Bioactive Components of Lycium barbarum and Deep-Processing Fermentation Products
Abstract
:1. Introduction
2. Active Ingredients
2.1. Lycium barbarum Polysaccharide
2.2. Polyphenols
2.3. Betaine
2.4. Carotenoids
2.5. Other Ingredients
3. Lycium barbarum Deep-Processing Products of Fermentation
3.1. Wolfberry Fruit Wine
3.2. Wolfberry Fruit Vinegar
3.3. Fermented Wolfberry Beverage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Yan, Y.; Zhang, L.; Mi, J.; Yu, L.; Zhang, F.; Lu, L.; Luo, Q.; Li, X.; Zhou, X.; et al. A comprehensive review of goji berry processing and utilization. Food Sci. Nutr. 2023, 1–13. [Google Scholar] [CrossRef]
- Zhu, L.Z.; He, J.; Tian, Y.; Li, X.Y.; Li, Y.H.; Wang, F.; Qin, K.; Wang, J. Intercropping Wolfberry with Gramineae plants improves productivity and soil quality. Sci. Hortic. 2022, 292, 110632. [Google Scholar] [CrossRef]
- Ma, R.H.; Zhang, X.X.; Ni, Z.J.; Thakur, K.; Wang, W.; Yan, Y.M.; Cao, Y.L.; Zhang, J.G.; Rengasamy, K.R.R.; Wei, Z.J. Lycium barbarum (Goji) as functional food: A review of its nutrition, phytochemical structure, biological features, and food industry prospects. Crit. Rev. Food Sci. Nutr. 2023, 63, 10621–10635. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Heinrich, M.; Weckerle, C.S. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. J. Ethnopharmacol. 2018, 212, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Liang, X.J.; Guo, S.J.; Li, Y.K.; Zhang, B.; Yin, Y.; An, W.; Cao, Y.L.; Zhao, J.H. Evaluation of nutrients and related environmental factors for wolfberry (Lycium barbarum) fruits grown in the different areas of China. Biochem. Syst. Ecol. 2019, 86, 103916. [Google Scholar]
- Tian, X.J.; Liang, T.S.; Liu, Y.L.; Ding, G.T.; Zhang, F.M.; Ma, Z.R. Extraction, structural characterization, and biological functions of Lycium barbarum polysaccharides:a review. Biomolecules 2019, 9, 389. [Google Scholar] [CrossRef]
- Xing, L.J.; Luo, L.L.; Xiang, X.L.; Luo, Z.G.; Li, X.Y.; Luo, R.F.; Wang, Y. Analysis of functional nutrients in wolfberry in Xinjiang. Qual. Saf. Agro-Prod. 2021, 4, 43–46. [Google Scholar]
- Liu, Y.Y. Research status of chemical components and physiological effects of goji berries. Rural Econ. Sci. Technol. 2017, 28, 339–344. [Google Scholar]
- Li, G.; Sepkovic, D.W.; Bradlow, H.L.; Telang, N.T.; Wong, G.Y. Lycium barbarum inhibits growth of estrogen receptor positive human breast cancer cells by favorably altering estradiol metabolism. Nutr. Cancer 2009, 61, 408–414. [Google Scholar] [CrossRef]
- Wang, H.B.; Zhang, S.M.; Shen, Q.W.; Zhu, M.J. A metabolomic explanation on beneficial effects of dietary Goji on intestine inflammation. J. Funct. Foods 2019, 53, 109–114. [Google Scholar] [CrossRef]
- Tian, B.; Zhang, Z.; Zhao, J.; Ma, Q.; Liu, H.; Nie, C.; Ma, Z.; An, W.; Li, J. Dietary whole Goji berry (Lycium barbarum) intake improves colonic barrier function by altering gut microbiota composition in mice. Int. J. Food Sci. Technol. 2021, 56, 103–114. [Google Scholar] [CrossRef]
- DBS64/001-2017; The Local Food Safety Standard-Goji Berry. Ningxia Hui Autonomous Region Health and Family Planning Commission: Ningxia, China, 2017.
- GB14881-2013; The General Hygienic Specification for Food Production. National Health and Family Planning Commission: Beijing, China, 2016.
- Ozturk, A.; Yildiz, K.; Ozturk, B.; Karakaya, O.; Gun, S.; Uzun, S.; Gundogdu, M. Maintaining postharvest quality of medlar (Mespilus germanica) fruit using modified atmosphere packaging and methyl jasmonate. LWT 2019, 111, 117–124. [Google Scholar] [CrossRef]
- Hao, W.; Wang, S.F.; Zhao, J.; Li, S.P. Effects of extraction methods on immunology activity and chemical profiles of Lycium barbarum polysaccharides. J. Pharm. Biomed. Anal. 2020, 185, 113219. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.R.; Han, A.R.; Park, S.G.; Cho, C.W.; Rhee, Y.K.; Hong, H.D. Effect of enzyme-assisted extraction on the physicochemical properties and bioactive potential of lotus leaf polysaccharides. Int. J. Biol. Macromol. 2020, 153, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yan, S.; Zhou, Y.; Feng, Y.; Xie, X.; Guo, W.; Shen, Q.; Chen, C. Optimisation of enzyme-assisted extraction of Erythronium sibiricum bulb polysaccharide and its effects on immunomodulation. Glycoconj. J. 2022, 39, 357–368. [Google Scholar] [CrossRef]
- Wang, Z.L.; Pan, H.Y.; Xu, J.; Chang, Y.H.; Liu, C.; Zhang, Y.; Yang, H.; Duan, C.J.; Huang, J.; Fu, Y.J. A sustainable and integrated natural surfactant mediated microwave-assisted extraction technique enhances the extraction of phytochemicals from plants. Ind. Crop. Prod. 2022, 184, 115043. [Google Scholar] [CrossRef]
- Perera, C.O.; Alzahrani, M.A.J. Ultrasound as a pre-treatment for extraction of bioactive compounds and food safety: A review. LWT 2021, 142, 111114. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, S.Q. Effects of extraction methods on extraction ratio and antioxidant activity of polysaccharide from Lycium barbarum. Agricul. Sci. 2019, 47, 169–173. [Google Scholar]
- Xia, F.; Zhou, S.; Sun, D.F. Surface optimization method to optimize the enzymatic extraction of Lycium barbarum polysaccharides. Chin. Wild Plant Resour. 2017, 36, 27–33. [Google Scholar]
- Quan, N.; Wang, Y.D.; Li, G.R.; Liu, Z.Q.; Feng, J.; Qiao, C.L.; Zhang, H.F. Ultrasound–microwave combined extraction of novel polysaccharide fractions from Lycium barbarum leaves and their in vitro hypoglycemic and antioxidant activities. Molecules 2023, 28, 3880. [Google Scholar] [CrossRef]
- Dou, Z.M.; Chen, C.; Huang, Q.; Fu, X. The structure, conformation, and hypoglycemic activity of a novel heteropolysaccharide from the blackberry fruit. Food Funct. 2021, 12, 5451–5464. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.X.; Chen, T.; Wan, F.Q.; Wang, J.; Li, X.; Li, W.J.; Ma, L. Structural characterization of a polysaccharide from Lycium barbarum and its neuroprotective effect against β-amyloid peptide neurotoxicity. Int. J. Biol. Macromol. 2021, 176, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Xiao, X.; Liu, J.; Wang, J.Y.; Zhang, N.; Bing, T.; Liu, X.J.; Zhang, Z.P.; Shangguan, D.H. Immunomodulatory effects of Lycium barbarum polysaccharide extract and its uptake behaviors at the cellular level. Molecules 2020, 25, 1351. [Google Scholar] [CrossRef]
- Deng, X.L.; Li, X.L.; Luo, S.; Zheng, Y.Y.; Luo, X.; Zhou, L. Antitumor activity of Lycium barbarum polysaccharides with different molecular weights: An in vitro and in vivo study. Food Nutr. Res. 2017, 61, 1399770. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Si, L.H.; Fan, L.M.; Jian, W.W.; Pei, H.L.; Lin, R.X. Polysaccharide IV from Lycium barbarum L. improves lipid profiles of gestational diabetes mellitus of pregnancy by upregulating ABCA1 and downregulating sterol regulatory element-binding transcription 1 via miR-33. Front. Endocrinol. 2018, 9, 49. [Google Scholar] [CrossRef]
- Zhou, L.H.; Huang, L.L.; Yue, H.; Ding, K. Structure analysis of a heteropolysaccharide from fruits of Lycium barbarum L. and anti-angiogenic activity of its sulfated derivative. Int. J. Biol. Macromol. 2018, 108, 47–55. [Google Scholar] [CrossRef]
- Jin, M.L.; Huang, Q.S.; Zhao, K.; Shang, P. Biological activities and potential health benefit effects of polysaccharides isolated from Lycium barbarum L. Int. J. Biol. Macromol. 2013, 54, 16–23. [Google Scholar] [CrossRef]
- Liu, B.B.; Zheng, Q.Y.; He, L.; Huang, M.Q.; Zhang, N.; Li, Y.; Gao, G.J.; Ren, J.W. Optimisation of the enzymatic extraction process of proanthocyanidins from Lycium barbarum and study of the mechanism of their effect on nematode toxicity and longevity. J. Toxicol. 2016, 30, 122–127. [Google Scholar]
- Wang, Y.; Sun, M.Y.; Jin, H.Y.; Yang, J.B.; Kang, S.; Liu, Y.; Yang, S.; Ma, S.C.; Ni, J. Effects of Lycium barbarum polysaccharides on Immunity and the gut microbiota in cyclophosphamide-induced immunosuppressed mice. Front. Microbiol. 2021, 12, 701566. [Google Scholar] [CrossRef]
- Gong, G.P.; Dang, T.T.; Deng, Y.N.; Han, J.L.; Zou, Z.H.; Jing, S.; Zhang, Y.; Liu, Q.; Huang, L.J.; Wang, Z.F. Physicochemical properties and biological activities of polysaccharides from Lycium barbarum prepared by fractional precipitation. Int. J. Biol. Macromol. 2018, 109, 611–618. [Google Scholar] [CrossRef]
- Yao, R.Y.; Huang, C.; Chen, X.F.; Yin, Z.Q.; Fu, Y.P.; Li, L.X.; Feng, B.; Song, X.; He, C.L.; Yue, G.Z.; et al. Two complement fixing pectic polysaccharides from pedicel of Lycium barbarum L. promote cellular antioxidant defense. Int. J. Biol. Macromol. 2018, 112, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, M.; Ma, B.; Zheng, Y.; Niu, R.; Li, K. Protective effects of fraction 4a of polysaccharides isolated from Lycium barbarum against KBrO3-induced renal damage in rats. Food Funct. 2017, 8, 2566–2572. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Yu, X.M.; Badwal, T.S.; Xu, B.J. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chem. Cent. J. 2017, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Ebeydulla, R.; Wang, X.; Zhao, L.; Xu, D.Y.; Sun, H.Q.; Ji, B.P.; Zhou, F. Nutritional and functional components of Chinese wolfberry dried by different drying methods. Food Sci. 2017, 38, 138–142. [Google Scholar]
- Ilić, T.; Dodevska, M.; Marčetić, M.; Božić, D.; Kodranov, I.; Vidović, B. Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in serbia. Foods 2020, 9, 1614. [Google Scholar] [CrossRef]
- Liu, G.T.; Li, Y.L.; Wang, J.; Dong, C.Z.; Deng, M.; Tai, M.; Deng, L.; Che, B.; Lin, L.; Du, Z.Y.; et al. Improvement of skin barrier dysfunction by phenolic-containing extracts of Lycium barbarum via Nrf2/HO-1 regulation. Photochem. Photobiol. 2022, 98, 262–271. [Google Scholar] [CrossRef]
- Ma, Y.L.; Wang, Y.; Wu, Z.F.; Mei, J.; Zhang, W.Q.; Shang, Y.F.; Thakur, K.; Wei, Z.J. Exploring the effect of in vitro digestion on the phenolics and antioxidant activity of Lycium barbarum fruit extract. Food Biosci. 2023, 51, 102255. [Google Scholar] [CrossRef]
- Ali, M.C.; Chen, J.; Zhang, H.J.; Li, Z.; Zhao, L.; Qiu, H.D. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Chen, W.W.; Zhao, J.H.; Xi, W.P. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chem. 2016, 200, 230–236. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Guo, S.; Yan, H.; Lu, Y.Y.; Zhang, F.; Qian, D.W.; Wang, H.Q.; Duan, J.A. Analysis of phenolic acids and flavonoids in leaves of Lycium barbarum from different habitats by ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Biomed. Chromatogr. 2019, 33, e4552. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.Q.; Zhang, S.D.; Zhang, H.Y.; Yang, X.J.; Cui, X.L.; Su, Z.H.; Hu, P. A comparative study on polyphenolic composition of berries from the tibetan plateau by UPLC-Q-Orbitrap MS system. Chem. Biodivers. 2020, 17, e2000033. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Zeng, Z.; Hu, N.; Bai, B.; Wang, H.L.; Suo, Y.R. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum murr. fruit using response surface methodology. Food Chem. 2018, 242, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.J.; Kim, M.; Ji, M.; Lee, C.; Yang, I.; Hong, S.B.; Chin, J.; Seo, E.K.; Paik, M.J.; Lim, K.M.; et al. Discrimination of Lycium chinense and L. barbarum based on metabolite analysis and hepatoprotective activity. Molecules 2020, 25, 5835. [Google Scholar] [CrossRef] [PubMed]
- Olech, M.; Kasprzak, K.; Wójtowicz, A.; Oniszczuk, T.; Nowak, R.; Waksmundzka-Hajnos, M.; Combrzyński, M.; Gancarz, M.; Kowalska, I.; Krajewska, A.; et al. Polyphenol composition and antioxidant potential of instant gruels enriched with Lycium barbarum L. fruit. Molecules 2020, 25, 4538. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Ouyang, J.; Hu, N.; Wang, H.L. Effects of structural difference on stability and cellular antioxidative activity of anthocyanins from Lycium ruthenicum Murr. Nat. Prod. Res. Dev. 2022, 34, 213–219. [Google Scholar]
- Xue, C.H.; Wu, Q.; Wang, M.J.; Liu, J.H.; Zhang, L.F.; Zhang, J.W.; La, Z.H.; Wu, H.; Chai, S.T. Effect of black wolfberry anthocyanins on LPS-induced inflammation of Raw264.7 cells. Chin. J. Vet. Sci. 2021, 41, 985–991. [Google Scholar]
- Ren, X.N.; Chen, Z.M.; Zeng, J.; Guo, L.J.; Wang, Y.T. Study on the optimization of extract conditions and content determination of procyanidins from Lycium ruthenicum murray. Food Ferment. Ind. 2015, 41, 147–150. [Google Scholar]
- Liu, W.; Liu, Y.M.; Zhu, R.; Yu, J.P.; Lu, W.S.; Pan, C.; Yao, W.B.; Gao, X.D. Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohyd. Polym. 2016, 147, 114–124. [Google Scholar] [CrossRef]
- Guo, J.; Wang, R.X.; Hao, N.; Wang, J.H. Optimization of ultrasonic-assisted aqueous two-phase extraction of proanthocyanidins from Lycium ruthenicum murr.by response surface methodology. J. Beijing Union Univ. 2020, 34, 85–92. [Google Scholar]
- Xin, G.; Zhu, F.M.; Du, B.; Xu, B.J. Antioxidants distribution in pulp and seeds of black and red goji berries as affected by boiling processing. J. Food Qual. 2017, 2017, 3145946. [Google Scholar] [CrossRef]
- Lu, Y.; Kong, X.; Zhang, J.; Guo, C.; Qu, Z.; Jin, L.; Wang, H. Composition changes in Lycium ruthenicum fruit dried by different methods. Front. Nutr. 2021, 8, 737521. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Xia, M.Q.; Yang, L.; Wang, Z.T.; Wang, R.; Shi, Y.H. Development and optimization of a method for determining betaine and trigonelline in the fruits of Lycium species by using solid-phase extraction combined with high-performance liquid chromatography-diode array detector. J. Sep. Sci. 2020, 43, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.H.; Meng, X.M.; Pan, S.X.; Li, Z.C.; Song, Y. Determination of betaine in dried wolfberry by ion chromatography with pulsed amperometric detection. Food. Sci. Technol. 2017, 42, 278–281. [Google Scholar]
- Zhang, X.F.; Yang, J.L.; Chen, J.; Shi, Y.P. Fast determination of betaine in Lycii fructus by ultra-performance convergence chromatography-tandem mass spectrometry. Chin. J. Chromatogr. 2017, 36, 417–424. [Google Scholar]
- Zhai, Y.Q.; Tang, H.Q.; Zhang, Q.H.; Peng, Y.F.; Zhao, L.L.; Zhang, B.Y.; Yang, Y.J.; Ma, J.; Zhu, J.; Zhang, D.J. The Protective effect of Lycium barbarum betaine and effervescent tablet against carbon tetrachloride-induced acute liver injury in rats. Nat. Prod. Commun. 2023, 18, 1934578X231161419. [Google Scholar] [CrossRef]
- Arumugam, M.K.; Paal, M.C.; Donohue, T.M.; Ganesan, M.; Osna, N.A.; Kharbanda, K.K. Beneficial effects of betaine: A comprehensive review. Biology 2021, 10, 456. [Google Scholar] [CrossRef]
- Jiang, Y.P.; Yang, J.M.; Ye, R.J.; Liu, N.; Zhang, W.J.; Ma, L.; Zheng, P.; Niu, J.G.; Liu, P.; Yu, J.Q. Protective effects of betaine on diabetic induced disruption of the male mice blood-testis barrier by regulating oxidative stress-mediated p38 MAPK pathways. Biomed. Pharmacother. 2019, 120, 109474. [Google Scholar] [CrossRef]
- Yang, J.M.; Zhou, R.; Zhang, M.; Tan, H.R.; Yu, J.Q. Betaine attenuates monocrotaline-induced pulmonary arterial hypertension in rats via inhibiting inflammatory response. Molecules 2018, 23, 1274. [Google Scholar] [CrossRef]
- Chien, K.J.; Horng, C.T.; Huang, Y.S.; Hsieh, Y.H.; Wang, C.J.; Yang, J.S.; Lu, C.C.; Chen, F.A. Effects of Lycium barbarum (goji berry) on dry eye disease in rats. Mol. Med. Rep. 2018, 17, 809–818. [Google Scholar] [CrossRef]
- Long, J.T.; Fan, H.X.; Zhou, Z.Q.; Sun, W.Y.; Li, Q.W.; Wang, Y.; Ma, M.; Gao, H.; Zhi, H. The major zeaxanthin dipalmitate derivatives from wolfberry. J. Asian Nat. Prod. Res. 2019, 22, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.; Lu, L.; Dai, G.L.; He, X.R.; Li, X.Y.; Yan, Y.M.; Qin, K. Correlations between skin color and carotenoid contents in wolfberry. Food Sci. 2018, 39, 81–86. [Google Scholar]
- Ren, R.R.; Li, Y.T.; Chen, H.; Wang, Y.L.; Yang, L.L.; Su, C.; Zhao, X.J.; Chen, J.Y.; Ma, X.Q. Carotenoid contents of Lycium barbarum: A novel QAMS analyses, geographical origins discriminant evaluation, and storage stability assessment. Molecules 2021, 26, 5374. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.C.; Li, Y.Q.; Zhang, Z.K.; Guo, H.Q.; Wang, Z.X.; Li, Y.; Ma, C.H. Establishment of HPLC fingerprints and determination of three components of Lycium barbarum. Chin. Traditi. Pat. Med. 2019, 41, 1721–1724. [Google Scholar]
- Aneta, W.; Paulina, N.; Przemysaw, B. Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. J. Funct. Foods 2018, 48, 632–642. [Google Scholar]
- Hsu, H.J.; Huang, R.F.; Kao, T.H.; Inbaraj, B.S.; Chen, B.H. Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells. Nanotechnology 2017, 28, 135103. [Google Scholar] [CrossRef]
- Li, C.X.; Zhang, R.R. Fermentation technology of compound fruit vinegar of grape and wolfberry. Chin. Brew. 2018, 10, 181–185. [Google Scholar]
- Hempel, J.; Schädle, C.N.; Sprenger, J.; Heller, A.; Carle, R.; Schweiggert, R.M. Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food. Chem. 2017, 218, 525–533. [Google Scholar] [CrossRef]
- Dumont, D.; Danielato, G.; Chastellier, A.; Hibrand, S.O.L.; Fanciullino, A.L.; Lugan, R. Multi-targeted metabolic profiling of carotenoids, phenolic compounds and primary metabolites in goji (Lycium spp.) berry and tomato (Solanum lycopersicum) reveals inter and intra genus biomarkers. Metabolites 2020, 10, 422. [Google Scholar] [CrossRef]
- Patsilinakos, A.; Ragno, R.; Carradori, S.; Petralito, S.; Cesa, S. Carotenoid content of goji berries: CIELAB, HPLC-DAD analyses and quantitative correlation. Food. Chem. 2018, 268, 49–56. [Google Scholar] [CrossRef]
- Fratianni, A.; Niro, S.; Alam, M.D.R.; Cinquanta, L.; Di Matteo, M.; Adiletta, G.; Panfili, G. Effect of a physical pre-treatment and drying on carotenoids of goji berries (Lycium barbarian L.). LWT 2018, 92, 318–323. [Google Scholar] [CrossRef]
- Li, S.; Liu, N.; Lin, L.; Sun, E.D.; Li, J.D.; Li, P.K. Macular pigment and serum zeaxanthin levels with goji berry supplement in early age-related macular degeneration. Int. J. Ophthalmol. 2018, 11, 76–81. [Google Scholar]
- Wang, C.L.; Wu, Y.; Wang, F.Q. Analysis of nutrient ingredient of wild Lycium ruthenicum from minqin in gansu. Agric. Sci. Technol. 2021, 52, 33–37. [Google Scholar]
- Zhou, Q.L.; Long, L.H.; Ji, F.D.; Chui, Y.J.; Mu, X.T.; Xu, H.G.; Lu, F. Comparison of nutritional constituents of red wolfberry, yellow wolfberry and black wolfberry. Chin. Brew. 2021, 40, 43–49. [Google Scholar]
- Justyna, W.; Piotr, K.; Lena, R. Speciation analysis and bioaccessibility evaluation of trace elements in goji berries (Lycium barbarum, L.). J. Chromatogr. A 2017, 1492, 70–78. [Google Scholar]
- Jurgita, K.; Nijole, V.; Elvyra, J.; Judita, Č.; Maria, J.; Aurelija, P. Concentrations of minerals, soluble solids, vitamin C, carotenoids and toxigenic elements in organic goji berries (Lycium barbarum L.) cultivated in Lithuania. Biol. Agric. Hortic. 2020, 36, 130–140. [Google Scholar]
- Yang, L. Comparison of Proanthocyanidins, Vitamin B1 and polysaccharides in wild and planted black fruit wolfberry. J. Green Sci. Technol. 2019, 107–108. [Google Scholar]
- Zhang, Y.; Chen, H. Determination and analysis nutrient ingredient of Lycium ruthenicum murr in Xinjiang. Food Ind. 2018, 39, 312–314. [Google Scholar]
- Wang, Q.; Wang, J.Y.; Liu, F.L.; Li, Y.; Mao, J.M.; Jiang, J.Z.; Han, H.W. Compositions of fatty acid and phytosterols and contents of vitamin A and vitamin E in Lycium ruthenicum murr. oil. China Oils Fats 2017, 42, 145–147. [Google Scholar]
- Wen, S.P.; Wang, C.; Zhang, Z.H. Lycium barbarum industry dvevlopment and technological innovation trends in the whole Industry chain in Ningxia. Agric. Outlook 2018, 3, 53–58. [Google Scholar]
- Wan, N.; Dai, G.L. Study on development trend of Lycium barbarum deep processing industry. J. Food Saf. Qual. 2018, 9, 5328–5332. [Google Scholar]
- Jiang, L.; Yang, Y.; Jiang, R.G. Pharmacological action of Chinese wolfberry and Its comprehensive processing utilization. Sci. Technol. Food Ind. 2018, 39, 330–334. [Google Scholar]
- Yang, L.; Li, C.R.; Wang, L.P. Research on the fermentation process of wolfberry fruit wine. J. Sci. Technol. 2005, 122–123+126. [Google Scholar]
- Ouyang, X.Y.; Yuan, G.S.; Ren, J.; Wang, L.Y.; Wang, M.Z.; Li, Y.H.; Zhang, B.L.; Zhu, B.Q. Aromatic compounds and organoleptic features of fermented wolfberry wine: Effects of maceration time. Int. J. Food. Prop. 2017, 20, 2234–2248. [Google Scholar] [CrossRef]
- Ducruet, J.; Rébénaque, P.; Diserens, S.; Kosińska, C.A.; Héritier, I.; Andlauer, W. Amber ale beer enriched with goji berries—The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef]
- Ren, J.; Wang, S.; Ning, Y.; Wang, M.; Wang, L.; Zhang, B.; Zhu, B. The impact of over-maturation on the sensory and nutritional quality of goji (Chinese wolfberry) wine. J. Inst. Brew. 2017, 124, 57–67. [Google Scholar] [CrossRef]
- Niu, M.C.; Huang, J.; Jin, Y.; Wu, C.D.; Zhou, R.Q. Volatiles and antioxidant activity of fermented Goji (Lycium Chinese) wine: Effect of different oak matrix (barrel, shavings and chips). Int. J. Food Prop. 2017, 20, 2057–2069. [Google Scholar]
- Kandylis, P.; Bekatorou, A.; Dimitrellou, D.; Plioni, I.; Giannopoulou, K. Health promoting properties of cereal vinegars. Foods 2021, 10, 344. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, B.; Duan, W.H.; Zhang, J.; Wang, M. Nutrients and bioactive components from vinegar: A fermented and functional food. J. Funct. Foods 2020, 64, 103681. [Google Scholar] [CrossRef]
- Xia, T.; Qiang, X.; Geng, B.B.; Zhang, X.D.; Wang, Y.M.; Li, S.P.; Meng, Y.; Zheng, Y.; Wang, M. Changes in the phytochemical and bioactive compounds and the antioxidant properties of wolfberry during vinegar fermentation processes. Int. J. Mol. Sci. 2022, 23, 15839. [Google Scholar] [CrossRef]
- Yun, Y.R.; Park, B.Y.; Kim, S.H.; Jung, J.H. Antioxidant, anti-obesity, and anti-aging activities of jeju citrus blended vinegar. Foods 2021, 10, 1441. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Cho, H.D.; Won, Y.S.; Hong, S.M.; Moon, K.D.; Seo, K.I. Anti-fatigue effect of prunus mume vinegar in high-intensity exercised rats. Nutrients 2020, 12, 1205. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.L.; Xia, T.; Qiang, X.; Zhao, Y.X.; Li, S.P.; Wang, Y.M.; Zheng, Y.; Yu, J.Q.; Wang, J.X.; Wang, M. Nutrition, bioactive components, and hepatoprotective activity of fruit vinegar produced from Ningxia wolfberry. Molecules 2022, 27, 4422. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.X.; Tang, F.X.; Cai, W.C.; Peng, B.; Zhang, P.L.; Shan, C.H. Effect of fermentation by lactic acid bacteria on the phenolic composition, antioxidant activity, and flavor substances of jujube–wolfberry composite juice. LWT 2023, 184, 114884. [Google Scholar] [CrossRef]
- Duan, W.H.; Guan, Q.J.; Zhang, H.L.; Wang, F.Z.; Lu, R.; Li, D.M.; Geng, Y.; Xu, Z.H. Improving flavor, bioactivity, and changing metabolic profiles of goji juice by selected lactic acid bacteria fermentation. Food Chem. 2023, 408, 135155. [Google Scholar] [CrossRef]
- Voidarou, C.; Antoniadou, Μ.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods 2020, 10, 69. [Google Scholar] [CrossRef]
- Wang, M.Z.; Ouyang, X.Y.; Liu, Y.R.; Liu, Y.; Cheng, L.; Wang, C.T.; Zhu, B.Q.; Zhang, B.L. Comparison of nutrients and microbial density in goji berry juice during lactic acid fermentation using four lactic acid bacteria strains. J. Food Process. Preserv. 2020, 45, e15059. [Google Scholar] [CrossRef]
- Qi, J.; Huang, H.; Wang, J.; Liu, N.; Chen, X.F.; Jiang, T.; Xu, H.D.; Lei, H.J. Insights into the improvement of bioactive phytochemicals, antioxidant activities and flavor profiles in Chinese wolfberry juice by select lactic acid bacteria. Food Biosci. 2021, 43, 101264. [Google Scholar] [CrossRef]
- Liu, Y.X.; Fang, H.T.; Liu, H.Y.; Cheng, H.; Pan, L.; Hu, M.Z.; Li, X.Y. Goji berry juice fermented by probiotics attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J. Funct. Foods 2021, 83, 104491. [Google Scholar] [CrossRef]
- Vidović, B.B.; Milinčić, D.D.; Marčetić, M.D.; Djuriš, J.D.; Ilić, T.D.; Kostić, A.Ž.; Pešić, M.B. Health benefits and applications of goji berries in functional food products development: A review. Antioxidants 2022, 11, 248. [Google Scholar] [CrossRef]
- Kaur, N.; Kumar, R.; Alhan, S.; Sharma, H.; Singh, H.; Yogi, R.; Chhokar, V.; Beniwal, V.; Ghosh, M.K.; Chandraker, S.K.; et al. Lycium shawii mediated green synthesis of silver nanoparticles, characterization and assessments of their phytochemical, antioxidant, antimicrobial properties. Inorg. Chem. Commun. 2024, 159, 111735. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, X.; Zhang, Y.; Liu, G. Development and characterization of a new potato starch/watermelon peel pectin composite film loaded with TiO2 nanoparticles and microencapsulated Lycium barbarum leaf flavonoids and its use in the Tan mutton packaging. Int. J. Biol. Macromol. 2023, 252, 126532. [Google Scholar] [CrossRef] [PubMed]
- Lindner, J.; Vanetti, M.C.D.; Mayo, B.; Pinto, U.M. Editorial: Microbiological safety and quality aspects of fermented dairy products. Front. Microbiol. 2021, 12, 735560. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, S.; Qin, H.; Zhou, Z.; Zhao, H.; Zhang, S.; Mao, J. Artificial intelligence-based approaches for traditional fermented alcoholic beverages’ development: Review and prospect. Crit. Rev. Food Sci. Nutr. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Luo, Z.; Chiu, K.; Li, Y.; Yang, J.; Zhou, Q.; So, K.F.; Wan, Q.L. Lycium barbarum glycopetide prolong lifespan and alleviate Parkinson’s disease in Caenorhabditis elegans. Front. Aging Neurosci. 2023, 15, 1156265. [Google Scholar] [CrossRef]
- Lakshmanan, Y.; Wong, F.S.Y.; So, K.F.; Chan, H.H. Potential role of Lycium barbarum polysaccharides in glaucoma management: Evidence from preclinical in vivo studies. Neural Regen. Res. 2023, 18, 2623–2632. [Google Scholar] [CrossRef]
- Raghu, S.V.; Kudva, A.K.; Krishnamurthy, R.G.; Mudgal, J.; Georgee, T.; Baliga, M.S. Neuroprotective effects of dietary plants and phytochemicals against radiation-induced cognitive and behavioral deficits: A comprehensive review of evidence and prospects for future research. Food Funct. 2023, 14, 5921–5935. [Google Scholar] [CrossRef]
Lycium barbarum Polysaccharides | Constitutions | Functions | References |
---|---|---|---|
LBP | Arabinose, rhamnose, galactose, galacturonic acid, glucose, glucosamine, xylose, mannose, fructose, ribose | Regulates immunity and inflammation | [25] |
LBP3 | Arabinose, galactose | To treat Alzheimer’s disease | [24] |
LBP1B-S-2 | Arabinose, rhamnose, galactose, glucuronic acid | Inhibit tumor angiogenesis | [28] |
BBP-24-3 | Arabinose, glucose, galactoaluronic acid | Lower blood sugar levels after meals | [29] |
p-LBP | Arabinose, rhamnose, galactose, glucose, gluconic acid, galacturonic acid, xylose, fructose | Hypoglycemic effect | [30] |
LBP | Arabose, rhamnose, galactose, galactosamine, glucose, gluconic acid, xylose, mannose, ribose | Induced immune response | [31] |
LBP | Arabinose, galactose, glucose | Anti-inflammatory, antioxidant, modulating immunity | [32] |
PLBP | Arabinose, rhamnose, galactose, galacturonic acid, xylose | Improve immunity, antioxidant | [33] |
LBP-4a | Arabose, rhamnose, galactose, glucose, xylose, mannose | Renal protection | [34] |
Polyphenols | Compound Types and Contents | Detection Methods | References |
---|---|---|---|
Flavone | Myricetin (57.2 mg/g), mul-berin (12.7 mg/g), rutin (9.1 mg/g) | HPLC | [40] |
Quercetin (65.33 ± 9.5–369.8 ± 44.5 μg/g), myricetin (53.2 ± 8.9–117.3 ± 4.9 μg/g), kaempferol (15.3 ± 2.8–93.6 ± 6.7 μg/g), quercetin-rhamnose-dihexoside (434.7 ± 6.4–1065 ± 65.3 μg/g), rutin (43.2 ± 8.3–76.1 ± 8.3 μg/g), quercetin-3-O-rubutin (158.9 ± 4.3–628.9 ± 21.5 μg/g) | HPLC | [41] | |
Rutin (1947 μg/g), naringin (2.03 μg/g), aurantiamarin (9.50 μg/g), neohesperidin (8.49 μg/g), naringenin (52.2 μg/g), hesperetin (1.32 μg/g) | UHPLC–MS/MS | [42] | |
Rutin (1323.99 ± 21.13–7229.32 ± 0.12 μg/g), kaempferol-3-O-rubutin (69.43 ± 0.58–1066.02 ± 0.44 μg/g) | UPLC–TQ-MS | [43] | |
Rutin (143.98 ± 62.1 μg/g), myricetin (4.56 ± 0.15 μg/g), quercetin (4.02 ± 0.12 μg/g), kaempferol (0.78 ± 0.05 μg/g), naringenin (0.98 ± 0.02 μg/g) | UPLC–Q-Orbitrap MS | [44] | |
Phenolic acid | Neochlorogenic acid (3.13 ± 0.02–574.21 ± 0.25 μg/g), protocatechualdehyde (0.87 ± 0.00–9.47 ± 0.06 μg/g), p-hydroxybenzoic acid (6.79 ± 3.51–190.08 ± 0.85 μg/g), p-coumaric acid (1.64 ± 3.77–67.70 ± 0.27 μg/g), chlorogenic acid (77.07 ± 12.33–10,203.92 ± 1.96 μg/g), caffeic acid (0.58 ± 0.05–19.37 ± 2.55 μg/g), ferulic acid (3.10 ± 0.48–19.55 ± 0.32 μg/g), cryptochlorogenic acid (12.33 ± 2.80–961.93 ± 11.23 μg/g) | UPLC–TQ-MS | [43] |
Gallate (13.5 ± 0.17 μg/g), catechin (5.46 ± 0.13 μg/g), chlorogenic acid (162.66 ± 24.34 μg/g), vanillic acid (2.88 ± 0.08 μg/g), caffeic acid (119.7 ± 21.65 μg/g), syringic acid (1.02 ± 0.01 μg/g), p-coumaric acid (554.4 ± 38.7 μg/g), ferulic acid (114.54 ± 15.7 μg/g), salicylic acid (2.41 ± 0.07 μg/g), gallogen (4.5 ± 0.14 μg/g) | UPLC–Q-Orbitrap MS | [44] | |
Chlorogenic acid (6.48 ± 0.16 mg/g), caffeic acid (1.41 ± 0.043 mg/g), syringic acid (0.15 ± 0.01 mg/g), p-coumaric acid (0.83 ± 0.03 mg/g), ferulic acid (1.17 ± 0.04 mg/g) | HPLC | [45] | |
Salicylic acid (1.8 ± 0.1–2.3 ± 0.4 ng/mg), 4-hydroxybenzoic acid (7.8 ± 0.1–8.1 ± 0.3 ng/mg), syringic acid (0.3 ± 0.1–0.9 ± 0.1 ng/mg), p-coumaric acid (6.8 ± 0.1–178.4 ± 9.3 ng/mg), vanillic acid (1.8 ± 0.1–26.4 ± 0.3 ng/mg), gallate (1.2 ± 0.1–1.9 ± 0.3 ng/mg), caffeic acid (0.7 ± 0.1–2.5 ± 0.3 ng/mg), protocatechuic acid (0.7 ± 0.1–1.0 ± 0.1 ng/mg), ferulic acid (31.3 ± 0.3–33.6 ± 3.6 ng/mg) | GC–MS | [46] | |
Protocatechuic acid (91.6 ± 0.4 ng/g), trans caffeic acid (46.4 ± 0.1 ng/g), gentisic acid (18.2 ± 0.0 ng/g), p-coumaric acid (1644.1 ± 3.5 ng/g), ferulic acid (684.2 ± 2.4 ng/g), isoferulic acid (9120.1 ± 3.1 ng/g), salicylic acid (508.4 ± 2.2 ng/g), hydroxybenzoic acid (664.3 ± 3.2 ng/g) | LC–ESI-MS/MS | [47] |
Compound Types and Contents | Detection Methods | References |
---|---|---|
Zeaxanthin (28.17 μg/g), β-carotene (5.62–8.04 μg/g), zeaxanthin dipalmitate (0.81–4.05 mg/g) | HPLC | [65] |
Zeaxanthin dipalmitate (21.03 mg/mL), zeaxanthin (0.14 mg/mL), β-carotene (0.01 mg/mL) | HPLC | [66] |
Zeaxanthin (845.39 mg/kg), β-carotene (193.53 mg/kg), neoxanthin (160.35 mg/kg), cryptoflavin (722.94 mg/kg) | LC–QTOF-MS | [67] |
All-trans zeaxanthin and its three isomers (1666.3 μg/g), all-trans β-carotene and its two isomers (20.11 μg/g), neoxanthin (4.47 μg/g), β-cryptoxanthin (51.69 μg/g) | HPLC | [68] |
(3R, 3′S)-zeaxanthin (0.522 µg/mL), (3R, 3′R)-zeaxanthin (0.398 µg/mL), (3R, 3′R, 6′R)-lutein (0.582 µg/mL) | HPLC | [69] |
Zeaxanthin (0.6 ± 0.2%), β-carotene (0.8 ± 0.2%), zeaxanthin palmitate (3.4 ± 0.2%), β-cryptoxanthin palmitate (5.1 ± 1.1%), antheraxanthin dipalmitate (1.0 ± 0.2%), zeaxanthin myristate palmitate (1.9 ± 0.4%), zeaxanthin dipalmitatec (80.4 ± 0.6%), zeaxanthin palmitate stearate (1.1 ± 0.1%) | HPLC–PDA-MS | [70] |
β-carotene (0.02–7.9 μg/g), lutein (0.2–97.5 μg/g), lycopene (0.1–22.0 μg/g), violaxanthin (0.1–47.7 μg/g), zeaxanthin (0.02–14.2 μg/g), zeaxanthin dipalmitate (0.2–94.2 μg/g) | UPLC–MS | [71] |
Zeaxanthin dipalmitate (4.5–5.5 mg/g) | HPLC–DAD | [72] |
Zeaxanthin dipalmitate (211.4 mg/100 g), zeaxanthin dipalmitate esters (37.5 mg/100 g), β-carotene (1.2 mg/100 g) | HPLC | [73] |
Deep-Processing Products | Production Process | Characteristics | Existing Problems |
---|---|---|---|
Lycium barbarum fruit wine | alcoholic fermentation | High nutrition and health care value | Market positioning deviation, higher pricing |
Lycium barbarum fruit vinegar | alcoholic fermentation and acetic fermentation | Good taste, nutrition, health care, fashion in one | Market category is small, to be further expanded development |
Fermented beverage of Lycium barbarum | lactic acid fermentation | Soft taste, unique flavor, rich nutrition | The market is small and the sales are low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, X.; Xia, T.; Geng, B.; Zhao, M.; Li, X.; Zheng, Y.; Wang, M. Bioactive Components of Lycium barbarum and Deep-Processing Fermentation Products. Molecules 2023, 28, 8044. https://doi.org/10.3390/molecules28248044
Qiang X, Xia T, Geng B, Zhao M, Li X, Zheng Y, Wang M. Bioactive Components of Lycium barbarum and Deep-Processing Fermentation Products. Molecules. 2023; 28(24):8044. https://doi.org/10.3390/molecules28248044
Chicago/Turabian StyleQiang, Xiao, Ting Xia, Beibei Geng, Man Zhao, Xuan Li, Yu Zheng, and Min Wang. 2023. "Bioactive Components of Lycium barbarum and Deep-Processing Fermentation Products" Molecules 28, no. 24: 8044. https://doi.org/10.3390/molecules28248044
APA StyleQiang, X., Xia, T., Geng, B., Zhao, M., Li, X., Zheng, Y., & Wang, M. (2023). Bioactive Components of Lycium barbarum and Deep-Processing Fermentation Products. Molecules, 28(24), 8044. https://doi.org/10.3390/molecules28248044