Identification of Terpene Compositions in the Leaves and Inflorescences of Hybrid Cannabis Species Using Headspace-Gas Chromatography/Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of HS-GC/MS Conditions
2.2. Investigation of Terpenes in the Leaves and Inflorescences
2.3. Quantification of the Six Major Terpenes in the Leaves and Inflorescences of Hybrid Cannabis Species
3. Experimental
3.1. Chemicals and Materials
3.2. Sample Preparation
3.3. HS-GC/MS Conditions
3.4. Qualitative and Quantitative Analysis
3.5. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenneisen, R. Chemistry and Analysis of Phytocannabinoids and Other Cannabis Constituents. In Marijuana and the Cannabinoids; ElSohly, M.A., Ed.; Humana: Totowa, NJ, USA, 2007; pp. 17–49. [Google Scholar]
- Hesami, M.; Pepe, M.; Baiton, A.; Salami, S.A.; Jones, A.M.P. New Insight into Ornamental Applications of Cannabis: Perspectives and Challenges. Plants 2022, 11, 2383. [Google Scholar] [CrossRef] [PubMed]
- Mechoulam, R.; Parker, L.A. The Endocannabinoid System and the Brain. Annu. Rev. Psychol. 2013, 64, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020, 10, 3309. [Google Scholar] [CrossRef] [PubMed]
- Ferber, S.G.; Namdar, D.; Hen-Shoval, D.; Eger, G.; Koltai, H.; Shoval, G.; Shbiro, L.; Weller, A. The “Entourage Effect”: Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders. Curr. Neuropharmacol. 2020, 18, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.A.R.C.; Watson, D.P. Cannabis and Natural Cannabis Medicines. In Marijuana and the Cannabinoids; ElSohly, M.A., Ed.; Humana: Totowa, NJ, USA, 2007; pp. 1–15. [Google Scholar]
- Micalizzi, G.; Vento, F.; Alibrando, F.; Donnarumma, D.; Dugo, P.; Mondello, L. Cannabis sativa L.: A comprehensive review on the analytical methodologies for cannabinoids and terpenes characterization. J. Chromatogr. A 2021, 1637, 461864. [Google Scholar] [CrossRef] [PubMed]
- Shapira, A.; Berman, P.; Futoran, K.; Guberman, O.; Meiri, D. Tandem Mass Spectrometric Quantification of 93 Terpenoids in Cannabis Using Static Headspace Injections. Anal. Chem. 2019, 91, 11425–11432. [Google Scholar] [CrossRef]
- Sexton, M.; Shelton, K.; Haley, P.; West, M. Evaluation of Cannabinoid and Terpenoid Content: Cannabis Flower Compared to Supercritical CO2 Concentrate. Planta Medica 2018, 84, 234–241. [Google Scholar] [CrossRef]
- Pavlovic, R.; Panseri, S.; Giupponi, L.; Leoni, V.; Citti, C.; Cattaneo, C.; Cavaletto, M.; Giorgi, A. Phytochemical and Ecological Analysis of Two Varieties of Hemp (Cannabis sativa L.) Grown in a Mountain Environment of Italian Alps. Front. Plant Sci. 2019, 10, 1265. [Google Scholar] [CrossRef]
- Pellati, F.; Brighenti, V.; Sperlea, J.; Marchetti, L.; Bertelli, D.; Benvenuti, S. New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp). Molecules 2018, 23, 2639. [Google Scholar] [CrossRef]
- De Backer, B.; Debrus, B.; Lebrun, P.; Theunis, L.; Dubois, N.; Decock, L.; Verstraete, A.; Hubert, P.; Charlier, C. Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. J. Chromatogr. B 2009, 877, 4115–4124. [Google Scholar] [CrossRef] [PubMed]
- Križman, M. A simplified approach for isocratic HPLC analysis of cannabinoids by fine tuning chromatographic selectivity. Eur. Food Res. Technol. 2020, 246, 315–322. [Google Scholar] [CrossRef]
- Mostafaei Dehnavi, M.; Ebadi, A.; Peirovi, A.; Taylor, G.; Salami, S.A. THC and CBD Fingerprinting of an Elite Cannabis Collection from Iran: Quantifying diversity to underpin Future Cannabis Breeding. Plants 2022, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-D.; Riordan-Short, S.; Dang, T.-T.T.; O’Brien, R.; Noestheden, M. Quantitation of Select Terpenes/Terpenoids and Nicotine Using Gas Chromatography–Mass Spectrometry with High-Temperature Headspace Sampling. ACS Omega 2020, 5, 5565–5573. [Google Scholar] [CrossRef] [PubMed]
- Béres, T.; Černochová, L.; Zeljković, S.Ć.; Benická, S.; Gucký, T.; Berčák, M.; Tarkowski, P. Intralaboratory comparison of analytical methods for quantification of major phytocannabinoids. Anal. Bioanal. Chem. 2019, 411, 3069–3079. [Google Scholar] [CrossRef] [PubMed]
- Correia, B.; Ahmada, S.M.; Quinta, A. Determination of phytocannabinoids in cannabis samples by ultrasound-assisted solid-liquid extraction and high-performance liquid chromatography with diode array detector analysis. J. Chromatogr. A 2023, 1705, 464191. [Google Scholar] [CrossRef]
- Rocha, E.D.; Silva, V.E.A.; Pereira, F.C.S.; Jean, V.M.; Souza, F.L.C.; Baratto, L.C.; Vieira, A.C.M.; Carvalho, V.M. Qualitative terpene profiling of Cannabis varieties cultivated for medical purposes. Pharmacognosy 2020, 71, e01192019. [Google Scholar] [CrossRef]
- Arnoldi, S.; Roda, G.; Casagni, E.; DEI CAS, M.V.; Faré, F.; Rusconi, C.M.; Visconti, G.L.; Gambaro, V. Characterization of the Volatile Components of Cannabis Preparations by Solid-Phase Microextraction Coupled to Headspace-Gas Chromatography with Mass Detector (SPME-HSGC/MS). J. Chromatogr. Sep. Tech. 2017, 8, 1000350. [Google Scholar] [CrossRef]
- Lancioni, C.; Castells, C.; Candal, R.; Tascon, M. Headspace solid-phase microextraction: Fundamentals and recent advances. Adv. Sample Prep. 2022, 3, 100035. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Kroener, L.; Musshoff, F.; Madea, B. Determination of cannabinoids in hemp food products by use of headspace solid-phase microextraction and gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 2004, 378, 183–189. [Google Scholar] [CrossRef]
- Virgiliou, C.; Zisi, C.; Kontogiannopoulos, K.N.; Nakas, A.; Iakovakis, A.; Varsamis, V.; Gika, H.G.; Assimopoulou, A.N. Headspace gas chromatography-mass spectrometry in the analysis of lavender’s essential oil: Optimization by response surface methodology. J. Chromatogr. B 2021, 1179, 122852. [Google Scholar] [CrossRef]
- Calvi, L.; Pentimalli, D.; Panseri, S.; Giupponi, L.; Gelmini, F.; Beretta, G.; Vitali, D.; Bruno, M.; Zilio, E.; Pavlovic, R.; et al. Comprehensive quality evaluation of medical Cannabis sativa L. inflorescence and macerated oils based on HS-SPME coupled to GC–MS and LC-HRMS (q-exactive orbitrap®) approach. J. Pharm. Biomed. Anal. 2018, 150, 208–219. [Google Scholar] [CrossRef]
- Slosse, A.; Van Durme, F.; Eliaerts, J.; Samyn, N.; Mangelings, D.; Heyden, Y.V. Analytical strategies for herbal Cannabis samples in forensic applications: A comprehensive review. WIREs Forensic Sci. 2023, 5, e1479. [Google Scholar] [CrossRef]
- Yang, Y.; Kayan, B.; Bozer, N.; Pate, B.; Baker, C.; Gizir, A.M. Terpene degradation and extraction from basic and oregano leaves using subcritical water. J. Chromatogr. A 2007, 1152, 262–267. [Google Scholar] [CrossRef]
- Boumaraf, M.; Mekkiou, R.; Benyahia, S.; Chalchat, J.-C.; Chalard, P.; Benayache, F.; Benayache, S. Essential Oil Composition of Pulicaria undulata (L.) DC. (Asteraceae) Growing in Algeria. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 746–749. [Google Scholar]
- Bernstein, N.; Gorelick, J.; Koch, S. Interplay between chemistry and morphology in medical cannabis (Cannabis sativa L.). Ind. Crop. Prod. 2019, 129, 185–194. [Google Scholar] [CrossRef]
- Drevinskas, T.; Maruška, A.; Telksnys, L.; Hjerten, S.; Stankevičius, M.; Lelešius, R.; Mickienė, R.; Karpovaitė, A.; Šalomskas, A.; Tiso, N.; et al. Chromatographic Data Segmentation Method: A Hybrid Analytical Approach for the Investigation of Antiviral Substances in Medicinal Plant Extracts. Anal. Chem. 2019, 91, 1080–1088. [Google Scholar] [CrossRef]
- Santiago, M.; Sachdev, S.; Arnold, J.C.; McGregor, I.S.; Connor, M. Absence of Entourage: Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Functional Activity of Δ9-THC at Human CB1 and CB2 Receptors. Cannabis Cannabinoid Res. 2019, 4, 165–176. [Google Scholar] [CrossRef]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metgesa, M.-A.; Elfeki, A.; Talarmin, H. Potential protective effects of alpha-pinene against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother. 2017, 93, 961–968. [Google Scholar] [CrossRef]
- Karthikeyana, R.; Kanimozhi, G.; Prasad, N.R.; Agilan, B.; Ganesan, M.; Srithar, G. Alpha pinene modulates UVA-induced oxidative stress, DNA damage and apoptosis in human skin epidermal keratinocytes. Life Sci. 2018, 212, 150–158. [Google Scholar] [CrossRef]
- Kim, D.-S.; Lee, H.-J.; Jeon, Y.-D.; Han, Y.-H.; Kee, J.-Y.; Kim, H.-J.; Shin, H.-J.; Kang, J.W.; Lee, B.S.; Kim, S.-H.; et al. Alpha-Pinene Exhibits Anti-Inflammatory Activity Through the Suppression of MAPKs and the NF-kB Pathway in Mouse Peritoneal Macrophages. Amer. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Silva-Cardoso, G.K.; Lazarini-Lopes, W.; Hallak, J.E.; Crippa, J.A.; Zuardi, A.W.; Garcia-Cairasco, N.; Leite-Panissi, C.R.A. Cannabidiol effectively reverses mechanical and thermal allodynia, hyperalgesia, and anxious behaviors in a neuropathic pain model: Possible role of CB1 and TRPV1 receptors. Neuropharmacology 2021, 197, 108712. [Google Scholar] [CrossRef] [PubMed]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef] [PubMed]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463. [Google Scholar] [CrossRef] [PubMed]
Elution Order | Compound Name | M.W | RT (Min) | KI calc. | KI Ref | Characteristic Ions m/z (Relative Abundance%) |
---|---|---|---|---|---|---|
1 | α-Pinene | 136 | 6.06 | 935 | 936 | 136 (10), 121 (15), 105 (10), 93 (100), 91 (40), 79 (25), 77 (30) |
2 | β-Pinene | 136 | 7.13 | 981 | 978 | 136 (10), 121 (15), 93 (100), 91 (25), 79 (20), 77 (20), 69 (25) |
3 | Myrcene | 136 | 7.32 | 989 | 989 | 136 (5), 121 (5), 93 (100), 91 (25), 79 (15), 77 (15), 69 (70), 41 (75) |
4 | Limonene | 136 | 8.42 | 1031 | 1030 | 136 (25), 121 (25), 107 (25), 93 (75), 79 (35), 68 (100), 67 (70) |
5 | Eucalyptol | 154 | 8.53 | 1035 | 1032 | 154 (70), 139 (60), 125 (15), 111 (80), 93 (60), 81 (90), 71 (70), 55 (40), 43 (100) |
6 | E-β-Ocimene | 136 | 8.82 | 1046 | 1048 | 136 (5), 121 (20), 105 (20), 93 (100), 91 (45), 80 (35), 79 (40) |
7 | γ-Terpinene | 136 | 9.19 | 1060 | 1060 | 136 (40), 119 (50), 105 (15), 93 (100), 77 (35), 91 (60) |
8 | Z-Sabinene hydrate | 154 | 9.53 | 1072 | 1067 | 154 (5), 136 (25), 121 (25), 111 (15), 93 (100), 77 (35), 43 (25) |
9 | β-Caryophyllene | 204 | 19.13 | 1426 | 1420 | 204 (10), 189 (25), 175 (15), 161 (45), 147 (30), 133 (95), 120 (45), 105 (60), 93 (100), 79 (75) |
10 | trans-α-Bergamotene | 204 | 19.37 | 1435 | 1435 | 204 (5), 189 (5), 161 (5), 119 (100), 107 (30), 93 (95), 79 (25), 69 (35) |
11 | α-Guaiene | 204 | 19.45 | 1438 | 1440 | 204 (55), 189 (35), 161 (25), 147 (90), 133 (65), 119 (45), 105 (100), 93 (75), 79 (60), |
12 | E-β-Farnesene | 204 | 19.81 | 1453 | 1456 | 204 (5), 189 (5), 161 (15), 133 (30), 120 (25), 107 (10), 93 (65), 79 (25), 69 (100) |
13 | α-Humulene | 204 | 20.02 | 1461 | 1453 | 204 (10), 189 (5), 161 (5), 147 (20), 121 (40), 107 (15), 93 (100), 80 (30), 67 (10) |
14 | Alloaromadrene | 204 | 20.12 | 1465 | 1460 | 204 (45), 189 (35), 175 (10), 161 (100), 147 (50), 133 (70), 119 (60), 105 (90), 91 (100) |
15 | β-Selinene | 204 | 20.85 | 1494 | 1486 | 204 (70), 189 (60), 175 (30), 161 (65), 147 (50), 133 (50), 121 (60), 105 (100), 93 (90) |
16 | α-Selinene | 204 | 21.01 | 1500 | 1493 | 204 (50), 189 (100),175 (30), 161 (35), 133 (50), 121 (25), 107 (55), 93 (55) |
17 | Z,E-α-Farnesene | 204 | 21.10 | 1504 | 1504 | 204 (5), 161 (10),135 (10), 123 (35), 119 (50), 107 (50), 93 (100), 79 (45), 69 (50) |
18 | β-Bisabolene | 204 | 21.23 | 1509 | 1508 | 204 (20), 189 (5), 161 (20), 133 (10), 119 (25), 109 (30), 93 (85), 79 (35), 69 (100) |
19 | β-sesquiphellandrene | 204 | 21.62 | 1526 | 1524 | 204 (30), 189 (5), 161 (60), 133 (40), 120 (30), 109 (30), 93 (70), 69 (100) |
20 | E-α-Bisabolene | 204 | 22.00 | 1542 | 1540 | 204 (20), 189 (5), 161 (5), 147 (5), 136 (10), 119 (30), 109 (25), 93 (100), 78 (25) |
21 | Selina-3,7(11)-diene | 204 | 22.11 | 1546 | 1541 | 204 (55), 189 (25), 161 (100), 133 (20), 122 (60), 107 (50), 91 (30), 81 (20) |
22 | Caryophyllene oxide | 222 | 23.10 | 1587 | 1581 | 205 (10), 202 (20), 187 (40), 161 (35), 149 (30), 133 (45), 119 (40), 105 (65), 91 (100), 79 (85) |
23 | Guaiol | 222 | 23.38 | 1599 | 1597 | 222 (5), 204 (25), 189 (25), 161 (100), 147 (20), 133 (25), 119 (25), 105 (60), 91 (50) |
24 | γ-Eudesmol | 222 | 24.04 | 1629 | 1631 | 222 (5), 204 (60), 189 (100), 161 (80), 147 (25), 133 (60), 119 (20), 105 (45), 91 (50) |
25 | Bulnesol | 222 | 24.96 | 1669 | 1666 | 222 (5), 204 (30), 189 (35), 161 (55), 147 (25), 135 (75), 119 (45), 107 (100), 93 (85), |
26 | α-Bisabolol | 222 | 25.38 | 1688 | 1683 | 204 (30), 189 (5), 161 (20), 135 (10), 119 (90), 109 (95), 93 (85), 79 (40), 69 (100) |
Elution Order | Compound Name | Relative Abundance (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cherry Blossom | V1 | V4 | White Widow | Chung Sam | Blue Dream | Bubble Gum | Purple | Victory | ||
1 | α-Pinene | 28 ± 8 | 50 ± 30 | 40 ± 20 | 2.29 ± 0.04 | 4.8 ± 0.5 | 20 ± 10 | 5 ± 1 | 38 ± 5 | 17 ± 1 |
2 | β-Pinene | 6.6 ± 0.3 | 15 ± 3 | 13 ± 5 | 1.75 ± 0.09 | 2.0 ± 0.5 | 7 ± 5 | 7 ± 1 | 14 ± 2 | 6.5 ± 0.8 |
3 | Myrcene | 6.5 ± 0.2 | 1.14 ± 0.02 | 2.5 ± 0.2 | 4.41 ± 0.06 | 0.08 ± 0.03 | 10 ± 5 | 9 ± 2 | 17 ± 2 | 14 ± 2 |
4 | Limonene | 5 ± 1 | 2.5 ± 0.6 | 6.3 ± 0.2 | 6.5 ± 0.1 | 1.9 ± 0.6 | 4 ± 2 | 19 ± 3 | 3.4 ± 0.4 | 3.6 ± 0.6 |
5 | Eucalyptol | 0.04± 0.04 | 1.2 ± 0.9 | 1.3 ± 0.5 | 20 ± 5 | ND | 3 ± 2 | ND | ND | 0.68 ± 0.02 |
6 | E-β-Ocimene | 0.6 ± 0.3 | 0 ± 1 | 0.47 ± 0.08 | ND | ND | 1.9 ± 0.6 | ND | ND | ND |
7 | γ-Terpinene | ND | 0.1 ± 0.2 | 0.05 ± 0.07 | 0.40 ± 0.09 | ND | 0.6 ± 0.1 | ND | 0.02 ± 0.01 | 0.13 ± 0.03 |
8 | Z-Sabinene hydrate | ND | 0 ± 1 | 0.3 ± 0.5 | 0 ± 2 | ND | 1.0 ± 0.8 | ND | 0.08 ± 0.05 | 0.4 ± 0.2 |
9 | β-Caryophyllene | 21 ± 3 | 10 ± 20 | 10 ± 30 | 22 ± 5 | 42 ± 5 | 20 ± 10 | 13 ± 3 | 7 ± 3 | 18 ± 6 |
10 | trans-α-Bergamotene | 4 ± 7 | 5 ± 9 | 4 ± 9 | 1.6 ± 0.5 | 6.3 ± 0.7 | 3.7 ± 0.3 | 5 ± 3 | 2.6 ± 0.4 | 5 ± 2 |
11 | α-Guaiene | 0.2 ± 0.3 | <0.01 | ND | 0.31 ± 0.01 | ND | ND | ND | ND | ND |
12 | E-β-Farnesene | 2 ± 4 | 1 ± 2 | 0.3 ± 0.7 | 0.9 ± 0.1 | ND | 0.62 ± 0.08 | 0.5 ± 0.5 | ND | 2 ± 1 |
13 | α-Humulene | 16 ± 27 | 10 ± 20 | 10 ± 20 | 16 ± 4 | 33 ± 4 | 12.0 ± 0.3 | 18 ± 8 | 7.0 ± 0.2 | 15 ± 2 |
14 | Alloaromadrene | 0.2 ± 0.3 | 0 ± 1 | 0 ± 1 | 0.4 ± 0.2 | ND | 0.3 ± 0.3 | ND | 0.17 ± 0.09 | 1.0 ± 0.3 |
15 | β-Selinene | 0.3 ± 0.5 | ND | ND | 1.0 ± 0.4 | ND | 0.22 ± 0.03 | 0.57 ± 0.06 | 0.1 ± 0.1 | 0.7 ± 0.8 |
16 | α-Selinene | 0.3 ± 0.1 | ND | ND | 1.2 ± 0.3 | ND | ND | ND | 0.23 ± 0.01 | 0.90 ± 0.07 |
17 | Z,E-α-Farnesene | 4 ± 7 | 0.12 ± 0.07 | 0.13 ± 0.05 | ND | ND | ND | 1.4 ± 0.8 | 2 ± 1 | ND |
18 | β-Bisabolene | 4 ± 7 | 0.3 ± 0.8 | 0.3 ± 0.8 | 3.0 ± 0.9 | 3.4 ± 0.4 | 1.2 ± 0.6 | ND | 0.4 ± 0.1 | 3.8 ± 0.8 |
19 | β-sesquiphellandrene | ND | ND | <0.01 | ND | <0.01 | ND | ND | ND | 0.30 ± 0.07 |
20 | E-α-Bisabolene | ND | 1 ± 2 | 1 ± 2 | ND | 1.1 ± 0.1 | ND | 9 ± 6 | ND | 8 ± 2 |
21 | Selina-3,7(11)-diene | ND | ND | ND | 17 ± 3 | 0.6 ± 0.4 | 5 ± 3 | 9 ± 3 | 6.6 ± 0.2 | 2.7 ± 0.1 |
22 | Caryophyllene oxide | 0.43 ± 0.09 | 1 ± 3 | 2 ± 6 | 0.1 ± 0.1 | 4 ± 1 | ND | ND | <0.01 | 0.02 ± 0.01 |
23 | Guaiol | ND | ND | ND | ND | ND | ND | ND | ND | ND |
24 | γ-Eudesmol | ND | 0 ± 2 | 0 ± 1 | ND | ND | 0.2 ± 0.1 | ND | ND | ND |
25 | Bulnesol | ND | 0.1 ± 0.3 | ND | ND | ND | ND | ND | ND | ND |
26 | α-Bisabolol | 1 ± 3 | 0.1 ± 0.4 | ND | 0.8 ± 0.7 | 1 ± 1 | 0.2 ± 0.1 | ND | 0.09 ± 0.01 | 0.5 ± 0.9 |
Elution Order | Compound Name | Relative Abundance (%) | ||||||
---|---|---|---|---|---|---|---|---|
Cherry Blossom | V1 | V4 | White Widow | Chung Sam | Blue Dream | Bubble Gum | ||
1 | α-Pinene | 29 ± 8 | 18 ± 7 | 12 ± 4 | 3 ± 1 | 22.8 ± 0.5 | 20 ± 10 | 6 ± 1 |
2 | β-Pinene | 10 ± 10 | 10 ± 6 | 8 ± 4 | 5 ± 3 | 3.8 ± 0.4 | 9 ± 3 | 10 ± 2 |
3 | Myrcene | 40 ± 30 | 50 ± 20 | 2 ± 1 | 40 ± 10 | 0.13 ± 0.02 | 41 ± 5 | 16 ± 2 |
4 | Limonene | 6 ± 3 | 6.6 ± 0.9 | 10 ± 6 | 13 ± 9 | 0.2 ± 0.2 | 2.3 ± 0.6 | 35 ± 1 |
5 | Eucalyptol | ND | 0.06 ± 0.08 | ND | 0.5 ± 0.4 | ND | ND | <0.01 |
6 | E-β-Ocimene | 5 ± 2 | 9.9 ± 0.5 | 0.9 ± 0.7 | 3 ± 1 | ND | 9 ± 2 | ND |
7 | γ-Terpinene | 0.0 ± 0.1 | 0.07 ± 0.03 | 1.1 ± 0.8 | 0.19 ± 0.02 | 0.06 ± 0.03 | 0.17 ± 0.01 | 0.07 ± 0.05 |
8 | Z-Sabinene hydrate | 0.02 ± 0.01 | 0.08 ± 0.01 | 0.2 ± 0.2 | 0.11 ± 0.06 | <0.01 | 0.09 ± 0.01 | ND |
9 | β-Caryophyllene | 3 ± 1 | 0.7 ± 0.5 | 20 ± 10 | 14.0 ± 0.9 | 31 ± 4 | 6 ± 4 | 10.2 ± 0.3 |
10 | trans-α-Bergamotene | 0.9 ± 0.4 | 0.09 ± 0.06 | 6.4 ± 0.9 | 0.4 ± 0.2 | 8 ± 5 | 0.66 ± 0.03 | 0.47 ± 0.03 |
11 | α-Guaiene | 0.21 ± 0.09 | 0.19 ± 0.03 | 0.0 ± 0.2 | 2.4 ± 0.3 | 0.9 ± 0.1 | <0.01 | <0.01 |
12 | E-β-Farnesene | 1.3 ± 0.6 | 0.05 ± 0.03 | 0.77 ± 0.09 | 0.5 ± 0.3 | 0.22 ± 0.04 | 0.08 ± 0.01 | 0.12 ± 0.09 |
13 | α-Humulene | 2.1 ± 0.9 | 0.5 ± 0.5 | 21 ± 2 | 11 ± 2 | 24 ± 4 | 4 ± 2 | 7.4 ± 0.1 |
14 | Alloaromadrene | 0.13 ± 0.05 | <0.01 | 0.4 ± 0.2 | 0.11 ± 0.04 | ND | 0.09 ± 0.01 | ND |
15 | β-Selinene | 0.04 ± 0.02 | 0.03 ± 0.01 | 0.3 ± 0.2 | 0.8 ± 0.2 | 1 ± 1 | 0.20 ± 0.03 | 0.75 ± 0.07 |
16 | α-Selinene | 0.04 ± 0.01 | 0.04 ± 0.09 | 0.29 ± 0.06 | 1 ± 1 | 1.5 ± 0.2 | 0.22 ± 0.02 | 0.9 ± 0.4 |
17 | Z,E-α-Farnesene | 0.38 ± 0.09 | 0.2 ± 0.3 | 2.6 ± 0.3 | 2.0 ± 0.6 | 1.40 ± 0.06 | 0.13 ± 0.03 | 0.7 ± 0.1 |
18 | β-Bisabolene | 0.5 ± 0.2 | 0.02 ± 0.01 | 2.9 ± 0.4 | 0 ± 1 | 0.3 ± 0.3 | 0.06 ± 0.02 | 0.08 ± 0.05 |
19 | β-sesquiphellandrene | 0.09 ± 0.04 | ND | ND | 0.1 ± 0.1 | ND | 0.05 ± 0.03 | ND |
20 | E-α-Bisabolene | 0.6 ± 0.3 | 0.0 ± 0.2 | 3.9 ± 0.5 | 2 ± 2 | 4 ± 3 | 1.7 ± 0.5 | ND |
21 | Selina-3,7(11)-diene | ND | ND | 0.3 ± 0.1 | 3 ± 2 | 0.1 ± 0.5 | 1.5 ± 0.3 | 12 ± 1 |
22 | Caryophyllene oxide | <0.01 | 0.0 ± 0.1 | 0.7 ± 0.4 | 0.06 ± 0.01 | 0.2 ± 0.2 | ND | ND |
23 | Guaiol | 0.03 ± 0.02 | 0.1 ± 0.2 | 0.3 ± 0.1 | ND | ND | 0.12 ± 0.08 | ND |
24 | γ-Eudesmol | 0.05 ± 0.03 | 0.05 ± 0.01 | 0.5 ± 0.3 | ND | ND | 0.2 ± 0.2 | ND |
25 | Bulnesol | ND | ND | ND | ND | ND | 0.07 ± 0.05 | ND |
26 | α-Bisabolol | ND | ND | 0.4 ± 0.7 | 0.15 ± 0.06 | 0.03 ± 0.01 | ND | ND |
Strains | Organ | Concentrations (μg/g) | |||||
---|---|---|---|---|---|---|---|
α-Pinene | β-Pinene | Myrcene | Limonene | β-Caryophyllene | α-Humulene | ||
Cherry Blossom | leaf | 144 ± 8 | 32.9 ± 0.5 | 187 ± 7 | 14 ± 1 | 1200 ± 600 | 300 ± 100 |
inflorescence | 2270 ± 70 | 930 ± 20 | 17,400 ± 300 | 260 ± 20 | 2000 ± 100 | 500 ± 30 | |
V1 | leaf | 100 ± 10 | 80 ± 60 | 10 ± 10 | 8 ± 6 | 220 ± 20 | 66 ± 4 |
inflorescence | 500 ± 100 | 290 ± 60 | 4600 ± 400 | 115 ± 9 | 200 ± 10 | 40 ± 30 | |
V4 | leaf | 84 ± 5 | 27 ± 3 | 20 ± 10 | 8 ± 2 | 240 ± 60 | 70 ± 20 |
inflorescence | 93 ± 1 | 60 ± 30 | 50 ± 50 | 47 ± 4 | 2500 ± 300 | 690 ± 80 | |
White Widow | leaf | 9.8 ± 0.6 | 6.2 ± 0.4 | 79 ± 7 | 13 ± 1 | 950 ± 10 | 236 ± 5 |
inflorescence | 64 ± 3 | 110 ± 10 | 2000 ± 1000 | 150 ± 30 | 3300 ± 400 | 870 ± 80 | |
Chung Sam | leaf | 6.9 ± 0.3 | 2.6 ± 0.2 | 0.7 ± 0.2 | 1.6 ± 0.2 | 263 ± 4 | 73 ± 1 |
inflorescence | 183 ± 5 | 30.1 ± 0.3 | 6.1 ± 0.1 | 1.3 ± 0.2 | 2900 ± 600 | 800 ± 100 | |
Blue Dream | leaf | 56.5 ± 0.7 | 18.6 ± 0.6 | 200 ± 100 | 6.1 ± 0.1 | 205 ± 4 | 51 ± 4 |
inflorescence | 200 ± 300 | 116 ± 3 | 1400 ± 900 | 19 ± 1 | 400 ± 200 | 100 ± 60 | |
Bubble Gum | leaf | 9.79 ± 0.02 | 10.6 ± 0.2 | 75 ± 1 | 16.2 ± 0.6 | 60 ± 40 | 48 ± 2 |
inflorescence | 93.17 ± 0.03 | 142 ± 1 | 1310 ± 30 | 300 ± 20 | 500 ± 100 | 130 ± 40 | |
Purple | leaf | 450 ± 10 | 200 ± 50 | 1190 ± 60 | 34 ± 6 | 400 ± 70 | 130 ± 30 |
Victory | leaf | 332 ± 3 | 122 ± 4 | 1550 ± 60 | 42 ± 3 | 1100 ± 200 | 300 ± 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, E.J.; Kwon, E.; Oh, S.J.; Cho, M.; Kim, C.M.; Lee, W.; Hong, J. Identification of Terpene Compositions in the Leaves and Inflorescences of Hybrid Cannabis Species Using Headspace-Gas Chromatography/Mass Spectrometry. Molecules 2023, 28, 8082. https://doi.org/10.3390/molecules28248082
Lee S, Kim EJ, Kwon E, Oh SJ, Cho M, Kim CM, Lee W, Hong J. Identification of Terpene Compositions in the Leaves and Inflorescences of Hybrid Cannabis Species Using Headspace-Gas Chromatography/Mass Spectrometry. Molecules. 2023; 28(24):8082. https://doi.org/10.3390/molecules28248082
Chicago/Turabian StyleLee, Sangin, Eun Jae Kim, Eunjeong Kwon, Seo Jeong Oh, Mansoo Cho, Chul Min Kim, Wonwoong Lee, and Jongki Hong. 2023. "Identification of Terpene Compositions in the Leaves and Inflorescences of Hybrid Cannabis Species Using Headspace-Gas Chromatography/Mass Spectrometry" Molecules 28, no. 24: 8082. https://doi.org/10.3390/molecules28248082
APA StyleLee, S., Kim, E. J., Kwon, E., Oh, S. J., Cho, M., Kim, C. M., Lee, W., & Hong, J. (2023). Identification of Terpene Compositions in the Leaves and Inflorescences of Hybrid Cannabis Species Using Headspace-Gas Chromatography/Mass Spectrometry. Molecules, 28(24), 8082. https://doi.org/10.3390/molecules28248082