Near-IR Electrochromic Film with High Optical Contrast and Stability Prepared by Oxidative Electropolymerization of Triphenylamine Modified Terpyridine Platinum(II) Chloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Crystal Structure
2.3. Photophysical Properties
2.4. Electropolymerization Behavior
2.5. EP Film Characterization
2.6. Spectroelectrochemical Performance of Poly-[(L)PtCl][ClO4] Film
2.7. EC Performance of Poly-[(L)PtCl][ClO4] Film
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the [(L)PtCl]·PF6 Complex
3.3. Characterization
3.4. X-Ray Crystallography
3.5. Preparation of the Hybrid Metallopolymer Film
3.6. Spectroelectrochemical and EC Characterization
3.7. EC Solid-State Device Fabrication and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banasz, R.; Wałsa-Chorab, M. Polymeric complexes of transition metal ions as electrochromic materials: Synthesis and properties. Coord. Chem. Rev. 2019, 389, 1–18. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, P.; Fu, J.; Wei, C.; Cai, G. A Mini-Review: Pyridyl-Based Coordination Polymers for Energy Effificient Electrochromic Application. Front. Energy Res. 2021, 9, 620203. [Google Scholar] [CrossRef]
- Cai, G.; Eh, A.L.; Ji, L.; Lee, P.S. Recent Advances in Electrochromic Smart Fenestration. Adv. Sustain. Syst. 2017, 1, 1700074. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, Y.; Chen, J.; Li, B.; Wang, L.; Liu, S.; Zhao, Q. Two-dimensional materials for electrochromic applications. Energy Chem. 2021, 3, 100060. [Google Scholar] [CrossRef]
- Gu, C.; Jia, A.; Zhang, Y.; Zhang, S.X. Emerging Electrochromic Materials and Devices for Future Displays. Chem. Rev. 2022, 122, 14679–14721. [Google Scholar] [CrossRef]
- Higuchi, M. Electrochromic Coordination Polymers. Bull. Jpn. Soc. Coord. Chem. 2022, 79, 68–77. [Google Scholar] [CrossRef]
- Duan, J.; Li, Y.; Pan, Y.; Behera, N.; Jin, W. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev. 2019, 395, 25–45. [Google Scholar] [CrossRef]
- Chakraborty, S.; Newkome, G.R. Terpyridine-based metallosupramolecular constructs: Tailored monomers to precise 2D-motifs and 3D-metallocages. Chem. Soc. Rev. 2018, 47, 3991–4016. [Google Scholar] [CrossRef]
- Yao, C.; Zhong, Y.; Nie, H.; Abruna, H.D.; Yao, J. Near-IR Electrochromism in Electropolymerized Films of a Biscyclometalated Ruthenium Complex Bridged by 1,2,4,5-Tetra(2-pyridyl)benzene. J. Am. Chem.Soc. 2011, 133, 20720–20723. [Google Scholar] [CrossRef]
- Yao, C.; Yao, J.; Zhong, Y. Metallopolymeric Films Based on a Biscyclometalated Ruthenium Complex Bridged by 1,3,6,8-Tetra(2-pyridyl)pyrene: Applications in Near-Infrared Electrochromic Windows. Inorg. Chem. 2012, 51, 6259–6263. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Zhong, Y. Near-Infrared Electrochromism in Electropolymerized Metallopolymeric Films of a Phen-1,4-diyl-Bridged Diruthenium Complex. Inorg. Chem. 2014, 53, 11316–11322. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.J.; Zhong, Y.W.; Yao, J. Five-Stage Near-Infrared Electrochromism in Electropolymerized Films Composed of Alternating Cyclometalated Bisruthenium and Bis-triarylamine Segments. Inorg. Chem. 2013, 52, 10000–10008. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, K.; Uemura, S. Electrochromic terpyridine-triphenylamine polymer films with high coloration efficiency in aqueous electrolyte. Eur. Polym. J. 2019, 119, 322–326. [Google Scholar] [CrossRef]
- Qiu, D.; Bao, X.; Zhao, Q.; Yang, Q.; Feng, Y.; Wang, H.; Yang, C.; Liu, K. Near-IR Electrochromic Film Prepared by Oxidative Electropolymerization of the Cyclometalated Pt(II) Chloride with a Triphenylamine Group. Inorg. Chem. 2015, 54, 8264−8270. [Google Scholar] [CrossRef]
- Pi, Q.; Bi, D.; Qiu, D.; Wang, H.; Cheng, X.; Feng, Y.; Zhao, Q.; Zhou, M. A dual-wavelength electrochromic film based on a Pt(II) complex for optical modulation at telecommunication wavelengths and dark solid-state display devices. J. Mater. Chem. C 2021, 9, 8994–9000. [Google Scholar] [CrossRef]
- López, J.P.; Kraus, W.; Reck, G.; Thünemann, A.; Kurth, D.G. Synthesis, structure and reactivity of the homoleptic iron(II) complex of the novel 4′-(4‴-pyridyl-N-oxide)-2,2′:6′,2″-terpyridine ligand. Inorg. Chim. Acta 2005, 358, 3384–3390. [Google Scholar] [CrossRef]
- Auditore, A.; Tuccitto, N.; Marzanni, G.; Quici, S.; Puntoriero, F.; Campagna, S.; Licciardello, A. Organized assemblies of thiol-terpyridine and thiophenol on gold surfaces: Preferential composition of mixed species evidenced. Chem. Commun. 2003, 2494–2495. [Google Scholar] [CrossRef]
- Xu, B.; Peng, Z.; Wei, Y.; Powell, D.R. Polyoxometalates covalently bonded with terpyridine ligands. Chem. Commun. 2003, 2562–2563. [Google Scholar] [CrossRef]
- Mutai, T.; Cheon, J.; Arita, S.; Araki, K. Phenyl-substituted 2,2′:6′,2″-terpyridine as a new series of fluorescent compounds-their photophysical properties and fluorescence tuning. J. Chem. Soc. Perkin Trans. 2001, 2, 1045–1050. [Google Scholar] [CrossRef]
- Fallahpour, R.A.; Neuburger, M.; Zehnder, M. Homoleptic and heteroleptic iron(II) and ruthenium(II) complexes of novel 4′-nitro-2,2′: 6′,2″-terpyridines and 4′-amino-2,2′: 6′,2″-terpyridines. New J. Chem. 1999, 23, 53–61. [Google Scholar] [CrossRef]
- Goodall, W.; Williams, J.A.G. A new, highly fluorescent terpyridine which responds to zinc ions with a large red-shift in emission. Chem. Commun. 2001, 2514–2515. [Google Scholar] [CrossRef]
- Willison, S.A.; Jude, H.; Antonelli, R.M.; Rennekamp, J.M.; Eckert, N.A.; Krause Bauer, J.A.; Connick, W.B. A Luminescent Platinum(II) 2,6-Bis(N-pyrazolyl)pyridine Complex. Inorg. Chem. 2004, 43, 2548–2555. [Google Scholar] [CrossRef] [PubMed]
- Hobert, S.E.; Carney, J.T.; Cummings, S.D. Synthesis and luminescence properties of platinum(II) complexes of 4′-chloro-2,2′:6′,2″-terpyridine and 4,4′,4″-trichloro-2,2′:6′,2″-terpyridine. Inorg. Chim. Acta 2001, 318, 89–96. [Google Scholar] [CrossRef]
- Wilson, M.H.; Ledwab, L.P.; Field, J.S.; McMillin, D.R. Push–pull effects and emission from ternary complexes of platinum(II), substituted terpyridines, and the strong-field cyanide ion. Dalton Trans. 2005, 2754–2759. [Google Scholar] [CrossRef]
- Crites, D.K.; Cunningham, C.T.; McMillin, D.R. Remarkable substituent effects on the photophysica of Pt(4′-X-trpy)Cl+ systems (trpy = 2,2′:6′,2″-terpyridine). Inorg. Chim. Acta 1998, 273, 346–353. [Google Scholar] [CrossRef]
- Eryazici, I.; Moorefifield, C.N.; Newkome, G.R. Square-Planar Pd(II), Pt(II), and Au(III) Terpyridine Complexes: Their Syntheses, Physical Properties, Supramolecular Constructs, and Biomedical Activities. Chem. Rev. 2008, 108, 1834–1895. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.; Dahlenburg, L.; Eldik, R. Cyclometalated Analogues of Platinum Terpyridine Complexes: Kinetic Study of the Strong σ-Donor Cis and Trans Effects of Carbon in the Presence of a π-Acceptor Ligand Backbone. Inorg. Chem. 2003, 42, 6528–6538. [Google Scholar] [CrossRef]
- Ito, A.; Ino, H.; Tanaka, K.; Kanemoto, K.; Kato, T. Facile Synthesis, Crystal Structures, and High-Spin Cationic States of All-para-Brominated Oligo(N-phenyl-m-aniline)s. J. Org. Chem. 2002, 67, 491–498. [Google Scholar]
- Qiu, D.; Zhao, Q.; Bao, X.; Liu, K.; Wang, H.; Guo, Y.; Zhang, L.; Zeng, J.; Wang, H. Electropolymerization and Characterization of an Alternatively Conjugated Donor-Acceptor Metallopolymer: Poly-[Ru(4′-(4-(Diphenylamino)phenyl)-2,2′:6′,2″-Terpyridine)2]2+. Inorg. Chem. Commun. 2011, 14, 296–299. [Google Scholar] [CrossRef]
- Joanna, P.-G.; Barbara, M.; Tomasz, K.; Agata, S.-K.; Stanisław, K.; Mariola, S.; Henryk, J.; Ewa, S.-B.; Justyna, G.; Sebastian, M. Structure-dependent and environment-responsive optical properties of the trisheterocyclic systems with electron donating amino groups. Dyes Pigm. 2019, 166, 283–300. [Google Scholar]
- Ma, Y.; Liu, S.; Yang, H.; Zeng, Y.; She, P.; Zhu, N.; Ho, C.-L.; Zhao, Q.; Huang, W.; Wong, W.-Y. Luminescence Color Tuning by Regulating Electrostatic Interaction in Light-Emitting Devices and Two-Photon Excited Information Decryption. Lnorg. Chem. 2017, 56, 2409–2416. [Google Scholar] [CrossRef] [PubMed]
- Brooksby, P.A.; Ronald Fawcett, W. Infrared (attenuated total reflection) study of propylene carbonate solutions containing lithium and sodium perchlorate. Spectrochim. Acta Part A 2006, 64, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M.; SADABS. Program of Empirical Absorption Correction for Area Detector Data; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. SHELX-97, Program for Crystal Structure Analysis; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Liu, S.; Wei, C.; Wang, H.; Yang, W.; Zhang, J.; Wang, Z.; Zhao, W.; Lee, P.S.; Cai, G. Processable nanoarchitectonics of two-dimensional metallo-supramolecular polymer for electrochromic energy storage devices with high coloration efficiency and stability. Nano Energy 2023, 110, 108337. [Google Scholar] [CrossRef]
- Hu, C.; Sato, T.; Zhang, J.; Moriyama, S.; Higuchi, M. Three-Dimensional Fe(II)-based Metallo-Supramolecular Polymers with Electrochromic Properties of Quick Switching, Large Contrast, and High Coloration Efficiency. ACS Appl. Mater. Interfaces 2014, 6, 9118–9125. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Lahav, M.; van der Boom, M.E. Coordination-Based Molecular Assemblies as Electrochromic Materials: Ultra-High Switching Stability and Coloration Efficiencies. J. Am. Chem. Soc. 2015, 137, 4050–4053. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.A.; Vidotti, M.; Fiorito, P.A.; de Torresi, S.I.C.; Torresi, R.M.; Alves, W.A. Electrochromic Properties of a Metallo-supramolecular Polymer Derived from Tetra(2-pyridyl-1,4-pyrazine) Ligands Integrated in Thin Multilayer Films. Langmuir 2012, 28, 3332–3337. [Google Scholar] [CrossRef]
- Schott, M.; Szczerba, W.; Kurth, D.G. Detailed Study of Layer-by-Layer Self-Assembled and Dip-Coated Electrochromic Thin Films Based on Metallo-Supramolecular Polymers. Langmuir 2014, 30, 10721–10727. [Google Scholar] [CrossRef]
- Mondal, S.; Ninomiya, Y.; Yoshida, T.; Mori, T.; Bera, M.K.; Ariga, K.; Higuchi, M. Dual-Branched Dense Hexagonal Fe(II)-Based Coordination Nanosheets with Red-to-Colorless Electrochromism and Durable Device Fabrication. ACS Appl. Mater. Interfaces 2020, 12, 31896–31903. [Google Scholar] [CrossRef]
- Roy, S.; Chakraborty, C. Interfacial Coordination Nanosheet Based on Nonconjugated Three-Arm Terpyridine: A Highly Color-Efficient Electrochromic Material to Converge Fast Switching with Long Optical Memory. ACS Appl. Mater. Interfaces 2020, 12, 35181–35192. [Google Scholar] [CrossRef]
- Kuai, Y.; Li, W.; Dong, Y.; Wong, W.; Yan, S.; Daia, Y.; Zhang, C. Correction: Multi-color electrochromism from coordination nanosheets based on a terpyridine-Fe(ii) complex Check for updates. Dalton Trans. 2019, 48, 16458. [Google Scholar] [CrossRef]
- Kuai, Y.; Yang, T.; Yuan, F.; Dong, Y.; Song, Q.; Zhang, C.; Wong, W.-Y. Self-assembled flexible metallo-supramolecular film based on Fe(II) ion and triphenylamine-subsituted alkyl terpyridine towards electrochromic application. Dye. Pigment. 2021, 194, 109623. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Sun, X.; Zhao, Q.; Wang, H.; Cheng, X.; Yang, C.; Qiu, D. Near-IR Electrochromic Film with High Optical Contrast and Stability Prepared by Oxidative Electropolymerization of Triphenylamine Modified Terpyridine Platinum(II) Chloride. Molecules 2023, 28, 8027. https://doi.org/10.3390/molecules28248027
Gu H, Sun X, Zhao Q, Wang H, Cheng X, Yang C, Qiu D. Near-IR Electrochromic Film with High Optical Contrast and Stability Prepared by Oxidative Electropolymerization of Triphenylamine Modified Terpyridine Platinum(II) Chloride. Molecules. 2023; 28(24):8027. https://doi.org/10.3390/molecules28248027
Chicago/Turabian StyleGu, Huiying, Xiaomeng Sun, Qian Zhao, Hongwei Wang, Xinfeng Cheng, Chunxia Yang, and Dongfang Qiu. 2023. "Near-IR Electrochromic Film with High Optical Contrast and Stability Prepared by Oxidative Electropolymerization of Triphenylamine Modified Terpyridine Platinum(II) Chloride" Molecules 28, no. 24: 8027. https://doi.org/10.3390/molecules28248027
APA StyleGu, H., Sun, X., Zhao, Q., Wang, H., Cheng, X., Yang, C., & Qiu, D. (2023). Near-IR Electrochromic Film with High Optical Contrast and Stability Prepared by Oxidative Electropolymerization of Triphenylamine Modified Terpyridine Platinum(II) Chloride. Molecules, 28(24), 8027. https://doi.org/10.3390/molecules28248027