C.; Zhang, Y.; Chen, W.-T.; Zhang, P.; Dong, Y. An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis. Energy Convers. Manag. 2015, 96, 330–339. [Google Scholar] [CrossRef]
- Bennion, E.P.; Ginosar, D.M.; Moses, J.; Agblevor, F.; Quinn, J.C. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways. Appl. Energy 2015, 154, 1062–1071. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2011, 15, 1615–1624. [Google Scholar] [CrossRef]
- Mishra, R.K.; Kumar, P.; Mohanty, K. Hydrothermal liquefaction of biomass for bio-crude production: A review on feedstocks, chemical compositions, operating parameters, reaction kinetics, techno-economic study, and life cycle assessment. Fuel 2022, 316, 123377. [Google Scholar] [CrossRef]
- Zheng, M.; Schideman, L.C.; Tommaso, G.; Chen, W.-T.; Zhou, Y.; Nair, K.; Qian, W.; Zhang, Y.; Wang, K. Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: Toxicity assessment and minimization. Energy Convers. Manag. 2017, 141, 420–428. [Google Scholar] [CrossRef]
- Nguyen, T.D.H.; Maschietti, M.; Åmand, L.-E.; Vamling, L.; Olausson, L.; Andersson, S.-I.; Theliander, H. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water. Bioresour. Technol. 2014, 170, 196–203. [Google Scholar] [CrossRef]
- Zhu, Z.; Rosendahl, L.; Toor, S.S.; Yu, D.; Chen, G. Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation. Appl. Energy 2015, 137, 183–192. [Google Scholar] [CrossRef]
- Ocfemia, K.S.; Zhang, Y.; Funk, T. Hydrothermal processing of swine manure to oil using a continuous reactor system: Effects of operating parameters on oil yield and quality. Trans. ASABE 2006, 49, 1897–1904. [Google Scholar] [CrossRef]
- Belkheiri, T.; Andersson, S.-I.; Mattsson, C.; Olausson, L.; Theliander, H.; Vamling, L. Hydrothermal liquefaction of kraft lignin in sub-critical water: The influence of the sodium and potassium fraction. Biomass Convers. Biorefin. 2018, 8, 585–595. [Google Scholar] [CrossRef]
- Belkheiri, T.; Andersson, S.-I.; Mattsson, C.; Olausson, L.; Theliander, H.; Vamling, L. Hydrothermal liquefaction of Kraft lignin in subcritical water: Influence of phenol as capping agent. Energy Fuels 2018, 32, 5923–5932. [Google Scholar] [CrossRef]
- Belkheiri, T.; Mattsson, C.; Andersson, S.-I.; Olausson, L.; Åmand, L.-E.; Theliander, H.; Vamling, L. Effect of pH on Kraft lignin depolymerisation in subcritical water. Energy Fuels 2016, 30, 4916–4924. [Google Scholar] [CrossRef]
- Shah, A.A.; Sharma, K.; Haider, M.S.; Toor, S.S.; Rosendahl, L.A.; Pedersen, T.H.; Castello, D. The role of catalysts in biomass hydrothermal liquefaction and biocrude upgrading. Processes 2022, 10, 207. [Google Scholar] [CrossRef]
- Vimali, E.; Gunaseelan, S.; Devi, V.C.; Mothil, S.; Arumugam, M.; Ashokkumar, B.; Moorthy, I.M.G.; Pugazhendhi, A.; Varalakshmi, P. Comparative study of different catalysts mediated FAME conversion from macroalga Padina tetrastromatica biomass and hydrothermal liquefaction facilitated bio-oil production. Chemosphere 2022, 292, 133485. [Google Scholar] [CrossRef] [PubMed]
- Wądrzyk, M.; Janus, R.; Vos, M.P.; Brilman, D.W.F. Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of Scenedesmus sp. microalgae. J. Anal. Appl. Pyrolysis 2018, 134, 415–426. [Google Scholar] [CrossRef]
- Hammerschmidt, A.; Boukis, N.; Galla, U.; Zevaco, T.; Dinjus, E.; Hitzmann, B. Influence of the heating rate and the potassium concentration of the feed solution on the hydrothermal liquefaction of used yeast and apple pomace under reducing conditions. Biomass Convers. Biorefin. 2015, 5, 125–139. [Google Scholar] [CrossRef]
- Bravo, I.N.; Velásquez-Orta, S.; Cuevas-García, R.; Monje-Ramírez, I.; Harvey, A.; Ledesma, M.O. Bio-crude oil production using catalytic hydrothermal liquefaction (HTL) from native microalgae harvested by ozone-flotation. Fuel 2019, 241, 255–263. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Bezergianni, S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renew. Sustain. Energy Rev. 2017, 68, 113–125. [Google Scholar] [CrossRef]
- Elliott, D.C.; Hart, T.R.; Schmidt, A.J.; Neuenschwander, G.G.; Rotness, L.J.; Olarte, M.V.; Zacher, A.H.; Albrecht, K.O.; Hallen, R.T.; Holladay, J.E. Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res. 2013, 2, 445–454. [Google Scholar] [CrossRef]
- Elliott, D.C.; Schmidt, A.J.; Hart, T.R.; Billing, J.M. Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: Grape pomace. Biomass Convers. Biorefin. 2017, 7, 455–465. [Google Scholar] [CrossRef]
- Hammerschmidt, A.; Boukis, N.; Hauer, E.; Galla, U.; Dinjus, E.; Hitzmann, B.; Larsen, T.; Nygaard, S.D. Catalytic conversion of waste biomass by hydrothermal treatment. Fuel 2011, 90, 555–562. [Google Scholar] [CrossRef]
- Nguyen, T.D.H.; Maschietti, M.; Belkheiri, T.; Åmand, L.-E.; Theliander, H.; Vamling, L.; Olausson, L.; Andersson, S.-I. Catalytic depolymerisation and conversion of Kraft lignin into liquid products using near-critical water. J. Supercrit. Fluids 2014, 86, 67–75. [Google Scholar] [CrossRef]
- Sathish, S.; Supriya, S.; Andal, P.; Prabu, D.; Rajasimman, M.; Ansar, S.; Rezania, S. Effective utilization of azolla filiculoides for biodiesel generation using graphene oxide nano catalyst derived from agro-waste. Fuel 2022, 329, 125412. [Google Scholar] [CrossRef]
- Zhu, Z.; Toor, S.S.; Rosendahl, L.; Yu, D.; Chen, G. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw. Energy 2015, 80, 284–292. [Google Scholar] [CrossRef]
- Scarsella, M.; de Caprariis, B.; Damizia, M.; De Filippis, P. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass Bioenergy 2020, 140, 105662. [Google Scholar] [CrossRef]
- Hosseini, M.; Hatefirad, P.; Salimi, S.; Tavasoli, A. Hydrothermal liquefaction of granular bacteria to high-quality bio-oil using Ni–Ce catalysts supported on functionalized activated carbon. Energy 2022, 241, 122875. [Google Scholar] [CrossRef]
- Wang, B.; He, Z.; Zhang, B.; Duan, Y. Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil. Energy 2021, 230, 120733. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Meng, Y.; Lu, S.; Zhang, J.; Wang, H. Catalytic hydrothermal liquefaction of microalgae over reduced graphene oxide support Ni catalyst. Fuel Process. Technol. 2023, 242, 107653. [Google Scholar] [CrossRef]
- Norouzi, O.; Mazhkoo, S.; Haddadi, S.A.; Arjmand, M.; Dutta, A. Hydrothermal liquefaction of green macroalgae Cladophora glomerata: Effect of functional groups on the catalytic performance of graphene oxide/polyurethane composite. Catal. Today 2022, 404, 93–104. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Z.; Fan, G.; Zhang, L.; Wu, Y.; Yang, M. Enhancement of microalgae bio-oil quality via hydrothermal liquefaction using functionalized carbon nanotubes. J. Clean. Prod. 2021, 285, 124835. [Google Scholar] [CrossRef]
- Huynh, T.M.; Armbruster, U.; Pohl, M.M.; Schneider, M.; Radnik, J.; Hoang, D.L.; Phan, B.M.Q.; Nguyen, D.A.; Martin, A. Hydrodeoxygenation of phenol as a model compound for bio-oil on non-noble bimetallic nickel-based catalysts. ChemCatChem 2014, 6, 1940–1951. [Google Scholar] [CrossRef]
- Kohansal, K.; Tavasoli, A.; Bozorg, A. Using a hybrid-like supported catalyst to improve green fuel production through hydrothermal liquefaction of Scenedesmus obliquus microalgae. Bioresour. Technol. 2019, 277, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, J.; Zhang, Z.; Wang, H.; Ping, F.; Zheng, C.; Zhang, H.; He, Q. Insight into the effect of hydrogenation on efficiency of hydrothermal liquefaction and physico-chemical properties of biocrude oil. Bioresour. Technol. 2014, 163, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dong, L.; Miao, J.; Wang, J.; Zhu, C.; Xu, Y.; Chen, G.; Liu, J. Hydrothermal liquefaction of corn straw with mixed catalysts for the production of bio-oil and aromatic compounds. Bioresour. Technol. 2019, 294, 122148. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, S.; Wagner, J.L.; Annamalai, P.K.; Ravindran, D.S.; Krishnapillai, G.K.; Beltramini, J. hydrothermal co-liquefaction of biomass and plastic wastes into biofuel: Study on catalyst property, product distribution and synergistic effects. Fuel Process. Technol. 2022, 238, 107523. [Google Scholar] [CrossRef]
- Kunwar, B.; Deilami, S.D.; Macaskie, L.E.; Wood, J.; Biller, P.; Sharma, B.K. Nanoparticles of Pd supported on bacterial biomass for hydroprocessing crude bio-oil. Fuel 2017, 209, 449–456. [Google Scholar] [CrossRef]
- Cheng, S.; Wei, L.; Alsowij, M.; Corbin, F.; Boakye, E.; Gu, Z.; Raynie, D. Catalytic hydrothermal liquefaction (HTL) of biomass for bio-crude production using Ni/HZSM-5 catalysts. AIMS Environ. Sci. 2017, 4, 417–430. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, B.; He, Z.; Wang, S.; Salih, O.; Wang, Q. Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil. Energy 2018, 155, 1093–1101. [Google Scholar] [CrossRef]
- Yerrayya, A.; Shree Vishnu, A.; Shreyas, S.; Chakravarthy, S.; Vinu, R. Hydrothermal liquefaction of rice straw using methanol as co-solvent. Energies 2020, 13, 2618. [Google Scholar] [CrossRef]
- Zhao, Y.-P.; Zhu, W.-W.; Wei, X.-Y.; Fan, X.; Cao, J.-P.; Dou, Y.-Q.; Zong, Z.-M.; Zhao, W. Synergic effect of methanol and water on pine liquefaction. Bioresour. Technol. 2013, 142, 504–509. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liang, X.; Jazrawi, C.; Montoya, A.; Yuen, A.; Cole, A.J.; Neveux, N.; Paul, N.A.; de Nys, R.; Maschmeyer, T. Continuous hydrothermal liquefaction of macroalgae in the presence of organic co-solvents. Algal Res. 2016, 17, 185–195. [Google Scholar] [CrossRef]
- Han, Y.; Hoekman, K.; Jena, U.; Das, P. Use of co-solvents in hydrothermal liquefaction (HTL) of microalgae. Energies 2019, 13, 124. [Google Scholar] [CrossRef]
- Jena, U.; Eboibi, B.E.; Das, K. Co-solvent assisted hydrothermal liquefaction of algal biomass and biocrude upgrading. Fuels 2022, 3, 326–341. [Google Scholar] [CrossRef]
- Mahesh, D.; Ahmad, S.; Kumar, R.; Chakravarthy, S.; Vinu, R. Hydrothermal liquefaction of municipal solid wastes for high quality bio-crude production using glycerol as co-solvent. Bioresour. Technol. 2021, 339, 125537. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, T.H.; Grigoras, I.; Hoffmann, J.; Toor, S.S.; Daraban, I.M.; Jensen, C.U.; Iversen, S.; Madsen, R.; Glasius, M.; Arturi, K.R. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation. Appl. Energy 2016, 162, 1034–1041. [Google Scholar] [CrossRef]
- Han, Y.; Hoekman, S.K.; Cui, Z.; Jena, U.; Das, P. Hydrothermal liquefaction of marine microalgae biomass using co-solvents. Algal Res. 2019, 38, 101421. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, H.; Moon, J.; Choi, J.W. Characterization of hydrothermal liquefaction products from coconut shell in the presence of selected transition metal chlorides. J. Anal. Appl. Pyrolysis 2016, 122, 415–421. [Google Scholar] [CrossRef]
- Mathanker, A.; Das, S.; Pudasainee, D.; Khan, M.; Kumar, A.; Gupta, R. A review of hydrothermal liquefaction of biomass for biofuels production with a special focus on the effect of process parameters, Co-solvents, and extraction solvents. Energies 2021, 14, 4916. [Google Scholar] [CrossRef]
- Duan, P.; Savage, P.E. Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind. Eng. Chem. Res. 2011, 50, 52–61. [Google Scholar] [CrossRef]
- Shuping, Z.; Yulong, W.; Mingde, Y.; Kaleem, I.; Chun, L.; Tong, J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 2010, 35, 5406–5411. [Google Scholar] [CrossRef]
- Jena, U.; Das, K.; Kastner, J. Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis. Appl. Energy 2012, 98, 368–375. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, Y.; Guo, B.; Funk, T.; Schideman, L. Nutrient flows and quality of bio-crude oil produced via catalytic hydrothermal liquefaction of low-lipid microalgae. BioEnergy Res. 2014, 7, 1317–1328. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, X.; Yu, H.; Hu, X. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Bioresour. Technol. 2014, 156, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Feng, C.; Inamori, Y.; Maekawa, T. Analysis of energy conversion characteristics in liquefaction of algae. Resour. Conserv. Recycl. 2004, 43, 21–33. [Google Scholar] [CrossRef]
- Saber, M.; Golzary, A.; Hosseinpour, M.; Takahashi, F.; Yoshikawa, K. Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Appl. Energy 2016, 183, 566–576. [Google Scholar] [CrossRef]
- Chen, Y.; Mu, R.; Yang, M.; Fang, L.; Wu, Y.; Wu, K.; Liu, Y.; Gong, J. Catalytic hydrothermal liquefaction for bio-oil production over CNTs supported metal catalysts. Chem. Eng. Sci. 2017, 161, 299–307. [Google Scholar] [CrossRef]
- Singh, R.; Balagurumurthy, B.; Prakash, A.; Bhaskar, T. Catalytic hydrothermal liquefaction of water hyacinth. Bioresour. Technol. 2015, 178, 157–165. [Google Scholar] [CrossRef]
- Minowa, T.; Yokoyama, S.-y.; Kishimoto, M.; Okakura, T. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 1995, 74, 1735–1738. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Zhang, S.; Fu, H.; Chen, J. Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuels 2010, 24, 4054–4061. [Google Scholar] [CrossRef]
- Song, C.; Hu, H.; Zhu, S.; Wang, G.; Chen, G. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy Fuels 2004, 18, 90–96. [Google Scholar] [CrossRef]
- Karagöz, S.; Bhaskar, T.; Muto, A.; Sakata, Y. Hydrothermal upgrading of biomass: Effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresour. Technol. 2006, 97, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Zhang, J.; Peterson, E.; Zhu, Z.; Xia, C.; Liang, Y.; Wiltowski, T. Biocrude from pretreated sorghum bagasse through catalytic hydrothermal liquefaction. Fuel 2017, 188, 112–120. [Google Scholar] [CrossRef]
- Norouzi, O.; Heidari, M.; Di Maria, F.; Dutta, A. Design of a ternary 3D composite from hydrochar, zeolite and magnetite powder for direct conversion of biomass to gasoline. Chem. Eng. J. 2021, 410, 128323. [Google Scholar] [CrossRef]
- Xu, D.; Lin, G.; Guo, S.; Wang, S.; Guo, Y.; Jing, Z. Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review. Renew. Sustain. Energy Rev. 2018, 97, 103–118. [Google Scholar] [CrossRef]
- Patel, B.; Hellgardt, K. Hydrothermal upgrading of algae paste in a continuous flow reactor. Bioresour. Technol. 2015, 191, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jones, S.B.; Schmidt, A.J.; Albrecht, K.O.; Edmundson, S.J.; Anderson, D.B. Techno-economic analysis of alternative aqueous phase treatment methods for microalgae hydrothermal liquefaction and biocrude upgrading system. Algal Res. 2019, 39, 101467. [Google Scholar] [CrossRef]
- Tzanetis, K.F.; Posada, J.A.; Ramirez, A. Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance. Renew. Energy 2017, 113, 1388–1398. [Google Scholar] [CrossRef]
- Zhu, Y.; Biddy, M.J.; Jones, S.B.; Elliott, D.C.; Schmidt, A.J. Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Appl. Energy 2014, 129, 384–394. [Google Scholar] [CrossRef]
- Pedersen, T.H.; Jensen, C.U.; Sandström, L.; Rosendahl, L.A. Full characterization of compounds obtained from fractional distillation and upgrading of a HTL biocrude. Appl. Energy 2017, 202, 408–419. [Google Scholar] [CrossRef]
- Scholze, B. Catalytic Upgrading and Application of Pyrolysis Oils–Improving the Properties of a Potential Substitute for Fossile Fuels. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2002. [Google Scholar]
- Meier, D.; Wehlte, S.; Wulzinger, P.; Faix, O. Upgrading of bio-oils and flash pyrolysis of CCB-treated wood waste. In Bio-Oil Production and Utilization; CPL Press: Newbury, UK, 1996; pp. 102–112. [Google Scholar]
- Churin, E.; Maggi, R.; Grange, P.; Delmon, B. Characterization and upgrading of a bio-oil produced by pyrolysis of biomass. In Research in Thermochemical Biomass Conversion; Springer Science & Business Media: Berlin, Germany, 1988; pp. 896–909. [Google Scholar]
- Lee, A.; Lewis, D.; Kalaitzidis, T.; Ashman, P. Technical issues in the large-scale hydrothermal liquefaction of microalgal biomass to biocrude. Curr. Opin. Biotechnol. 2016, 38, 85–89. [Google Scholar] [CrossRef]
- Berglin, E.J.; Enderlin, C.W.; Schmidt, A.J. Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2012. [Google Scholar]
- Zacher, A.H.; Schmidt, A.J. Brief Update on Advancements by Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2020. [Google Scholar]
- Castello, D.; Pedersen, T.H.; Rosendahl, L.A. Continuous hydrothermal liquefaction of biomass: A critical review. Energies 2018, 11, 3165. [Google Scholar] [CrossRef]
- Elliott, D.C.; Biller, P.; Ross, A.B.; Schmidt, A.J.; Jones, S.B. Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresour. Technol. 2015, 178, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Jazrawi, C.; Biller, P.; Ross, A.B.; Montoya, A.; Maschmeyer, T.; Haynes, B.S. Pilot plant testing of continuous hydrothermal liquefaction of microalgae. Algal Res. 2013, 2, 268–277. [Google Scholar] [CrossRef]
- Mørup, A.J.; Becker, J.; Christensen, P.S.; Houlberg, K.; Lappa, E.; Klemmer, M.; Madsen, R.B.; Glasius, M.; Iversen, B.B. Construction and commissioning of a continuous reactor for hydrothermal liquefaction. Ind. Eng. Chem. Res. 2015, 54, 5935–5947. [Google Scholar] [CrossRef]
- Wagner, J.L.; Le, C.D.; Ting, V.P.; Chuck, C.J. Design and operation of an inexpensive, laboratory-scale, continuous hydrothermal liquefaction reactor for the conversion of microalgae produced during wastewater treatment. Fuel Process. Technol. 2017, 165, 102–111. [Google Scholar] [CrossRef]
- Anastasakis, K.; Biller, P.; Madsen, R.B.; Glasius, M.; Johannsen, I. Continuous hydrothermal liquefaction of biomass in a novel pilot plant with heat recovery and hydraulic oscillation. Energies 2018, 11, 2695. [Google Scholar] [CrossRef]
- Bergamelli, F.; Iannelli, M.; Marafie, J.A.; Moseley, J.D. A commercial continuous flow microwave reactor evaluated for scale-up. Org. Process Res. Dev. 2010, 14, 926–930. [Google Scholar] [CrossRef]
- Bierbaum, R.; Nüchter, M.; Ondruschka, B. Microwave-Assisted Reaction Engineering: Microwave Apparatus at Mini-Plant Scale with Online Analysis. Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 2005, 28, 427–431. [Google Scholar] [CrossRef]
- Cablewski, T.; Faux, A.F.; Strauss, C.R. Development and application of a continuous microwave reactor for organic synthesis. J. Org. Chem. 1994, 59, 3408–3412. [Google Scholar] [CrossRef]
- Chemat, F.; Poux, M.; de Martino, J.L.; Berlan, J. A new continuous-flow recycle microwave reactor for homogeneous and heterogeneous chemical reactions. Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 1996, 19, 420–424. [Google Scholar] [CrossRef]
- Estel, L.; Poux, M.; Benamara, N.; Polaert, I. Continuous flow-microwave reactor: Where are we? Chem. Eng. Process. Process Intensif. 2017, 113, 56–64. [Google Scholar] [CrossRef]
- Moseley, J.D.; Lawton, S.J. Initial results from a commercial continuous flow microwave reactor for scale-up. Chim. Oggi 2007, 25, 16–19. [Google Scholar]
- Ong, M.Y.; Nomanbhay, S. Optimization Study on Microwave-Assisted Hydrothermal Liquefaction of Malaysian Macroalgae Chaetomorpha sp. for Phenolic-Rich Bio-Oil Production. Energies 2022, 15, 3974. [Google Scholar] [CrossRef]
- Wilson, N.S.; Sarko, C.R.; Roth, G.P. Development and applications of a practical continuous flow microwave cell. Org. Process Res. Dev. 2004, 8, 535–538. [Google Scholar] [CrossRef]
- Fang, Y.; Paul, M.C.; Varjani, S.; Li, X.; Park, Y.-K.; You, S. Concentrated solar thermochemical gasification of biomass: Principles, applications, and development. Renew. Sustain. Energy Rev. 2021, 150, 111484. [Google Scholar] [CrossRef]
- Ischia, G.; Castello, D.; Orlandi, M.; Miotello, A.; Rosendahl, L.A.; Fiori, L. Waste to biofuels through zero-energy hydrothermal solar plants: Process design. Chem. Eng. Trans. 2020, 80, 7–12. [Google Scholar]
- Pearce, M.; Tonnellier, X.; Sengar, N.; Sansom, C. Commercial development of bio-combustible fuels from hydrothermal liquefaction of waste using solar collectors. AIP Conf. Proc. 2018, 2033, 130011. [Google Scholar]
- Shao, Y.; Tsang, D.C.; Shen, D.; Zhou, Y.; Jin, Z.; Zhou, D.; Lu, W.; Long, Y. Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction. Environ. Res. 2020, 184, 109340. [Google Scholar] [CrossRef]
- Thigpen, P.L.; Berry, W.L., Jr. Liquid Fuels from Wood by Continuous Operation of the Albany, Oregon Biomass Liquefaction Facility; Institute of Gas Technology: Des Plaines, IL, USA, 1982. [Google Scholar]
- Schaleger, L.L.; Figueroa, C.; Davis, H.G. Direct Liquefaction of Biomass: Results from Operation of Continuous Bench Scale Unit in Liquefaction of Water Slurries of Douglas Fir Wood; Lawrence Berkeley Laboratory: Berkeley, CA, USA, 1982. [Google Scholar]
- Molton, P.; Fassbender, A.; Brown, M.D. STORS: The Sludge-to-Oil Reactor System; U.S. Environmental Protection Agency, Water Engineering Research Laboratory: Washington, DC, USA, 1986. [Google Scholar]
- Itoh, S.; Suzuki, A.; Nakamura, T.; Yokoyama, S.-y. Production of heavy oil from sewage sludge by direct thermochemical liquefaction. Desalination 1994, 98, 127–133. [Google Scholar] [CrossRef]
- Goudriaan, F.; Peferoen, D. Liquid fuels from biomass via a hydrothermal process. Chem. Eng. Sci. 1990, 45, 2729–2734. [Google Scholar] [CrossRef]
- Venderbosch, R.; Heeres, H. Biomass Power for the World: Transformations to Effective Use; Pan Stanford Publishing: Singapore, 2015. [Google Scholar]
- Marrone, P.A.; Elliott, D.C.; Billing, J.M.; Hallen, R.T.; Hart, T.R.; Kadota, P.; Moeller, J.C.; Randel, M.A.; Schmidt, A.J. Bench-Scale Evaluation of Hydrothermal Processing Technology for Conversion of Wastewater Solids to Fuels. Water Environ. Res. 2018, 90, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Rotness, L.J.; Roesijadi, G.; Zacher, A.H.; Magnuson, J.K. Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors. ACS Sustain. Chem. Eng. 2014, 2, 207–215. [Google Scholar] [CrossRef]
- Albrecht, K.O.; Zhu, Y.; Schmidt, A.J.; Billing, J.M.; Hart, T.R.; Jones, S.B.; Maupin, G.; Hallen, R.; Ahrens, T.; Anderson, D. Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors. Algal Res. 2016, 14, 17–27. [Google Scholar] [CrossRef]
- Ocfemia, K.; Zhang, Y.; Funk, T. Hydrothermal processing of swine manure into oil using a continuous reactor system: Development and testing. Trans. ASABE 2006, 49, 533–541. [Google Scholar] [CrossRef]
- Suesse, A.R.; Norton, G.A.; van Leeuwen, J. Pilot-scale continuous-flow hydrothermal liquefaction of filamentous fungi. Energy Fuels 2016, 30, 7379–7386. [Google Scholar] [CrossRef]
- Sintamarean, I.M.; Grigoras, I.F.; Jensen, C.U.; Toor, S.S.; Pedersen, T.H.; Rosendahl, L.A. Two-stage alkaline hydrothermal liquefaction of wood to biocrude in a continuous bench-scale system. Biomass Convers. Biorefin. 2017, 7, 425–435. [Google Scholar] [CrossRef]
- Barreiro, D.L.; Gómez, B.R.; Hornung, U.; Kruse, A.; Prins, W. Hydrothermal liquefaction of microalgae in a continuous stirred-tank reactor. Energy Fuels 2015, 29, 6422–6432. [Google Scholar] [CrossRef]
- Hammerschmidt, A.; Boukis, N.; Galla, U.; Dinjus, E.; Hitzmann, B. Conversion of yeast by hydrothermal treatment under reducing conditions. Fuel 2011, 90, 3424–3432. [Google Scholar] [CrossRef]
- Biller, P.; Sharma, B.K.; Kunwar, B.; Ross, A.B. Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. Fuel 2015, 159, 197–205. [Google Scholar] [CrossRef]
- Biller, P.; Madsen, R.B.; Klemmer, M.; Becker, J.; Iversen, B.B.; Glasius, M. Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition. Bioresour. Technol. 2016, 220, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.U.; Guerrero, J.K.R.; Karatzos, S.; Olofsson, G.; Iversen, S.B. Hydrofaction™ of forestry residues to drop-in renewable transportation fuels. In Direct Thermochemical Liquefaction for Energy Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 319–345. [Google Scholar]
- Jensen, C.; Rodriguez Guerrero, J.; Karatzos, S.; Olofsson, G.; Iversen, S. Fundamentals of Hydrofaction™: Renewable crude oil from woody biomass. Biomass Convers. Biorefin. 2017, 7, 495–509. [Google Scholar] [CrossRef]
- Nielsen, R.P.; Olofsson, G.; Søgaard, E.G. CatLiq–High pressure and temperature catalytic conversion of biomass: The CatLiq technology in relation to other thermochemical conversion technologies. Biomass Bioenergy 2012, 39, 399–402. [Google Scholar] [CrossRef]
- Unsal, M.; Livatyali, H.; Aksoy, P.; Gul, S.; Onoglu, A. CatLiq-Catalytic hydrothermal liquefaction process from pilot scale to demo scale. J. Fundam. Renew. Energy Appl. 2015, 5, 69. [Google Scholar]
- Zhao, Y.; Cao, H.; Yao, C.; Li, R.; Wu, Y. Synergistic effects on cellulose and lignite co-pyrolysis and co-liquefaction. Bioresour. Technol. 2020, 299, 122627. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Zhang, P.; Hua, D.; Yang, M.; Li, C.; Chen, Z.; Liu, J. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol–water. Bioresour. Technol. 2012, 124, 190–198. [Google Scholar] [CrossRef]
- Nallasivam, J.; Prashanth, P.F.; Harisankar, S.; Nori, S.; Suryanarayan, S.; Chakravarthy, S.; Vinu, R. Valorization of red macroalgae biomass via hydrothermal liquefaction using homogeneous catalysts. Bioresour. Technol. 2022, 346, 126515. [Google Scholar] [CrossRef]
- Harisankar, S.; Vinu, R. Platform chemicals from hardwood black liquor via hydrothermal liquefaction: Influence of process conditions on product yields and quality. Sustain. Energy Fuels 2023, 7, 4423–4441. [Google Scholar] [CrossRef]
- Harisankar, S.; Prashanth, P.F.; Nallasivam, J.; Mohan, R.V.; Vinu, R. Effects of aqueous phase recirculation on product yields and quality from hydrothermal liquefaction of rice straw. Bioresour. Technol. 2021, 342, 125951. [Google Scholar] [CrossRef]
- Singh, P.; Mohan, S.V.; Mohanty, K. Dairy wastewater treatment using Monoraphidium sp. KMC4 and its potential as hydrothermal liquefaction feedstock. Bioresour. Technol. 2023, 376, 128877. [Google Scholar] [CrossRef]
- Mahata, C.; Mishra, S.; Dhar, S.; Ray, S.; Mohanty, K.; Das, D. Utilization of dark fermentation effluent for algal cultivation in a modified airlift photobioreactor for biomass and biocrude production. J. Environ. Manag. 2023, 330, 117121. [Google Scholar] [CrossRef] [PubMed]
- Goswami, G.; Makut, B.B.; Das, D. Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment. Sci. Rep. 2019, 9, 15016. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Reddy, S.N. Hydrothermal liquefaction of Fe-impregnated water hyacinth for generation of liquid bio-fuels and nano Fe carbon hybrids. Bioresour. Technol. 2020, 313, 123691. [Google Scholar] [CrossRef] [PubMed]
- Kristianto, I.; Limarta, S.O.; Park, Y.-K.; Ha, J.-M.; Suh, D.J.; Jeong, Y.; Jae, J. Hydrothermal liquefaction of concentrated acid hydrolysis lignin in a bench-scale continuous stirred tank reactor. Energy Fuels 2019, 33, 6421–6428. [Google Scholar] [CrossRef]
- Faeth, J.L.; Valdez, P.J.; Savage, P.E. Fast hydrothermal liquefaction of Nannochloropsis sp. to produce biocrude. Energy & Fuels 2013, 27, 1391–1398. [Google Scholar]
- Selvaratnam, T.; Reddy, H.; Muppaneni, T.; Holguin, F.; Nirmalakhandan, N.; Lammers, P.J.; Deng, S. Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Res. 2015, 12, 74–79. [Google Scholar] [CrossRef]
- Bosetti, A.; Bianchi, D.; Franzosi, G.; Ricci, M. Process for the Production of Bio-Oil from Solid Urban Waste. U.S. Patent US20120172642A1, 14 April 2015. [Google Scholar]
- Chinnasamy, S.; Bhaskar, S.; Nallasivam, J.; Ratha, S.K.; Lewis, D.M.; Meenakshisundaram, A.; Lavanya, M.; Selvavathi, V. Method of Processing Algae, Carbonaceous Feedstocks, and Their Mixtures to Biocrude and Its Conversion into Biofuel Products. WO2015198347A1, 26 June 2015. [Google Scholar]
- Elliott, D.; Hart, T.; Neuenschwander, G.; Deverman, G.; Werpy, T.; Phelps, M.; Baker, E.; Sealock, L., Jr. Low-Temperature Catalytic Gasification of Wet Industrial Wastes. FY 1993–1994 Interim Report; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 1995. [Google Scholar]
- Jasiūnas, L.; Pedersen, T.H.; Toor, S.S.; Rosendahl, L.A. Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust. Renew. Energy 2017, 111, 392–398. [Google Scholar] [CrossRef]
- Kumar, M.; Oyedun, A.O.; Kumar, A. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sustain. Energy Rev. 2018, 81, 1742–1770. [Google Scholar] [CrossRef]
- Lokahita, B.; Aziz, M.; Yoshikawa, K.; Takahashi, F. Energy and resource recovery from Tetra Pak waste using hydrothermal treatment. Appl. Energy 2017, 207, 107–113. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, J.; Zhu, Z.; Zhang, Y.; Zhao, Y.; Li, R.; Watson, J.; Li, B.; Liu, Z. Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction. Energy Convers. Manag. 2017, 134, 340–346. [Google Scholar] [CrossRef]
- Pedersen, T.H. Hydrothermal Liquefaction of Biomass and Model Compounds; Aalborg Universitetsforlag: Aalborg, Denmark, 2016. [Google Scholar]
- Rajan, P.S.; Gopinath, K.P.; Arun, J.; Pavithra, K.G. Hydrothermal liquefaction of Scenedesmus abundans biomass spent for sorption of petroleum residues from wastewater and studies on recycling of post hydrothermal liquefaction wastewater. Bioresour. Technol. 2019, 283, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, L. A review on hydrothermal co-liquefaction of biomass. Appl. Energy 2019, 250, 926–945. [Google Scholar] [CrossRef]
- Appell, H.R. Conversion of Cellulosic Wastes to Oil; U.S. Bureau of Mines: Washington, DC, USA, 1975; Volume 8013. [Google Scholar]
- Cantero-Tubilla, B.; Cantero, D.A.; Martinez, C.M.; Tester, J.W.; Walker, L.P.; Posmanik, R. Characterization of the solid products from hydrothermal liquefaction of waste feedstocks from food and agricultural industries. J. Supercrit. Fluids 2018, 133, 665–673. [Google Scholar] [CrossRef]
- Knorr, D.; Lukas, J.; Schoen, P. Production of Advanced Biofuels via Liquefaction-Hydrothermal Liquefaction Reactor Design: April 5, 2013; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Elliott, D.C. Hydrothermal Processing; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2011. [Google Scholar]
- Baskis, P.T. Thermal Depolymerizing Reforming Process and Apparatus. U.S. Patent US5269947A, 14 December 1993. [Google Scholar]
- Caretta, A.; Riccò, M.; Bosetti, A.; Burattini, M.; Carnelli, L.; Miglio, R.; Volpato, C. Waste to fuel—Conversion of waste into energy. In Proceedings of the 9th European Congress of Chemical Engineering, The Hague, The Netherlands, 21–25 April 2013; pp. 21–24. [Google Scholar]
- Marrone, P.A. Genifuel Hydrothermal Processing Bench-Scale Technology Evaluation Project; Water Environment and Reuse Foundation: Alexandria, VA, USA, 2016. [Google Scholar]
- Beims, R.F.; Hu, Y.; Shui, H.; Xu, C.C. Hydrothermal liquefaction of biomass to fuels and value-added chemicals: Products applications and challenges to develop large-scale operations. Biomass Bioenergy 2020, 135, 105510. [Google Scholar] [CrossRef]
- Crocker, M. Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals; Royal Society of Chemistry: London, UK, 2010. [Google Scholar]
- Kargbo, H.; Harris, J.S.; Phan, A.N. “Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability. Renew. Sustain. Energy Rev. 2021, 135, 110168. [Google Scholar] [CrossRef]
- Ou, L.; Thilakaratne, R.; Brown, R.C.; Wright, M.M. Techno-economic analysis of transportation fuels from defatted microalgae via hydrothermal liquefaction and hydroprocessing. Biomass Bioenergy 2015, 72, 45–54. [Google Scholar] [CrossRef]
- Liu, Z.; He, Y.; Shen, R.; Zhu, Z.; Xing, X.-H.; Li, B.; Zhang, Y. Performance and microbial community of carbon nanotube fixed-bed microbial fuel cell continuously fed with hydrothermal liquefied cornstalk biomass. Bioresour. Technol. 2015, 185, 294–301. [Google Scholar] [CrossRef]
- Mohanty, A.; Mankoti, M.; Rout, P.R.; Meena, S.S.; Dewan, S.; Kalia, B.; Varjani, S.; Wong, J.W.; Banu, J.R. Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. Int. J. Food Microbiol. 2022, 365, 109538. [Google Scholar] [CrossRef]
- Rout, P.R.; Goel, M.; Mohanty, A.; Pandey, D.S.; Halder, N.; Mukherjee, S.; Bhatia, S.K.; Sahoo, N.K.; Varjani, S. Recent advancements in microalgal mediated valorisation of wastewater from hydrothermal liquefaction of biomass. BioEnergy Res. 2023, 16, 45–60. [Google Scholar] [CrossRef]
- Watson, J.; Wang, T.; Si, B.; Chen, W.-T.; Aierzhati, A.; Zhang, Y. Valorization of hydrothermal liquefaction aqueous phase: Pathways towards commercial viability. Prog. Energy Combust. Sci. 2020, 77, 100819. [Google Scholar] [CrossRef]
- Belete, Y.Z.; Leu, S.; Boussiba, S.; Zorin, B.; Posten, C.; Thomsen, L.; Wang, S.; Gross, A.; Bernstein, R. Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth. Bioresour. Technol. 2019, 290, 121758. [Google Scholar] [CrossRef] [PubMed]
- Di Fraia, A.; Miliotti, E.; Rizzo, A.M.; Zoppi, G.; Pipitone, G.; Pirone, R.; Rosi, L.; Chiaramonti, D.; Bensaid, S. Coupling hydrothermal liquefaction and aqueous phase reforming for integrated production of biocrude and renewable H2. AIChE J. 2023, 69, e17652. [Google Scholar] [CrossRef]
- Du, Z.; Hu, B.; Shi, A.; Ma, X.; Cheng, Y.; Chen, P.; Liu, Y.; Lin, X.; Ruan, R. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour. Technol. 2012, 126, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Yang, L.; Chen, J.; Hu, Y.; Li, H.; Li, H.; Jiang, S.; Peng, H.; Yuan, X.; Huang, H. Valorization of the aqueous phase produced from wet and dry thermochemical processing biomass: A review. J. Clean. Prod. 2021, 294, 126238. [Google Scholar] [CrossRef]
- Leng, S.; Leng, L.; Chen, L.; Chen, J.; Chen, J.; Zhou, W. The effect of aqueous phase recirculation on hydrothermal liquefaction/carbonization of biomass: A review. Bioresour. Technol. 2020, 318, 124081. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, S.R.; Adhikari, S.; Nam, H.; Sajib, S.K. Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures. Biomass Bioenergy 2018, 108, 479–486. [Google Scholar] [CrossRef]
- Shanmugam, S.R.; Adhikari, S.; Shakya, R. Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae. Bioresour. Technol. 2017, 230, 43–48. [Google Scholar] [CrossRef]
- Shanmugam, S.R.; Adhikari, S.; Wang, Z.; Shakya, R. Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production. Bioresour. Technol. 2017, 223, 115–120. [Google Scholar] [CrossRef]
- SundarRajan, P.; Gopinath, K.; Arun, J.; GracePavithra, K.; Joseph, A.A.; Manasa, S. Insights into valuing the aqueous phase derived from hydrothermal liquefaction. Renew. Sustain. Energy Rev. 2021, 144, 111019. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, Z.; Liu, K.; Si, B.; Yang, G.; Tian, C.; Zhang, Y. Multi-cycle anaerobic digestion of hydrothermal liquefaction aqueous phase: Role of carbon and iron based conductive materials in inhibitory compounds degradation, microbial structure shaping, and interspecies electron transfer regulation. Chem. Eng. J. 2023, 454, 140019. [Google Scholar] [CrossRef]
- Chi, N.T.L.; Anto, S.; Ahamed, T.S.; Kumar, S.S.; Shanmugam, S.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel 2021, 287, 119411. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, C.; Watson, J.; Sharma, B.K.; Si, B.; Zhang, Y. Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase. Chem. Eng. J. 2022, 435, 135078. [Google Scholar] [CrossRef]
- Rawat, S.; Mishra, R.K.; Bhaskar, T. Biomass derived functional carbon materials for supercapacitor applications. Chemosphere 2022, 286, 131961. [Google Scholar] [CrossRef] [PubMed]
- Anto, S.; Karpagam, R.; Renukadevi, P.; Jawaharraj, K.; Varalakshmi, P. Biomass enhancement and bioconversion of brown marine microalgal lipid using heterogeneous catalysts mediated transesterification from biowaste derived biochar and bionanoparticle. Fuel 2019, 255, 115789. [Google Scholar] [CrossRef]
- Parsa, M.; Nourani, M.; Baghdadi, M.; Hosseinzadeh, M.; Pejman, M. Biochars derived from marine macroalgae as a mesoporous by-product of hydrothermal liquefaction process: Characterization and application in wastewater treatment. J. Water Process Eng. 2019, 32, 100942. [Google Scholar] [CrossRef]
- Ponnusamy, V.K.; Nagappan, S.; Bhosale, R.R.; Lay, C.-H.; Nguyen, D.D.; Pugazhendhi, A.; Chang, S.W.; Kumar, G. Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresour. Technol. 2020, 310, 123414. [Google Scholar] [CrossRef]
- Davies, G.; El Sheikh, A.; Collett, C.; Yakub, I.; McGregor, J. Catalytic carbon materials from biomass. In Emerging Carbon Materials for Catalysis; Elsevier: Amsterdam, The Netherlands, 2021; pp. 161–195. [Google Scholar]
- Jamaludin, N.; Tan, T.L.; Zaman, A.S.K.; Sadrolhosseini, A.R.; Rashid, S.A. Acid-free hydrothermal-extraction and molecular structure of carbon quantum dots derived from empty fruit bunch biochar. Materials 2020, 13, 3356. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. Chemistry and energy beyond fossil fuels. A perspective view on the role of syngas from waste sources. Catal. Today 2020, 342, 4–12. [Google Scholar] [CrossRef]
- Stigsson, C.; Furusjö, E.; Börjesson, P. A model of an integrated hydrothermal liquefaction, gasification and Fischer-Tropsch synthesis process for converting lignocellulosic forest residues into hydrocarbons. Bioresour. Technol. 2022, 353, 126070. [Google Scholar] [CrossRef]
- Karnati, S.R.; Høgsaa, B.; Zhang, L.; Fini, E.H. Developing carbon nanoparticles with tunable morphology and surface chemistry for use in construction. Constr. Build. Mater. 2020, 262, 120780. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Wu, B.; Li, Z.; Wang, S.; Liu, Y.; Pan, D.; Wu, M. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem. Eng. J. 2016, 300, 75–82. [Google Scholar] [CrossRef]
- Miao, J.; Lang, Z.; Xue, T.; Li, Y.; Li, Y.; Cheng, J.; Zhang, H.; Tang, Z. Revival of Zeolite-Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. Adv. Sci. 2020, 7, 2001335. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Audu, M.; Myint, M.T.; Cheng, F.; Jarvis, J.M.; Jena, U.; Nirmalakhandan, N.; Brewer, C.E.; Luo, H. Bio-crude oil production and valorization of hydrochar as anode material from hydrothermal liquefaction of algae grown on brackish dairy wastewater. Fuel Process. Technol. 2022, 227, 107119. [Google Scholar] [CrossRef]
- Rout, P.R.; Goel, M.; Pandey, D.S.; Briggs, C.; Sundramurthy, V.P.; Halder, N.; Mohanty, A.; Mukherjee, S.; Varjani, S. Technological advancements in valorisation of industrial effluents employing hydrothermal liquefaction of biomass: Strategic innovations, barriers and perspectives. Environ. Pollut. 2023, 316, 120667. [Google Scholar] [CrossRef] [PubMed]
- Picone, A.; Volpe, M.; Messineo, A. Process water recirculation during hydrothermal carbonization of waste biomass: Current knowledge and challenges. Energies 2021, 14, 2962. [Google Scholar] [CrossRef]
- Kulikova, Y.; Klementev, S.; Sirotkin, A.; Mokrushin, I.; Bassyouni, M.; Elhenawy, Y.; El-Hadek, M.A.; Babich, O. Aqueous Phase from Hydrothermal Liquefaction: Composition and Toxicity Assessment. Water 2023, 15, 1681. [Google Scholar] [CrossRef]
- Elliott, D.C. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction. In Advances in Thermochemical Biomass Conversion; Springer: Berlin/Heidelberg, Germany, 1993; pp. 1299–1313. [Google Scholar]
- Li, H.; Lu, J.; Zhang, Y.; Liu, Z. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals. J. Anal. Appl. Pyrolysis 2018, 135, 133–140. [Google Scholar] [CrossRef]
- Leng, L.; Zhang, W.; Leng, S.; Chen, J.; Yang, L.; Li, H.; Jiang, S.; Huang, H. Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities. Sci. Total Environ. 2020, 748, 142383. [Google Scholar] [CrossRef]
- Medina-Martos, E.; Istrate, I.-R.; Villamil, J.A.; Gálvez-Martos, J.-L.; Dufour, J.; Mohedano, Á.F. Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. J. Clean. Prod. 2020, 277, 122930. [Google Scholar] [CrossRef]
- Ramirez, J.A.; Rainey, T.J. Comparative techno-economic analysis of biofuel production through gasification, thermal liquefaction and pyrolysis of sugarcane bagasse. J. Clean. Prod. 2019, 229, 513–527. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, J.; Deng, Z.; Yang, C.; Cui, C.; Ding, Y. A comparison of energy consumption in hydrothermal liquefaction and pyrolysis of microalgae. Trends Renew. Energy 2017, 3, 76–85. [Google Scholar]
- Cheng, F.; Porter, M.D.; Colosi, L.M. Is hydrothermal treatment coupled with carbon capture and storage an energy-producing negative emissions technology? Energy Convers. Manag. 2020, 203, 112252. [Google Scholar] [CrossRef]
- Aierzhati, A.; Watson, J.; Si, B.; Stablein, M.; Wang, T.; Zhang, Y. Development of a mobile, pilot scale hydrothermal liquefaction reactor: Food waste conversion product analysis and techno-economic assessment. Energy Convers. Manag. X 2021, 10, 100076. [Google Scholar] [CrossRef]
Feedstock | Catalyst | Temperature (°C) | Time (min) | Effect on Bio-Oil Yield (%) | Reference |
---|---|---|---|---|---|
Nannochloropsis sp. | Pd/C | 350 | 60 | 20 | [75] |
Nannochloropsis sp. | Pt/C | 350 | 60 | 10 | [75] |
Nannochloropsis sp. | Ru/C | 350 | 60 | 13 | [75] |
Nannochloropsis sp. | Ni/SiO2-Al2O3 | 350 | 60 | 10 | [75] |
Nannochloropsis sp. | MoCo/γ-Al2O3 | 350 | 60 | 15 | [75] |
Nannochloropsis sp. | Zeolite | 350 | 60 | 8 | [75] |
Nannochloropsis sp. | Pt/C with H2 | 360 | 60 | 5 | [75] |
Dunaliella tertiolecta | 5% Na2CO3 | 350 | 50 | 5.8 | [76] |
Spirulina platensis | Na2CO3 | 350 | 60 | 11.7 | [77] |
Chlorella pyrenoidosa | NaOH | 240–280 | 30 | 10 | [78] |
Chlorella pyrenoidosa | Ce/HZSM-5 | 300 | 20 | 33 | [79] |
Microcystic viridic | Na2CO3 | 300–340 | 30–60 | 33 | [80] |
Nannochloropsis sp. | Nano-Si/SiO2 | 210 | 60 | 5.8 | [81] |
Nannochloropsis sp. | Nano-Si/SiO3 | 250 | 60 | 6.8 | [81] |
Nannochloropsis sp. | Nano-Si/SiO4 | 250 | 60 | 9.8 | [81] |
Dunaliella tertiolecta | Co/CNTs | 320 | 30 | 9 | [82] |
Dunaliella tertiolecta | Ni/CNTs | 320 | 30 | 9 | [82] |
Dunaliella tertiolecta | Pt/CNTs | 320 | 30 | 5 | [82] |
Water hyacinth | 0.5 N K2CO3 | 280 | 15 | 2 | [83] |
Water hyacinth | 0.5 N KOH | 280 | 15 | 3 | [83] |
Water hyacinth | 1 N K2CO3 | 280 | 15 | 6 | [83] |
Water hyacinth | 1 N KOH | 280 | 15 | 7 | [83] |
Dunaliella tertiolecta | 5 wt.% Na2CO3 | 300 | 60 | 7.7 | [84] |
Microcystic viridic | 5 wt.% Na2CO3 | 340 | 30 | 7.5 | [80] |
Enteromorpha prolifera | 5 wt.% Na2CO3 | 300 | 30 | 2.6 | [85] |
Spirulina platensis | 5 wt.% Na2CO3 | 350 | 60 | 11.7 | [77] |
Chlorella pyrenoidosa | 5 wt.% Na2CO3 | 280 | 30 | 5 | [78] |
Nannochloropsis sp. | Na2CO3 | 210 | 60 | 1.7 | [81] |
Nannochloropsis sp. | Na2CO3 | 230 | 60 | 3.8 | [81] |
Nannochloropsis sp. | Na2CO3 | 250 | 60 | 4 | [81] |
Corn stalk | 1 wt.% Na2CO3 | 300 | 30 | 13.8 | [86] |
Wood biomass | 0.94 M K2CO3 | 280 | 15 | 25.2 | [87] |
Dunaliella tertiolecta | 5% Na2CO3 | 360 | 50 | 25.8 | [76] |
Pretreated sorghum bagasse | Formic acid | 300 | 60 | 17 | [88] |
Pretreated sorghum bagasse | K2CO3 | 300 | 60 | 39 | [88] |
Pretreated sorghum bagasse | KOH | 300 | 60 | 18 | [88] |
Pretreated sorghum bagasse | Formic acid | 350 | 60 | 31 | [88] |
Pretreated sorghum bagasse | K2CO3 | 350 | 60 | 30 | [88] |
Pretreated sorghum bagasse | KOH | 350 | 60 | 29 | [88] |
Barely straw | K2CO3 | 300 | 30 | 14 | [50] |
Cladophora glomerata | 3D composite of hydrochar, zeolite, and magnetite | 320 | 20 | - | [89] |
Cladophora glomerata | graphene oxide/polyurethane composite | 320 | 20 | 54 | [55] |
Spirulina sp. | Ni/Reduced graphene oxide | 270 | 30 | 9 | [54] |
Prosopis juliflora (hardwood waste) and polypropylene | Nb/Al2O3 | 420 | 60 | 22.6 | [61] |
Spirulina platensis | Ni/Biochar | 350 | 34 | 6.4 | [53] |
Plant/Institution/Company | Reactor Type | Feedstock | Temperature (°C) | Pressure (bar) | Residence Time (min) | Catalyst | Throughput (kg/h) | Reference |
---|---|---|---|---|---|---|---|---|
Albany, NY, USA (PDU–PERC, PDU-LBL) | Tubular/stirred | Wood | 330–345 | 207 | 11–465 | Na2CO3 | 43–360 | [120] |
Berkeley, CA, USA (LBL) | Stirred | Wood | 330–350 | 200–230 | 20 | - | 1 | [121] |
U.S. Environmental Protection Agency, Washington, DC, USA, (STORS–EPA) | Column | Sewage sludge | 275–305 | 86–148 | 90 | Na2CO3 | 30 | [122] |
Organo Corp., Tokyo, Japan (STORS) | Column | Sewage sludge | 290–300 | 88–98 | - | - | 240 | [123] |
Shell, Amsterdam, The Netherlands (HTU®) | Tubular | Wood | 350 | 180 | 6 | - | 10 | [124] |
Biofuels B.V., Amsterdam, The Netherlands (HTU®) | Tubular | Sugar beet pulp and onion pulp | 350 | 180 | 15 | - | 10 | [125] |
Pacific Northwest National Laboratories, Richland, WA, USA | Stirred + tubular | Algae, macroalgae, grape pomace, and wastewater solids | 350 | 200 | 27–50 | Na2CO3 | 1.5 | [45,46,126,127,128] |
University of Sydney, Australia | Coils in sandbath | Algae | 350 | 200 | 15–20 | - | 24–40 | [67,104] |
University of Illinois, USA | Stirred | Swine manure | 350 | 103 | 40–80 | - | 0.9–2.0 | [35,129] |
Iowa State University, USA | Tubular | Fungi | 300–400 | 270 | 11–31 | - | 3.0–7.5 | [130] |
Chalmers University of Technology, Sweden | Fixed bed with recycle loop | Kraft lignin | 350 | 250 | 6–11 | ZrO2 and K2CO3 | 1–2 | [33,37,38,48] |
Aalborg University, Denmark | Tubular | Wood/glycerol | 390–420 | 300–350 | 15 | K2CO3 | 20 | [71,131] |
Karlsruhe Institute of Technology (KIT), Germany | Tubular/stirred with recirculation or with MeOH gasifier | Waste biomass (algae, yeast, or pomace) | 330–450 | 200–250 | 1–30 | K2CO3 and ZrO2 | 0.06–0.63 | [42,132,133] |
University of Leeds, UK | Coils in sandbath | Chlorella | 350 | 185 | 1.4–5.8 | - | 0.6–2.4 | [134] |
Aarhus University, Denmark | Tubular with oscillator | Wood, sewage sludge, and Spirulina | 350 | 220 | 10 | KOH | 60 | [105,107,135] |
Imperial College London, UK | Tubular | Algae | 300–380 | 180 | 0.5–4 | Hexane | 0.03–0.24 | [91] |
Bath University, UK | Concentric tubular | Wastewater and algae | 302–344 | 160 | 17.7–41.8 | - | 0.18–0.42 | [106] |
University of Twente, The Netherlands | Coils in sandbath | Scenedesmus | 250–350 | 150–300 | 7–30 | - | 0.06–0.33 | [41] |
Steeper Energy, Vedbæk, Denmark, Calgary, AB, Canada (Hydrofaction™) | Tubular | Wood | 390–420 | 300–350 | 15 | K2CO3 | 20 | [136,137] |
Muradel, Whyalla, Australia (Green2black™) | Tubular | Tires and algae | 360 | 200 | 10 | - | 168 | [102] |
Genifuel, Salt Lake, UT, USA (HTP) | Tubular/stirred | Sewage sludge | 350 | 150–300 | 45 | - | 200 | [102] |
ENI S.p.A., Milan, Italy (W2F) | - | Organic fraction of municipal solid waste | 250–310 | 100 | 60–120 | - | 1–5 | [102] |
SCF Technologies, Herlev, Denmark (CatLiq®) | Stirred | Wet digested grains with solubles | 350 | 250 | 1–15 | ZrO2 | 30 | [138] |
Altaca Enerji, Istanbul, Turkey (CatLiq®) | - | Different wastes and residues | 250–350 | 150–300 | 7–30 | - | 15,000 | [139] |
Changing World Technologies, West Hempstead, NY, USA (TDP process) | - | Turkey waste | 200–300 | - | - | - | 8500 | [102] |
Institute of Nuclear and New Energy Technology, Tsinghua University, China | Tubular | Coal and microalgae | 340 | 250 | 30 | Ethanol | 0.05–0.1 | [140,141] |
Indian Institute of Technology, India | Stirred | Macroalgae, hardwood black liquor, rice straw, algae-treated dairy wastewater, microalgae-bacteria consortium, municipal solid wastes | 300–350 | 220–250 | 30–55 | KOH, Na2CO3, and glycerol | 0.03–0.05 | [70,142,143,144,145,146,147,148] |
Korea Institute of Science and Technology, Korea | Stirred | Lignin | 300–350 | 200 | 28–300 | Ethanol | 5 | [149] |
Phase | Applications | Examples/Specific Uses | References |
---|---|---|---|
Liquid (hydrophobic) | Renewable energy generation, transportation fuel, chemical feedstock, biorefinery supply, electricity generation, residential heating, energy storage, bio-based products | Gasoline, jet fuel, diesel, power generation | [1,7,8,9,11,13,21,23,24,29,43,88,93,94,117,118,120,124,128,132,134,136,150,153,164,167,169,170,171,172] |
Liquid (hydrophilic) | Nutrient recovery, biogas production, wastewater treatment, biochemical and biomaterial supply, algal biomass recovery, carbon sequestration | Microbial fuel cell (MFC), anaerobic digestion, microbial electrolysis cell (MEC), biobatteries, algal cultivation, fertilizer production, power generation, HTL recirculation | [34,92,135,144,173,174,175,176,177,178,179,180,181,182,183,184,185,186] |
Solid | Soil amendment, carbon sequestration, waste minimization and valorization, adsorbent material, energy generation, biogas production | Wastewater treatment, soil amendment, nanomaterial manufacture (e.g., graphene), fertilizer production, biofuel, catalyst manufacture, power generation, HTL recirculation | [53,182,187,188,189,190,191,192,193,194,195] |
Gas | Renewable energy generation, biogas production, hydrogen production, chemical synthesis | Biofuel, fermentation, algal cultivation, hydrogen source, HTL recirculation | [7,93,117,196,197] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjbar, S.; Malcata, F.X. Hydrothermal Liquefaction: How the Holistic Approach by Nature Will Help Solve the Environmental Conundrum. Molecules 2023, 28, 8127. https://doi.org/10.3390/molecules28248127
Ranjbar S, Malcata FX. Hydrothermal Liquefaction: How the Holistic Approach by Nature Will Help Solve the Environmental Conundrum. Molecules. 2023; 28(24):8127. https://doi.org/10.3390/molecules28248127
Chicago/Turabian StyleRanjbar, Saeed, and Francisco Xavier Malcata. 2023. "Hydrothermal Liquefaction: How the Holistic Approach by Nature Will Help Solve the Environmental Conundrum" Molecules 28, no. 24: 8127. https://doi.org/10.3390/molecules28248127
APA StyleRanjbar, S., & Malcata, F. X. (2023). Hydrothermal Liquefaction: How the Holistic Approach by Nature Will Help Solve the Environmental Conundrum. Molecules, 28(24), 8127. https://doi.org/10.3390/molecules28248127