Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) as a Method of Identifying Contaminants in Sugar Beet Production Process—Case Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Case 1—Determination of the Presence of Calcium Carbonate in White Sugar
2.2. Case 2—Identification of Lubricating or Sealing Oil Entering the Beet Cossettes
2.3. Case 3—Polypropylene Identification in Sugar Dust
3. Materials and Methods
3.1. Samples
3.2. MIR Apparatus
3.3. Samples Preparation
3.4. Data Processing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- ICUMSA Method GS9-11. Zinc and Cadmium in Plantation White Sugar by Flame Atomic Absorption Spectroscopy. 2017. Available online: https://www.icumsa.org/methods/icumsa-method-gs9-11-2017/ (accessed on 9 July 2023).
- ICUMSA Method GS1-16. The Determination of Starch in Raw Sugar by a Modified BSES Metho. 2013. Available online: https://www.icumsa.org/methods/icumsa-method-gs1-16-2013/ (accessed on 9 July 2023).
- ICUMSA Method GS1/2/9-15. The Determination of Dextran in Raw Sugar by a Modified Alcohol Haze Method. 2015. Available online: https://www.icumsa.org/methods/icumsa-method-gs1-2-9-15-2015/ (accessed on 9 July 2023).
- ICUMSA Method GS2/3/9-5. The Determination of Reducing Sugars in Purified Sugars by the Knight and Allen EDTA Metho. 2011. Available online: https://www.icumsa.org/methods/icumsa-method-gs2-3-9-5-2011/ (accessed on 9 July 2023).
- ICUMSA Method GS1-24. The Determination of Insoluble Solids in Raw Sugar by Depth-Type Filtration. 2017. Available online: https://www.icumsa.org/methods/icumsa-method-gs1-24-2017/ (accessed on 9 July 2023).
- ICUMSA Method GS2/3/9-17. The Determination of Conductivity Ash in Refined Sugar Products and in Plantation White Sugar. 2011. Available online: https://www.icumsa.org/methods/icumsa-method-gs2-3-9-17-2011/ (accessed on 9 July 2023).
- ICUMSA Method GS1/3/4/7/8-13. The Determination of Conductivity Ash in Raw Sugar, Brown Sugar, Juice, Syrup and Molasses. 1994. Available online: https://www.icumsa.org/methods/icumsa-method-gs1-3-4-7-8-13-1994/ (accessed on 9 July 2023).
- ICUMSA Method GS1-2. Polarimetric Sucrose Content of Raw Sugar by NIR-Polarimetry. 2022. Available online: https://www.icumsa.org/methods/icumsa-method-gs1-2-2022/ (accessed on 9 July 2023).
- ICUMSA Method GS7-31. The Determination of Pol by NIR Polarimetry and Brix for Sugarcane and Factory Product. Available online: https://www.icumsa.org/methods/icumsa-method-gs7-31-2013/ (accessed on 9 July 2023).
- ICUMSA Method GS5-2. Sucrose, Dry Substance and Fibre in Cane by NIR-Polarimetry and Refractometry Using a Hydraulic Press for Juice Recovery. 2022. Available online: https://www.icumsa.org/methods/icumsa-method-gs5-2-2022/ (accessed on 9 July 2023).
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 15–44. ISBN 978-0-470-01113-3. [Google Scholar]
- Moore, D.S.; Gauglitz, G. Handbook of Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 39–46. ISBN 978-3-527-65472-7. [Google Scholar]
- Albert, S.; Albert, K.K.; Quack, M. High-Resolution Fourier Transform Infrared Spectroscopy. In Handbook of High-Resolution Spectroscopy; Quack, M., Merkt, F., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 965–1019. ISBN 978-0-470-06653-9. [Google Scholar]
- Valand, R.; Tanna, S.; Lawson, G.; Bengtström, L. A Review of Fourier Transform Infrared (FTIR) Spectroscopy Used in Food Adulteration and Authenticity Investigations. Food Addit. Contam. Part A 2020, 37, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Maria, C. Application of FTIR Spectroscopy in Environmental Studies. In Advanced Aspects of Spectroscopy; Akhyar Farrukh, M., Ed.; InTech: London, UK, 2012; pp. 49–84. ISBN 978-953-51-0715-6. [Google Scholar]
- Chalmers, J.M.; Griffiths, P.R. Handbook of Vibrational Spectroscopy. Theory and Instrumentation. J. Am. Chem. Soc. 2002, 124, 9958–9968. [Google Scholar] [CrossRef]
- Amand, L.E.; Tullin, C.J. The Theory behind FTIR Analysis; Department of Energy Conversion, Chalmers University Technology: Gothenburg, Sweden, 1999; pp. 1–15. [Google Scholar]
- Stuart, B. Infrared Spectroscopy. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 1–18. ISBN 978-0-471-23896-6. [Google Scholar]
- Veerasingam, S.; Ranjani, M.; Venkatachalapathy, R.; Bagaev, A.; Mukhanov, V.; Litvinyuk, D.; Mugilarasan, M.; Gurumoorthi, K.; Guganathan, L.; Aboobacker, V.M.; et al. Contributions of Fourier Transform Infrared Spectroscopy in Microplastic Pollution Research: A Review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2681–2743. [Google Scholar] [CrossRef]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.-J.; Voit, B. Analysis of Environmental Microplastics by Vibrational Microspectroscopy: FTIR, Raman or Both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, C.V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.J.; et al. Validation of ATR FT-IR to Identify Polymers of Plastic Marine Debris, Including Those Ingested by Marine Organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef]
- Mecozzi, M.; Pietroletti, M.; Monakhova, Y.B. FTIR Spectroscopy Supported by Statistical Techniques for the Structural Characterization of Plastic Debris in the Marine Environment: Application to Monitoring Studies. Mar. Pollut. Bull. 2016, 106, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic Polymer Contamination in Bottled Water. Front. Chem. 2018, 6, 407. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, J.M. Infrared Spectroscopy in Analysis of Polymers and Rubbers. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 978-0-470-02731-8. [Google Scholar]
- Bureau, S.; Cozzolino, D.; Clark, C.J. Contributions of Fourier-Transform Mid Infrared (FT-MIR) Spectroscopy to the Study of Fruit and Vegetables: A Review. Postharvest Biol. Technol. 2019, 148, 1–14. [Google Scholar] [CrossRef]
- Karoui, R. Chapter 2—Spectroscopic Technique: Mid-Infrared (MIR) and Fourier Transform Mid-Infrared (FT-MIR) Spectroscopies. In Modern Techniques for Food Authentication, 2nd ed.; Sun, D.-W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 23–50. ISBN 978-0-12-814264-6. [Google Scholar]
- Rodriguez-Saona, L.E.; Giusti, M.M.; Shotts, M. 4—Advances in Infrared Spectroscopy for Food Authenticity Testing. In Advances in Food Authenticity Testing; Downey, G., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2016; pp. 71–116. ISBN 978-0-08-100220-9. [Google Scholar]
- Zhang, X.; Yang, J.; Lin, T.; Ying, Y. Food and Agro-Product Quality Evaluation Based on Spectroscopy and Deep Learning: A Review. Trends Food Sci. Technol. 2021, 112, 431–441. [Google Scholar] [CrossRef]
- Castillejos-Mijangos, L.A.; Acosta-Caudillo, A.; Gallardo-Velázquez, T.; Osorio-Revilla, G.; Jiménez-Martínez, C. Uses of FT-MIR Spectroscopy and Multivariate Analysis in Quality Control of Coffee, Cocoa, and Commercially Important Spices. Foods 2022, 11, 579. [Google Scholar] [CrossRef]
- Ghilardelli, F.; Barbato, M.; Gallo, A. A Preliminary Study to Classify Corn Silage for High or Low Mycotoxin Contamination by Using near Infrared Spectroscopy. Toxins 2022, 14, 323. [Google Scholar] [CrossRef] [PubMed]
- Levasseur-Garcia, C. Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins 2018, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Yazici, A.; Tiryaki, G.Y.; Ayvaz, H. Determination of Pesticide Residual Levels in Strawberry (Fragaria) by near-Infrared Spectroscopy. J. Sci. Food Agric. 2020, 100, 1980–1989. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, X.; Li, W.; Shen, T.; He, Z.; Zhang, M.; Zhang, H.; Sun, Y.; Liu, F. Detection of Chlorpyrifos and Carbendazim Residues in the Cabbage Using Visible/near-Infrared Spectroscopy Combined with Chemometrics. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2021, 257, 119759. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.I.; Sun, L.; Ran, Z.; Pan, X.; Zhou, S.; Liu, S. Prediction of Talc Content in Wheat Flour Based on a Near-Infrared Spectroscopy Technique. J. Food Prot. 2019, 82, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Che, W.; Sun, L.; Zhang, Q.; Zhang, D.; Ye, D.; Tan, W.; Wang, L.; Dai, C. Application of Visible/Near-Infrared Spectroscopy in the Prediction of Azodicarbonamide in Wheat Flour. J. Food Sci. 2017, 82, 2516–2525. [Google Scholar] [CrossRef]
- Qi, W.; Tian, Y.; Lu, D.; Chen, B. Research Progress of Applying Infrared Spectroscopy Technology for Detection of Toxic and Harmful Substances in Food. Foods 2022, 11, 930. [Google Scholar] [CrossRef]
- Mehrotra, R.; Siesler, H.W. Application of Mid Infrared/Near Infrared Spectroscopy in Sugar Industry. Appl. Spectrosc. Rev. 2003, 38, 307–354. [Google Scholar] [CrossRef]
- Clarke, M.A.; Edye, L.A. Near Infrared (NIR) Analysis of Sugar Beet Brei and Cossettes. In Proceedings of the Abstracts; American Society of Sugar Beet Technologists: Anaheim, CA, USA, 1993; p. 87. [Google Scholar]
- Minaei, S.; Bagherpour, H.; Abdollahian Noghabi, M.; Khorasani Fardvani, M.E.; Forughimanesh, F. A Comparative Study Concerning Linear and Nonlinear Models to Determine Sugar Content in Sugar Beet by Near Infrared Spectroscopy (NIR). J. Food Biosci. Technol. 2016, 6, 13–22. [Google Scholar]
- Pan, L.; Lu, R.; Zhu, Q.; McGrath, J.M.; Tu, K. Measurement of Moisture, Soluble Solids, Sucrose Content and Mechanical Properties in Sugar Beet Using Portable Visible and near-Infrared Spectroscopy. Postharvest Biol. Technol. 2015, 102, 42–50. [Google Scholar] [CrossRef]
- Roggo, Y.; Duponchel, L.; Huvenne, J.-P. Quality Evaluation of Sugar Beet (Beta Vulgaris) by Near-Infrared Spectroscopy. J. Agric. Food Chem. 2004, 52, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.A.; Edye, L.A.; Scott, C.V.; Miranda, X.M.; McDonald-Lewis, C. Near Infrared Analysis in Sugar Factories. In Proceedings of the 1992 Sugar Processing Research Conference, New Orleans, Louisiana, 27–29 September 1992; Sugar Processing Research Institute, Inc.: New Orleans, LA, USA, 1992; pp. 244–264. [Google Scholar]
- Meyer, J. Reaping the Benefits of near Infrared Spectroscopy in the South African Sugar Industry. NIR News 1997, 8, 3–5. [Google Scholar] [CrossRef]
- Salgó, A.; Nagy, J.; Mikó, É.; Boros, I. Application of near Infrared Spectroscopy in the Sugar Industry. J. Infrared Spectrosc. 1998, 6, A101–A106. [Google Scholar] [CrossRef]
- Bahrami, M.E.; Honarvar, M.; Ansari, K.; Jamshidi, B. Measurement of Quality Parameters of Sugar Beet Juices Using Near-Infrared Spectroscopy and Chemometrics. J. Food Eng. 2020, 271, 109775. [Google Scholar] [CrossRef]
- Henn, R.; Kirchler, C.G.; Huck, C.W. Miniaturized NIR Spectroscopy for the Determination of Main Carbohydrates in Syrup. NIR News 2017, 28, 3–6. [Google Scholar] [CrossRef]
- Kemsley, E.K.; Zhuo, L.; Hammouri, M.K.; Wilson, R.H. Quantitative Analysis of Sugar Solutions Using Infrared Spectroscopy. Food Chem. 1992, 44, 299–304. [Google Scholar] [CrossRef]
- Antczak-Chrobot, A.; Gruska, R.; Wojtczak, M. The Application of Fourier Transform Near-Infrared Spectrometry for Monitoring Microbiological Contamination of Sugar Beet Juice. Int. Sugar J. 2016, 118, 106–111. [Google Scholar]
- Bruckman, V.J.; Wriessnig, K. Improved Soil Carbonate Determination by FT-IR and X-Ray Analysis. Environ. Chem. Lett. 2013, 11, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Tatzber, M.; Mutsch, F.; Mentler, A.; Leitgeb, E.; Englisch, M.; Gerzabek, M.H. Determination of Organic and Inorganic Carbon in Forest Soil Samples by Mid-Infrared Spectroscopy and Partial Least Squares Regression. Appl. Spectrosc. 2010, 64, 1167–1175. [Google Scholar] [CrossRef]
- Van der Poel, P.W.; Schiweck, H.; Schwartz, T. Sugar Technology. Beet and Cane Sugar Manufacture; Dr. Albert Bartens KG: Berlin, Germany, 1998. [Google Scholar]
- Kuptsov, A.K.; Arbuzova, T.V. A Study of Heavy Oil Fractions by Fourier-Transform near-Infrared Raman Spectroscopy. Pet. Chem. 2011, 51, 203–211. [Google Scholar] [CrossRef]
- Lovatti, B.P.O.; Silva, S.R.C.; de A. Portela, N.; Sad, C.M.S.; Rainha, K.P.; Rocha, J.T.C.; Romão, W.; Castro, E.V.R.; Filgueiras, P.R. Identification of Petroleum Profiles by Infrared Spectroscopy and Chemometrics. Fuel 2019, 254, 115670. [Google Scholar] [CrossRef]
- Ito, N.; Okubo, N.; Kurata, Y. Nondestructive Near-Infrared Spectroscopic Analysis of Oils on Wood Surfaces. Forests 2019, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Agatonovic-Kustrin, S.; Ristivojevic, P.; Gegechkori, V.; Litvinova, T.M.; Morton, D.W. Essential Oil Quality and Purity Evaluation via FT-IR Spectroscopy and Pattern Recognition Techniques. Appl. Sci. 2020, 10, 7294. [Google Scholar] [CrossRef]
- Mendes, E.; Duarte, N. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods 2021, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Sejkorová, M.; Šarkan, B.; Veselík, P.; Hurtová, I. FTIR Spectrometry with PLS Regression for Rapid TBN Determination of Worn Mineral Engine Oils. Energies 2020, 13, 6438. [Google Scholar] [CrossRef]
- Zzeyani, S.; Mikou, M.; Naja, J.; Elachhab, A. Spectroscopic Analysis of Synthetic Lubricating Oil. Tribol. Int. 2017, 114, 27–32. [Google Scholar] [CrossRef]
- Gall, M.; Freudenthaler, P.J.; Fischer, J.; Lang, R.W. Characterization of Composition and Structure–Property Relationships of Commercial Post-Consumer Polyethylene and Polypropylene Recyclates. Polymers 2021, 13, 1574. [Google Scholar] [CrossRef]
- Karaagac, E.; Jones, M.P.; Koch, T.; Archodoulaki, V.-M. Polypropylene Contamination in Post-Consumer Polyolefin Waste: Characterisation, Consequences and Compatibilisation. Polymers 2021, 13, 2618. [Google Scholar] [CrossRef]
- Teh, J.W.; Rudin, A.; Keung, J.C. A Review of Polyethylene–Polypropylene Blends and Their Compatibilization. Adv. Polym. Technol. 1994, 13, 1–23. [Google Scholar] [CrossRef]
- Naranjo, A.C.; Noriega, M.D.P.; Osswald, T.A.; Roldan-Alzate, A.; Sierra, J.D. Plastics Testing and Characterization: Industrial Applications; Hanser Pub Inc.: Munich, Germany; Cincinnati, OH, USA, 2008; ISBN 978-1-56990-425-1. [Google Scholar]
- Smith, B. The Infrared Spectra of Polymers III: Hydrocarbon Polymers. Spectroscopy 2021, 36, 22–25. [Google Scholar] [CrossRef]
- Oh, H.J.; Bae, J.H.; Park, Y.K.; Song, J.; Kim, D.K.; Lee, W.; Kim, M.; Heo, K.J.; Kim, Y.; Kim, S.H.; et al. A Highly Porous Nonwoven Thermoplastic Polyurethane/Polypropylene-Based Triboelectric Nanogenerator for Energy Harvesting by Human Walking. Polymers 2020, 12, 1044. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, D.G.L.; Singh, S.; Cartwright, P.; Bailey, A.G. Electrostatic Hazards in Sugar Dust in Storage Silos. J. Electrost. 1985, 16, 193–207. [Google Scholar] [CrossRef]
- Wali, K.; Khan, H.A.; Farrell, M.; Henten, E.J.V.; Meers, E. Determination of Bio-Based Fertilizer Composition Using Combined NIR and MIR Spectroscopy: A Model Averaging Approach. Sensors 2022, 22, 5919. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, S.M.; Minasny, B.; Holden, N.M.; McBratney, A.B. Synergistic Use of Vis-NIR, MIR, and XRF Spectroscopy for the Determination of Soil Geochemistry. Soil Sci. Soc. Am. J. 2016, 80, 888–899. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-0-429-14058-7. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruska, R.M.; Kunicka-Styczyńska, A.; Jaśkiewicz, A.; Baryga, A.; Brzeziński, S.; Świącik, B. Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) as a Method of Identifying Contaminants in Sugar Beet Production Process—Case Studies. Molecules 2023, 28, 5559. https://doi.org/10.3390/molecules28145559
Gruska RM, Kunicka-Styczyńska A, Jaśkiewicz A, Baryga A, Brzeziński S, Świącik B. Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) as a Method of Identifying Contaminants in Sugar Beet Production Process—Case Studies. Molecules. 2023; 28(14):5559. https://doi.org/10.3390/molecules28145559
Chicago/Turabian StyleGruska, Radosław Michał, Alina Kunicka-Styczyńska, Andrzej Jaśkiewicz, Andrzej Baryga, Stanisław Brzeziński, and Beata Świącik. 2023. "Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) as a Method of Identifying Contaminants in Sugar Beet Production Process—Case Studies" Molecules 28, no. 14: 5559. https://doi.org/10.3390/molecules28145559
APA StyleGruska, R. M., Kunicka-Styczyńska, A., Jaśkiewicz, A., Baryga, A., Brzeziński, S., & Świącik, B. (2023). Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) as a Method of Identifying Contaminants in Sugar Beet Production Process—Case Studies. Molecules, 28(14), 5559. https://doi.org/10.3390/molecules28145559