Nitrogenase beyond the Resting State: A Structural Perspective
Abstract
:1. Introduction
2. Overview of Nitrogenase Structure and Mechanism
2.1. Nitrogenase Resting State Structure
2.2. The Lowe–Thorneley Model of Nitrogen Reduction
- The rate-determining step is not involved with substrate reduction chemistry; rather, was identified as dissociation of the MoFe-protein–Fe-protein complex [33]. Subsequent studies assigned the rate determining step to Pi dissociation [34]. An important consequence of this property is that the flux of electrons through the MoFe-protein is independent of the substrate being reduced [3]. Furthermore, in the absence of other reducible substrates, protons are reduced to H2 at the same rate of electron flow.
- The kinetic studies did not independently identify the proposed EnNxHy intermediates often depicted in the Lowe–Thorneley scheme (Figure 2). To date, spectroscopic and biochemical studies by Hoffman, Seefeldt, Dean, and colleagues have characterized several of the intermediates proposed in the reduction of N2, including a species with the stoichiometry of “2N2H” for the E4 state. The structure “2N2H” fragment is unknown but is consistent with either a diazene-level intermediate or dinitrogen dihydride species [35]. This collaboration has also assigned the E7 and E8 states as NH2- and NH3-bound FeMo-cofactors states, respectively (see [36]). It is important to note, however, that no definitive evidence for any on-path, partially reduced NN intermediate has been presented [37]. The lack of characterization includes the E5 and E6 intermediates predicted to have reduced N–N bonds, presumably because of challenges in the spectroscopic characterization, but it should not be completely dismissed that species with reduced N–N bonds do not exist.
- In addition to the electron transfer role, Fe-protein bound to the MoFe-protein prevents substrate binding and product release, as only free MoFe-protein can bind substrate and release products [28]. As emphasized by Thorneley and Lowe [38], this is an essential role for the Fe-protein as it enables the MoFe-protein to function as a nitrogenase and not just a hydrogenase. Hence, the term “dinitrogenase reductase”, sometimes used for the Fe-protein, is inappropriate as the Fe-protein plays an important role in the nitrogenase mechanism beyond solely serving as an electron donor.
2.3. Binding of Ligands to the FeMo-Cofactor
- Spectroscopic studies revealed the presence of hydrides, bound N2, and mononuclear N under turnover conditions (reviewed in ref. [36]). These studies provide unique experimental insights into key species generated under turnover conditions.
- A stably trapped CO-containing species generated under turnover conditions has been crystallographically characterized [43]. CO was observed to bridge Fe2 and Fe6, which form one edge of the trigonal prism, displacing belt sulfur S2B. Subsequent studies pressurizing these crystals under CO revealed the binding of a second CO, in an end-on fashion, to Fe6 [44].
- Under turnover in the presence of selenocyanate, Se was also found to bind predominantly at the S2B position in a catalysis-dependent fashion [45]. Using the incorporated Se as a site specific probe, the exchangeability of all three belt sulfur sites under turnover conditions was established. This was demonstrated by showing the migration of selenium between these sites under turnover, with eventual efflux of the Se from the cofactor. Interestingly, upon reaction with CO under turnover conditions, rather than displacing Se at S2B, Se predominantly moves to other belt sulfur positions [45,46]. These observations have provided direct evidence that the FeMo-cofactor can rearrange during catalysis.
- The VFe-protein solved by Einsle and coworkers [47] provides a fascinating comparison to the MoFe-protein as the S3A belt sulfur bridging Fe4 and Fe5 is replaced with a tetra-atomic ligand assigned as carbonate. Intriguingly, a second form of the VFe-protein with distinct EPR features was identified in which the S2B belt sulfur was occupied with a protonated light atom, likely NH or OH [48]. This replacement was accompanied by a rearrangement of the conserved α-Gln191 (α-Gln176 in the VFe-protein) to generate a binding site for the presumably displaced S2B species. As with the MoFe-protein, the S2B site in the VFe-protein can be displaced with CO under turnover conditions, and a second CO may also be bound to Fe6 [49]. These observations have lead to the formulation of a detailed mechanistic proposal for substrate reduction by nitrogenase [49,50].
- The structure of the iron-only Fe-nitrogenase solved by the Einsle group [51] also supports lability of the S2B belt sulfur in the FeFe-cofactor, as evidenced by two alternative conformations for α-Gln176 (corresponding to α-Gln191 of the MoFe-protein) and a binding site for the displaced sulfide.
- Intriguing biochemical and structural data has been presented for nitrogen containing species bound to the FeMo-cofactor under conditions of sulfur and electron depletion [52]. Reflecting the difficulty of identifying small, light atom ligands bound to an electron density metallocluster, this interpretation has been challenged [53,54]. While this challenge has been rebutted [55,56], our examination of the supporting crystallographic data does not definitively support N2 displacement of belt sulfurs, leaving unclear the structural basis of the biochemical observations.
- The identification of hydrides on the cofactor provides a mechanism whereby transfer of electrons to the cofactor can proceed without an accumulation of electrons; this would presumably allow for electron transfer from the Fe-protein to the active site to occur at a nearly constant potential [35,56,57]. The reductive elimination of H2 from the four-electron-reduced E4 state was recognized [58,59,60] as a mechanism to generate a two-electron-reduced form of the cofactor that is transiently activated for the binding and reduction of N2. This step represents a mechanism whereby a reactive species would be transiently generated under turnover; in the absence of N2, H2 would be evolved, returning the active site to a less reactive state.
2.4. Proton Coupled Electron Transfer Reactions Relevant to Nitrogenase
2.4.1. Proton Coupled Electron Transfer Reactions of FeS Clusters
2.4.2. Proton Coupled Electron Transfer to the Nitrogenase Metalloclusters
2.4.3. Computational Studies of the FeMo-Cofactor beyond the Resting State
3. Structural Evidence for Dynamic Nitrogenase States
3.1. High pH-Inhibited and Inactivated States
3.2. Structural Studies of Nitrogenase from the Deletion Strains ∆nifV and ∆nifB
3.3. Structural Studies of Nitrogenase Active Site Point Mutants
3.4. CryoEM Studies of Turnover States
3.5. α-Subunit Flexibility and Cooperativity
3.6. Probing the Importance of Structurally Malleable Residues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Ertl, G. Primary steps in catalytic synthesis of ammonia. J. Vac. Sci. Technol. A Vac. Surf. Film. 1983, 1, 1247–1253. [Google Scholar] [CrossRef]
- Burgess, B.K.; Lowe, D.J. Mechanism of Molybdenum Nitrogenase. Chem. Rev. 1996, 96, 2983–3012. [Google Scholar] [CrossRef] [PubMed]
- Einsle, O.; Rees, D.C. Structural Enzymology of Nitrogenase Enzymes. Chem. Rev. 2020, 120, 4969–5004. [Google Scholar] [CrossRef] [PubMed]
- Van Stappen, C.; Decamps, L.; Cutsail, G.E., 3rd; Bjornsson, R.; Henthorn, J.T.; Birrell, J.A.; DeBeer, S. The Spectroscopy of Nitrogenases. Chem. Rev. 2020, 120, 5005–5081. [Google Scholar] [CrossRef] [PubMed]
- Seefeldt, L.C.; Yang, Z.Y.; Lukoyanov, D.A.; Harris, D.F.; Dean, D.R.; Raugei, S.; Hoffman, B.M. Reduction of Substrates by Nitrogenases. Chem. Rev. 2020, 120, 5082–5106. [Google Scholar] [CrossRef] [PubMed]
- Burén, S.; Jiménez-Vicente, E.; Echavarri-Erasun, C.; Rubio, L.M. Biosynthesis of Nitrogenase Cofactors. Chem. Rev. 2020, 120, 4921–4968. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, H.L.; Tezcan, F.A. Electron Transfer in Nitrogenase. Chem. Rev. 2020, 120, 5158–5193. [Google Scholar] [CrossRef]
- Eady, R.R. Structure-Function Relationships of Alternative Nitrogenases. Chem. Rev. 1996, 96, 3013–3030. [Google Scholar] [CrossRef]
- Jasniewski, A.J.; Lee, C.C.; Ribbe, M.W.; Hu, Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem. Rev. 2020, 120, 5107–5157. [Google Scholar] [CrossRef]
- Maggiolo, A.O.; Mahajan, S.; Rees, D.C.; Clemons, W.M. Intradimeric Walker A ATPases: Conserved Features of a Functionally Diverse Family. J. Mol. Biol. 2023, 435, 167965. [Google Scholar] [CrossRef]
- Peters, J.W.; Stowell, M.H.; Soltis, S.M.; Finnegan, M.G.; Johnson, M.K.; Rees, D.C. Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 1997, 36, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Keable, S.M.; Zadvornyy, O.A.; Johnson, L.E.; Ginovska, B.; Rasmussen, A.J.; Danyal, K.; Eilers, B.J.; Prussia, G.A.; LeVan, A.X.; Raugei, S.; et al. Structural characterization of the P(1+) intermediate state of the P-cluster of nitrogenase. J. Biol. Chem. 2018, 293, 9629–9635. [Google Scholar] [CrossRef] [PubMed]
- Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S.L.; Schleicher, E.; Weber, S.; Rees, D.C.; Einsle, O. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 2011, 334, 940. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, H.L.; Cook, B.D.; Nguyen, H.P.M.; Herzik, M.A.; Tezcan, F.A. Structures of the nitrogenase complex prepared under catalytic turnover conditions. Science 2022, 377, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Danyal, K.; Shaw, S.; Page, T.R.; Duval, S.; Horitani, M.; Marts, A.R.; Lukoyanov, D.; Dean, D.R.; Raugei, S.; Hoffman, B.M.; et al. Negative cooperativity in the nitrogenase Fe protein electron delivery cycle. Proc. Natl. Acad. Sci. USA 2016, 113, E5783–E5791. [Google Scholar] [CrossRef] [PubMed]
- Maritano, S.; Fairhurst, S.A.; Eady, R.R. Long-range interactions between the Fe protein binding sites of the MoFe protein of nitrogenase. J. Biol. Inorg. Chem. 2001, 6, 590–600. [Google Scholar] [CrossRef]
- Cadoux, C.; Ratcliff, D.; Maslać, N.; Gu, W.; Tsakoumagkos, I.; Hoogendoorn, S.; Wagner, T.; Milton, R.D. Nitrogen Fixation and Hydrogen Evolution by Sterically Encumbered Mo-Nitrogenase. Jacs Au 2023, 3, 1521–1533. [Google Scholar] [CrossRef]
- Watt, G.D.; Reddy, K. Formation of an all ferrous Fe4S4 cluster in the iron protein component of Azotobacter vinelandii nitrogenase. J. Inorg. Biochem. 1994, 53, 281–294. [Google Scholar] [CrossRef]
- Angove, H.C.; Yoo, S.J.; Münck, E.; Burgess, B.K. An all-ferrous state of the Fe protein of nitrogenase: Interaction with nucleotides and electron transfer to the MoFe protein. J. Biol. Chem. 1998, 273, 26330–26337. [Google Scholar] [CrossRef]
- Schindelin, H.; Kisker, C.; Schlessman, J.L.; Howard, J.B.; Rees, D.C. Structure of ADP x AIF4(-)-stabilized nitrogenase complex and its implications for signal transduction. Nature 1997, 387, 370–376. [Google Scholar] [CrossRef]
- Schmid, B.; Einsle, O.; Chiu, H.J.; Willing, A.; Yoshida, M.; Howard, J.B.; Rees, D.C. Biochemical and structural characterization of the cross-linked complex of nitrogenase: Comparison to the ADP-AlF4(-)-stabilized structure. Biochemistry 2002, 41, 15557–15565. [Google Scholar] [CrossRef] [PubMed]
- Tezcan, F.A.; Kaiser, J.T.; Howard, J.B.; Rees, D.C. Structural evidence for asymmetrical nucleotide interactions in nitrogenase. J. Am. Chem. Soc. 2015, 137, 146–149. [Google Scholar] [CrossRef]
- Tezcan, F.A.; Kaiser, J.T.; Mustafi, D.; Walton, M.Y.; Howard, J.B.; Rees, D.C. Nitrogenase complexes: Multiple docking sites for a nucleotide switch protein. Science 2005, 309, 1377–1380. [Google Scholar] [CrossRef]
- Georgiadis, M.; Komiya, H.; Chakrabarti, P.; Woo, D.; Kornuc, J.; Rees, D. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 1992, 257, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.B.; Seefeldt, L.C.; Peters, J.W. Insights into nucleotide signal transduction in nitrogenase: Structure of an iron protein with MgADP bound. Biochemistry 2000, 39, 14745–14752. [Google Scholar] [CrossRef] [PubMed]
- Wenke, B.B.; Spatzal, T.; Rees, D.C. Site-Specific Oxidation State Assignments of the Iron Atoms in the [4Fe: 4S]2+/1+/0 States of the Nitrogenase Fe-Protein. Angew. Chem. Int. Ed. 2019, 58, 3894–3897. [Google Scholar] [CrossRef] [PubMed]
- Thorneley, R.N.; Lowe, D.J. Kinetics and mechanism of the nitrogenase enzyme system. Molybdenum Enzym. 1985, 7, 89–116. [Google Scholar]
- Rubinson, J.F.; Corbin, J.L.; Burgess, B.K. Nitrogenase reactivity: Methyl isocyanide as substrate and inhibitor. Biochemistry 1983, 22, 6260–6268. [Google Scholar] [CrossRef]
- Lowe, D.J.; Fisher, K.; Thorneley, R.N.; Vaughn, S.A.; Burgess, B.K. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii. Biochemistry 1989, 28, 8460–8466. [Google Scholar] [CrossRef]
- Lowe, D.J.; Fisher, K.; Thorneley, R.N. Klebsiella pneumoniae nitrogenase. Mechanism of acetylene reduction and its inhibition by carbon monoxide. Biochem. J. 1990, 272, 621–625. [Google Scholar]
- Benton, P.M.; Mayer, S.M.; Shao, J.; Hoffman, B.M.; Dean, D.R.; Seefeldt, L.C. Interaction of acetylene and cyanide with the resting state of nitrogenase α-96-substituted MoFe proteins. Biochemistry 2001, 40, 13816–13825. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.; Thorneley, R. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of H2 formation. Biochem. J. 1984, 224, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-Y.; Ledbetter, R.; Shaw, S.; Pence, N.; Tokmina-Lukaszewska, M.; Eilers, B.; Guo, Q.; Pokhrel, N.; Cash, V.L.; Dean, D.R. Evidence that the Pi release event is the rate-limiting step in the nitrogenase catalytic cycle. Biochemistry 2016, 55, 3625–3635. [Google Scholar] [CrossRef] [PubMed]
- Lukoyanov, D.; Yang, Z.-Y.; Khadka, N.; Dean, D.R.; Seefeldt, L.C.; Hoffman, B.M. Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N2 for H2. J. Am. Chem. Soc. 2015, 137, 3610–3615. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C. Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chem. Rev. 2014, 114, 4041–4062. [Google Scholar] [CrossRef] [PubMed]
- Threatt, S.D.; Rees, D.C. Biological nitrogen fixation in theory, practice, and reality: A perspective on the molybdenum nitrogenase system. FEBS Lett. 2023, 597, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.; Thorneley, R.N. The mechanism of Klebsiella pneumoniae nitrogenase action. The determination of rate constants required for the simulation of the kinetics of N2 reduction and H2 evolution. Biochem. J. 1984, 224, 895–901. [Google Scholar] [CrossRef]
- Kim, J.; Rees, D. Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii. Nature 1992, 360, 553–560. [Google Scholar]
- Dos Santos, P.C.; Mayer, S.M.; Barney, B.M.; Seefeldt, L.C.; Dean, D.R. Alkyne substrate interaction within the nitrogenase MoFe protein. J. Inorg. Biochem. 2007, 101, 1642–1648. [Google Scholar] [CrossRef]
- Kim, C.-H.; Newton, W.E.; Dean, D.R. Role of the MoFe Protein. Alpha.-Subunit Histidine-195 Residue in FeMo-Cofactor Binding and Nitrogenase Catalysis. Biochemistry 1995, 34, 2798–2808. [Google Scholar] [CrossRef]
- Scott, D.J.; May, H.D.; Newton, W.E.; Brigle, K.E.; Dean, D.R. Role for the nitrogenase MoFe protein α-subunit in FeMo-cofactor binding and catalysis. Nature 1990, 343, 188–190. [Google Scholar] [CrossRef]
- Spatzal, T.; Perez, K.A.; Einsle, O.; Howard, J.B.; Rees, D.C. Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase. Science 2014, 345, 1620–1623. [Google Scholar] [CrossRef]
- Buscagan, T.M.; Perez, K.A.; Maggiolo, A.O.; Rees, D.C.; Spatzal, T. Structural characterization of two CO molecules bound to the nitrogenase active site. Angew. Chem. 2021, 133, 5768–5771. [Google Scholar] [CrossRef]
- Spatzal, T.; Perez, K.A.; Howard, J.B.; Rees, D.C. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor. eLife 2015, 4, e11620. [Google Scholar] [CrossRef] [PubMed]
- Henthorn, J.T.; Arias, R.J.; Koroidov, S.; Kroll, T.; Sokaras, D.; Bergmann, U.; Rees, D.C.; DeBeer, S. Localized Electronic Structure of Nitrogenase FeMoco Revealed by Selenium K-Edge High Resolution X-ray Absorption Spectroscopy. J. Am. Chem. Soc. 2019, 141, 13676–13688. [Google Scholar] [CrossRef]
- Sippel, D.; Einsle, O. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat. Chem. Biol. 2017, 13, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Sippel, D.; Rohde, M.; Netzer, J.; Trncik, C.; Gies, J.; Grunau, K.; Djurdjevic, I.; Decamps, L.; Andrade, S.L.A.; Einsle, O. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 2018, 359, 1484–1489. [Google Scholar] [CrossRef] [PubMed]
- Rohde, M.; Laun, K.; Zebger, I.; Stripp, S.T.; Einsle, O. Two ligand-binding sites in CO-reducing V nitrogenase reveal a general mechanistic principle. Sci. Adv. 2021, 7, eabg4474. [Google Scholar] [CrossRef] [PubMed]
- Einsle, O. Catalysis and structure of nitrogenases. Curr. Opin. Struct. Biol. 2023, 83, 102719. [Google Scholar] [CrossRef] [PubMed]
- Trncik, C.; Detemple, F.; Einsle, O. Iron-only Fe-nitrogenase underscores common catalytic principles in biological nitrogen fixation. Nat. Catal. 2023, 6, 415–424. [Google Scholar] [CrossRef]
- Kang, W.; Lee, C.C.; Jasniewski, A.J.; Ribbe, M.W.; Hu, Y. Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science 2020, 368, 1381–1385. [Google Scholar] [CrossRef]
- Peters, J.W.; Einsle, O.; Dean, D.R.; DeBeer, S.; Hoffman, B.M.; Holland, P.L.; Seefeldt, L.C. Comment on “Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase”. Science 2021, 371, eabe5481. [Google Scholar] [CrossRef]
- Bergmann, J.; Oksanen, E.; Ryde, U. Critical evaluation of a crystal structure of nitrogenase with bound N2 ligands. JBIC J. Biol. Inorg. Chem. 2021, 26, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Kang, W.; Jasniewski, A.J.; Stiebritz, M.T.; Tanifuji, K.; Ribbe, M.W.; Hu, Y. Evidence of substrate binding and product release via belt-sulfur mobilization of the nitrogenase cofactor. Nat. Catal. 2022, 5, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Lee, C.C.; Jasniewski, A.J.; Ribbe, M.W.; Hu, Y. Response to Comment on “Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase”. Science 2021, 371, eabe5856. [Google Scholar] [CrossRef] [PubMed]
- Lukoyanov, D.; Yang, Z.-Y.; Barney, B.M.; Dean, D.R.; Seefeldt, L.C.; Hoffman, B.M. Unification of reaction pathway and kinetic scheme for N2 reduction catalyzed by nitrogenase. Proc. Natl. Acad. Sci. USA 2012, 109, 5583–5587. [Google Scholar] [CrossRef]
- Hoffman, B.M.; Lukoyanov, D.; Dean, D.R.; Seefeldt, L.C. Nitrogenase: A draft mechanism. Acc. Chem. Res. 2013, 46, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-Y.; Khadka, N.; Lukoyanov, D.; Hoffman, B.M.; Dean, D.R.; Seefeldt, L.C. On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase. Proc. Natl. Acad. Sci. USA 2013, 110, 16327–16332. [Google Scholar] [CrossRef]
- Harris, D.F.; Lukoyanov, D.A.; Kallas, H.; Trncik, C.; Yang, Z.-Y.; Compton, P.; Kelleher, N.; Einsle, O.; Dean, D.R.; Hoffman, B.M. Mo-, V-, and Fe-nitrogenases use a universal eight-electron reductive-elimination mechanism to achieve N2 reduction. Biochemistry 2019, 58, 3293–3301. [Google Scholar] [CrossRef]
- Hageman, R.V.; Orme-Johnson, W.H.; Burris, R. Role of magnesium adenosine 5’-triphosphate in the hydrogen evolution reaction catalyzed by nitrogenase from Azotobacter vinelandii. Biochemistry 1980, 19, 2333–2342. [Google Scholar] [CrossRef]
- Thorneley, R.; Lowe, D. Molybdenum Enzymes. Met. Ions Biol. 1985, 7, 221–284. [Google Scholar]
- Howard, J.B.; Rees, D.C. Structural basis of biological nitrogen fixation. Chem. Rev. 1996, 96, 2965–2982. [Google Scholar] [CrossRef] [PubMed]
- Durrant, M.C. Controlled protonation of iron–molybdenum cofactor by nitrogenase: A structural and theoretical analysis. Biochem. J. 2001, 355, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Dance, I. The controlled relay of multiple protons required at the active site of nitrogenase. Dalton Trans. 2012, 41, 7647–7659. [Google Scholar] [CrossRef]
- Berg, J.; Holm, R. Iron-Sulfur Proteins (Metal Ions in Biology Series); John Wiley and Sons: New York, NY, USA, 1982; Volume 4. [Google Scholar]
- Grunwald, L.; Clémancey, M.; Klose, D.; Dubois, L.; Gambarelli, S.; Jeschke, G.; Wörle, M.; Blondin, G.; Mougel, V. A complete biomimetic iron-sulfur cubane redox series. Proc. Natl. Acad. Sci. USA 2022, 119, e2122677119. [Google Scholar] [CrossRef] [PubMed]
- Cuypers, M.; Mason, S.; Blakeley, M.; Mitchell, E.; Haertlein, M.; Forsyth, V.T. Near-atomic resolution neutron crystallography on perdeuterated Pyrococcus furiosus rubredoxin: Implication of hydronium ions and protonation state equilibria in redox changes. Angew. Chem. 2013, 125, 1056–1059. [Google Scholar] [CrossRef]
- Ohno, H.; Takeda, K.; Niwa, S.; Tsujinaka, T.; Hanazono, Y.; Hirano, Y.; Miki, K. Crystallographic characterization of the high-potential iron-sulfur protein in the oxidized state at 0.8 Å resolution. PLoS ONE 2017, 12, e0178183. [Google Scholar] [CrossRef] [PubMed]
- Hanazono, Y.; Hirano, Y.; Takeda, K.; Kusaka, K.; Tamada, T.; Miki, K. Revisiting the concept of peptide bond planarity in an iron-sulfur protein by neutron structure analysis. Sci. Adv. 2022, 8, eabn2276. [Google Scholar] [CrossRef]
- Bruice, T.C.; Maskiewicz, R.; Job, R. The Acid-Base Properties, Hydrolytic Mechanism, and Susceptibility to O2 Oxidation of Fe4S4 (SR)4−2 Clusters. Proc. Natl. Acad. Sci. USA 1975, 72, 231–234. [Google Scholar] [CrossRef]
- Henderson, R.A. Proton transfer to synthetic Fe–S-based clusters. Coord. Chem. Rev. 2005, 249, 1841–1856. [Google Scholar] [CrossRef]
- Dukes, G.R.; Holm, R. Synthetic analogs of the active sites of iron-sulfur proteins. X. Kinetics and mechanism of the ligand substitution reactions of arylthiols with the tetranuclear clusters [Fe4S4(SR)4]2. J. Am. Chem. Soc. 1975, 97, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.A. Mechanistic studies on synthetic Fe−S-based clusters and their relevance to the action of nitrogenases. Chem. Rev. 2005, 105, 2365–2438. [Google Scholar] [CrossRef] [PubMed]
- Maskiewicz, R.; Bruice, T.C. Kinetic study of the dissolution of Fe4S42−-cluster core ions of ferredoxins and high potential iron protein. Biochemistry 1977, 16, 3024–3029. [Google Scholar] [CrossRef] [PubMed]
- Leggate, E.J.; Bill, E.; Essigke, T.; Ullmann, G.M.; Hirst, J. Formation and characterization of an all-ferrous Rieske cluster and stabilization of the [2Fe-2S] 0 core by protonation. Proc. Natl. Acad. Sci. USA 2004, 101, 10913–10918. [Google Scholar] [CrossRef]
- Chen, K.; Hirst, J.; Camba, R.; Bonagura, C.A.; Stout, C.D.; Burgess, B.K.; Armstrong, F.A. Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature 2000, 405, 814–817. [Google Scholar] [CrossRef]
- Duff, J.L.; Breton, J.L.; Butt, J.N.; Armstrong, F.A.; Thomson, A.J. Novel redox chemistry of [3Fe−4S] clusters: Electrochemical characterization of the all-Fe (II) form of the [3Fe−4S] cluster generated reversibly in various proteins and its spectroscopic investigation in Sulfolobus acidocaldarius ferredoxin. J. Am. Chem. Soc. 1996, 118, 8593–8603. [Google Scholar] [CrossRef]
- Magliozzo, R.; McIntosh, B.; Sweeney, W. Origin of the pH dependence of the midpoint reduction potential in Clostridium pasteurianum ferredoxin: Oxidation state-dependent hydrogen ion association. J. Biol. Chem. 1982, 257, 3506–3509. [Google Scholar] [CrossRef]
- Ogata, H.; Nishikawa, K.; Lubitz, W. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 2015, 520, 571–574. [Google Scholar] [CrossRef]
- Xiao, Z.; Lavery, M.J.; Ayhan, M.; Scrofani, S.D.; Wilce, M.C.; Guss, J.M.; Tregloan, P.A.; George, G.N.; Wedd, A.G. The rubredoxin from Clostridium pasteurianum: Mutation of the iron cysteinyl ligands to serine. Crystal and molecular structures of oxidized and dithionite-treated forms of the Cys42Ser mutant. J. Am. Chem. Soc. 1998, 120, 4135–4150. [Google Scholar] [CrossRef]
- Zu, Y.; Couture, M.M.-J.; Kolling, D.R.; Crofts, A.R.; Eltis, L.D.; Fee, J.A.; Hirst, J. Reduction potentials of Rieske clusters: Importance of the coupling between oxidation state and histidine protonation state. Biochemistry 2003, 42, 12400–12408. [Google Scholar] [CrossRef]
- Lanzilotta, W.N.; Fisher, K.; Seefeldt, L.C. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum−iron protein without MgATP hydrolysis: Characterization of a tight protein−protein complex. Biochemistry 1996, 35, 7188–7196. [Google Scholar] [CrossRef] [PubMed]
- Kent, H.; Baines, M.; Gormal, C.; Smith, B.; Buck, M. Analysis of site-directed mutations in the α-and β-subunits of Klebsiella pneumoniae nitrogenase. Mol. Microbiol. 1990, 4, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.; Setterquist, R.; Brigle, K.; Scott, D.; Laird, N.; Newton, W. Evidence that conserved residues Cys-62 and Cys-154 within the Azotobacter vinelandii nitrogenase MoFe protein α-subunit are essential for nitrogenase activity but conserved residues His-83 and Cys-88 are not. Mol. Microbiol. 1990, 4, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, H.L.; Rittle, J.; Williamson, L.M.; Xu, W.A.; Gagnon, D.M.; Tezcan, F.A. Redox-Dependent Metastability of the Nitrogenase P-Cluster. J. Am. Chem. Soc. 2019, 141, 10091–10098. [Google Scholar] [CrossRef] [PubMed]
- Owens, C.P.; Katz, F.E.; Carter, C.H.; Oswald, V.F.; Tezcan, F.A. Tyrosine-coordinated P-cluster in G. diazotrophicus nitrogenase: Evidence for the importance of O-based ligands in conformationally gated electron transfer. J. Am. Chem. Soc. 2016, 138, 10124–10127. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, H.L.; Field, M.J.; Rittle, J.; Green, M.T.; Tezcan, F.A. Role of Serine Coordination in the Structural and Functional Protection of the Nitrogenase P-Cluster. J. Am. Chem. Soc. 2022, 144, 22101–22112. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Caldararu, O.; Ryde, U. Protonation and reduction of the FeMo cluster in nitrogenase studied by quantum mechanics/molecular mechanics (QM/MM) calculations. J. Chem. Theory Comput. 2018, 14, 6653–6678. [Google Scholar] [CrossRef] [PubMed]
- Eady, R.; Smith, B.; Thorneley, R.; Yates, M.; Postgate, J.; WDP, S. Nitrogen fixation by free-living micro-organisms. In International Biological Programme; Cambridge University Press: Cambridge, UK, 1975; Volume 6, pp. 377–388. [Google Scholar]
- Morrison, C.N.; Spatzal, T.; Rees, D.C. Reversible Protonated Resting State of the Nitrogenase Active Site. J. Am. Chem. Soc. 2017, 139, 10856–10862. [Google Scholar] [CrossRef]
- Siegbahn, P.E. Model calculations suggest that the central carbon in the FeMo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation. J. Am. Chem. Soc. 2016, 138, 10485–10495. [Google Scholar] [CrossRef]
- McKee, M.L. A new nitrogenase mechanism using a CFe8S9 model: Does H2 elimination activate the complex to N2 addition to the central carbon atom? J. Phys. Chem. A 2016, 120, 754–764. [Google Scholar] [CrossRef]
- Igarashi, R.Y.; Laryukhin, M.; Dos Santos, P.C.; Lee, H.-I.; Dean, D.R.; Seefeldt, L.C.; Hoffman, B.M. Trapping H-bound to the nitrogenase FeMo-cofactor active site during H2 evolution: Characterization by ENDOR spectroscopy. J. Am. Chem. Soc. 2005, 127, 6231–6241. [Google Scholar] [CrossRef]
- Doan, P.E.; Telser, J.; Barney, B.M.; Igarashi, R.Y.; Dean, D.R.; Seefeldt, L.C.; Hoffman, B.M. 57Fe ENDOR spectroscopy and ‘electron inventory’analysis of the nitrogenase E4 intermediate suggest the metal-ion core of FeMo-cofactor cycles through only one redox couple. J. Am. Chem. Soc. 2011, 133, 17329–17340. [Google Scholar] [CrossRef]
- Lukoyanov, D.A.; Khadka, N.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C.; Hoffman, B.M. Hydride conformers of the nitrogenase FeMo-cofactor two-electron reduced state E2(2H), assigned using cryogenic intra electron paramagnetic resonance cavity photolysis. Inorg. Chem. 2018, 57, 6847–6852. [Google Scholar] [CrossRef]
- Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C.; Hoffman, B.M. Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein? J. Am. Chem. Soc. 2010, 132, 2526–2527. [Google Scholar] [CrossRef]
- Van Stappen, C.; Davydov, R.; Yang, Z.-Y.; Fan, R.; Guo, Y.; Bill, E.; Seefeldt, L.C.; Hoffman, B.M.; DeBeer, S. Spectroscopic Description of the E1 State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and Mössbauer Studies. Inorg. Chem. 2019, 58, 12365–12376. [Google Scholar] [CrossRef]
- Dance, I. Survey of the Geometric and Electronic Structures of the Key Hydrogenated Forms of FeMo-co, the Active Site of the Enzyme Nitrogenase: Principles of the Mechanistically Significant Coordination Chemistry. Inorganics 2019, 7, 8. [Google Scholar] [CrossRef]
- Cao, L.; Ryde, U. Extremely large differences in DFT energies for nitrogenase models. Phys. Chem. Chem. Phys. 2019, 21, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Siegbahn, P.E. The mechanism for N2 activation in the E4–state of nitrogenase. Phys. Chem. Chem. Phys. 2023, 25, 23602–23613. [Google Scholar] [CrossRef] [PubMed]
- Dance, I. Computational investigations of the chemical mechanism of the enzyme nitrogenase. ChemBioChem 2020, 21, 1671–1709. [Google Scholar] [CrossRef]
- Varley, J.; Wang, Y.; Chan, K.; Studt, F.; Nørskov, J. Mechanistic insights into nitrogen fixation by nitrogenase enzymes. Phys. Chem. Chem. Phys. 2015, 17, 29541–29547. [Google Scholar] [CrossRef] [PubMed]
- Khadka, N.; Dean, D.R.; Smith, D.; Hoffman, B.M.; Raugei, S.; Seefeldt, L.C. CO2 reduction catalyzed by nitrogenase: Pathways to formate, carbon monoxide, and methane. Inorg. Chem. 2016, 55, 8321–8330. [Google Scholar] [CrossRef] [PubMed]
- Raugei, S.; Seefeldt, L.C.; Hoffman, B.M. Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction. Proc. Natl. Acad. Sci. USA 2018, 115, E10521–E10530. [Google Scholar] [CrossRef]
- Van Stappen, C.; Thorhallsson, A.T.; Decamps, L.; Bjornsson, R.; DeBeer, S. Resolving the structure of the E1 state of Mo nitrogenase through Mo and Fe K-edge EXAFS and QM/MM calculations. Chem. Sci. 2019, 10, 9807–9821. [Google Scholar] [CrossRef] [PubMed]
- Thorhallsson, A.T.; Bjornsson, R. The E2 state of FeMoco: Hydride formation versus Fe reduction and a mechanism for H2 evolution. Chem.-A Eur. J. 2021, 27, 16788–16800. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Xu, X.; Adamo, C. Theoretical investigation on the role of the central carbon atom and close protein environment on the nitrogen reduction in Mo nitrogenase. ACS Catal. 2016, 6, 1567–1577. [Google Scholar] [CrossRef]
- Yang, K.Y.; Haynes, C.A.; Spatzal, T.; Rees, D.C.; Howard, J.B. Turnover-dependent inactivation of the nitrogenase MoFe-protein at high pH. Biochemistry 2014, 53, 333–343. [Google Scholar] [CrossRef]
- Pham, D.N.; Burgess, B.K. Nitrogenase reactivity: Effects of pH on substrate reduction and carbon monoxide inhibition. Biochemistry 1993, 32, 13725–13731. [Google Scholar] [CrossRef]
- Warmack, R.A.; Maggiolo, A.O.; Orta, A.; Wenke, B.B.; Howard, J.B.; Rees, D.C. Structural consequences of turnover-induced homocitrate loss in nitrogenase. Nat. Commun. 2023, 14, 1091. [Google Scholar] [CrossRef]
- Imperial, J.; Hoover, T.R.; Madden, M.S.; Ludden, P.W.; Shah, V.K. Substrate reduction properties of dinitrogenase activated in vitro are dependent upon the presence of homocitrate or its analogues during iron-molybdenum cofactor synthesis. Biochemistry 1989, 28, 7796–7799. [Google Scholar] [CrossRef]
- Durrant, M.C. An atomic-level mechanism for molybdenum nitrogenase. Part 2. Proton reduction, inhibition of dinitrogen reduction by dihydrogen, and the HD formation reaction. Biochemistry 2002, 41, 13946–13955. [Google Scholar] [CrossRef]
- Durrant, M.C. An atomic-level mechanism for molybdenum nitrogenase. Part 1. Reduction of dinitrogen. Biochemistry 2002, 41, 13934–13945. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.W.; Chang, R.T.; Mandal, S.K.; Armstrong, W.H.; Orme-Johnson, W.H. A novel vanadium(V) homocitrate complex: Synthesis, structure, and biological relevance of [K2(H2O)5][(VO2)2(R,S-homocitrate)2]·H2O. JBIC J. Biol. Inorg. Chem. 1996, 1, 143–151. [Google Scholar] [CrossRef]
- Dance, I. Mechanisms of the S/CO/Se interchange reactions at FeMo-co, the active site cluster of nitrogenase. Dalton Trans. 2016, 45, 14285–14300. [Google Scholar] [CrossRef]
- Mayer, S.M.; Gormal, C.A.; Smith, B.E.; Lawson, D.M. Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of iron molybdenum cofactor (FeMoco). J. Biol. Chem. 2002, 277, 35263–35266. [Google Scholar] [CrossRef]
- Schmid, B.; Ribbe, M.W.; Einsle, O.; Yoshida, M.; Thomas, L.M.; Dean, D.R.; Rees, D.C.; Burgess, B.K. Structure of a cofactor-deficient nitrogenase MoFe protein. Science 2002, 296, 352–356. [Google Scholar] [CrossRef]
- Barney, B.M.; Igarashi, R.Y.; Dos Santos, P.C.; Dean, D.R.; Seefeldt, L.C. Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis. J. Biol. Chem. 2004, 279, 53621–53624. [Google Scholar] [CrossRef]
- Sarma, R.; Barney, B.M.; Keable, S.; Dean, D.R.; Seefeldt, L.C.; Peters, J.W. Insights into substrate binding at FeMo-cofactor in nitrogenase from the structure of an alpha-70(Ile) MoFe protein variant. J. Inorg. Biochem. 2010, 104, 385–389. [Google Scholar] [CrossRef]
- Sørlie, M.; Christiansen, J.; Lemon, B.J.; Peters, J.W.; Dean, D.R.; Hales, B.J. Mechanistic features and structure of the nitrogenase alpha-Gln195 MoFe protein. Biochemistry 2001, 40, 1540–1549. [Google Scholar] [CrossRef]
- Keable, S.M.; Vertemara, J.; Zadvornyy, O.A.; Eilers, B.J.; Danyal, K.; Rasmussen, A.J.; De Gioia, L.; Zampella, G.; Seefeldt, L.C.; Peters, J.W. Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site. J. Inorg. Biochem. 2018, 180, 129–134. [Google Scholar] [CrossRef]
- Cheng, Y. Single-particle cryo-EM—How did it get here and where will it go. Science 2018, 361, 876–880. [Google Scholar] [CrossRef]
- Robinson, A.C.; Chun, T.; Li, J.; Burgess, B. Iron-molybdenum cofactor insertion into the apo-MoFe protein of nitrogenase involves the iron protein-MgATP complex. J. Biol. Chem. 1989, 264, 10088–10095. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.C.; Burgess, B.K.; Dean, D.R. Activity, reconstitution, and accumulation of nitrogenase components in Azotobacter vinelandii mutant strains containing defined deletions within the nitrogenase structural gene cluster. J. Bacteriol. 1986, 166, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Hageman, R.; Burris, R. Kinetic studies on electron transfer and interaction between nitrogenase components from Azotobacter vinelandii. Biochemistry 1978, 17, 4117–4124. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Nyborg, A.; Wilson, P.; Tolley, A.; Nordmeyer, F.; Watt, G. Analysis of steady state Fe and MoFe protein interactions during nitrogenase catalysis. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 2000, 1543, 24–35. [Google Scholar] [CrossRef]
- Bergersen, F.; Turner, G. Kinetic studies of nitrogenase from soya-bean root-nodule bacteroids. Biochem. J. 1973, 131, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Orme-Johnson, W.; Henzl, M.; Averill, B.; Wyeth, P.; Munck, E. Electron-Transfer Centers in Nitrogenase Component Proteins. Fed. Proc. 1977, 36, 880. [Google Scholar]
- Clarke, T.A.; Maritano, S.; Eady, R.R. Formation of a Tight 1:1 Complex of Clostridium pasteurianum Fe Protein−Azotobacter vinelandii MoFe Protein: Evidence for Long-Range Interactions between the Fe Protein Binding Sites during Catalytic Hydrogen Evolution. Biochemistry 2000, 39, 11434–11440. [Google Scholar] [CrossRef]
- Kang, G.; Taguchi, A.T.; Stubbe, J.; Drennan, C.L. Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science 2020, 368, 424–427. [Google Scholar] [CrossRef]
- Artin, E.; Wang, J.; Lohman, G.J.; Yokoyama, K.; Yu, G.; Griffin, R.G.; Bar, G.; Stubbe, J. Insight into the mechanism of inactivation of ribonucleotide reductase by gemcitabine 5′-diphosphate in the presence or absence of reductant. Biochemistry 2009, 48, 11622–11629. [Google Scholar] [CrossRef]
- Renner, K.A.; Howard, J.B. Aluminum fluoride inhibition of nitrogenase: Stabilization of a nucleotide.Fe-protein.MoFe-protein complex. Biochemistry 1996, 35, 5353–5358. [Google Scholar] [CrossRef]
- Clarke, T.A.; Yousafzai, F.K.; Eady, R.R. Klebsiella pneumoniae Nitrogenase: Formation and Stability of Putative Beryllium Fluoride− ADP Transition State Complexes. Biochemistry 1999, 38, 9906–9913. [Google Scholar] [CrossRef] [PubMed]
- Lammers, P.J.; Haselkorn, R. Sequence of the nifD gene coding for the α subunit of dinitrogenase from the cyanobacterium Anabaena. Proc. Natl. Acad. Sci. USA 1983, 80, 4723–4727. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.K.; McShea, H.; Kolaczkowski, B.; Kaçar, B. Reconstructing the evolutionary history of nitrogenases: Evidence for ancestral molybdenum-cofactor utilization. Geobiology 2020, 18, 394–411. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.B.; Kechris, K.J.; Rees, D.C.; Glazer, A.N. Multiple amino acid sequence alignment nitrogenase component 1: Insights into phylogenetics and structure-function relationships. PLoS ONE 2013, 8, e72751. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Fay, A.W.; Ribbe, M.W. Molecular insights into nitrogenase FeMo cofactor insertion: The role of His 362 of the MoFe protein α subunit in FeMo cofactor incorporation. JBIC J. Biol. Inorg. Chem. 2007, 12, 449–460. [Google Scholar] [CrossRef]
- Fay, A.W.; Hu, Y.; Schmid, B.; Ribbe, M.W. Molecular insights into nitrogenase FeMoco insertion–The role of His 274 and His 451 of MoFe protein α subunit. J. Inorg. Biochem. 2007, 101, 1630–1641. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.N.; Hoy, J.A.; Zhang, L.; Einsle, O.; Rees, D.C. Substrate pathways in the nitrogenase MoFe protein by experimental identification of small molecule binding sites. Biochemistry 2015, 54, 2052–2060. [Google Scholar] [CrossRef]
- Fisher, K.; Dilworth, M.J.; Newton, W.E. Differential effects on N2 binding and reduction, HD formation, and azide reduction with α-195His-and α-191Gln-substituted MoFe proteins of Azotobacter vinelandii nitrogenase. Biochemistry 2000, 39, 15570–15577. [Google Scholar] [CrossRef]
- Dance, I. How feasible is the reversible S-dissociation mechanism for the activation of FeMo-co, the catalytic site of nitrogenase? Dalton Trans. 2019, 48, 1251–1262. [Google Scholar] [CrossRef]
- Rohde, M.; Grunau, K.; Einsle, O. CO Binding to the FeV Cofactor of CO-Reducing Vanadium Nitrogenase at Atomic Resolution. Angew. Chem. Int. Ed. Engl. 2020, 59, 23626–23630. [Google Scholar] [CrossRef]
- Lee, H.-I.; Thrasher, K.S.; Dean, D.R.; Newton, W.E.; Hoffman, B.M. 14N Electron Spin−Echo Envelope Modulation of the S = 3/2 Spin System of the Azotobacter vinelandii Nitrogenase Iron−Molybdenum Cofactor. Biochemistry 1998, 37, 13370–13378. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, S.A.; MacQuarrie, R.A. Half-site reactivity and the “induced-fit” hypothesis. J. Mol. Biol. 1973, 74, 73–78. [Google Scholar] [CrossRef] [PubMed]
MoFeAs-isolated PDB: 3U7Q | MoFe∆nifB PDB: 1L5H | MoFe∆nifV PDB: 8ENN | MoFeAlkaline-inactivated PDB: 8ENL | t/oComplex 1 PDB: 7UT8 | t/oComplex 2 PDB: 7UT9 | MoFeAcidic PDB: 5VQ4 | MoFeCO PDB: 4TKV | MoFeCO-CO PDB: 7JRF | MoFeSe PDB: 5BVG | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cα RMSD with 3U7Q | 0.370 | 0.385 | 0.387 | 0.405 | 0.433 | 0.257 | 0.101 | 0.090 | 0.077 | |||||
Asymmetric | No | No | Yes | Yes | Yes | Yes | No | No | No | No | ||||
Disordered | No | Yes | Yes | Yes | Yes | Yes | No | No | No | No | ||||
Ordered/Disordered dimer | Ord. | Dis. | Ord. | Dis. | Ord. | Dis. | Ord. | Dis. | ||||||
α-Gln191 | Reference | Flip | N/C | Flip | N/C | Flip | N/C | N/C | N/C | N/C | N/C | N/C | N/C | N/C |
α-Trp253 | Reference | Flip | N/C | Flip | N/C | Flip | N/C | Flip | N/C | Flip | Flip | N/C | N/C | N/C |
α-His274 | Reference | Flip | N/C | Flip | Flip | Flip | N/C | Flip | N/C | Flip | Flip | N/C | N/C | N/C |
α-Phe300 | Reference | Flip | N/C | Flip | Flip | Flip | N/C | Flip | N/C | Flip | Flip | N/C | N/C | N/C |
α-His362 | Reference | Flip | N/C | N/C | N/C | Flip | N/C | N/C | N/C | N/C | Flip | N/C | N/C | N/C |
α-His451 | Reference | Flip | N/C | Flip | Flip | Flip | N/C | Flip | N/C | Flip | N/C | N/C | N/C | N/C |
β-Gln93 | Reference | Flip | N/C | N/C | N/C | Flip | N/C | N/C | N/C | N/C | N/C | N/C | N/C | N/C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warmack, R.A.; Rees, D.C. Nitrogenase beyond the Resting State: A Structural Perspective. Molecules 2023, 28, 7952. https://doi.org/10.3390/molecules28247952
Warmack RA, Rees DC. Nitrogenase beyond the Resting State: A Structural Perspective. Molecules. 2023; 28(24):7952. https://doi.org/10.3390/molecules28247952
Chicago/Turabian StyleWarmack, Rebeccah A., and Douglas C. Rees. 2023. "Nitrogenase beyond the Resting State: A Structural Perspective" Molecules 28, no. 24: 7952. https://doi.org/10.3390/molecules28247952
APA StyleWarmack, R. A., & Rees, D. C. (2023). Nitrogenase beyond the Resting State: A Structural Perspective. Molecules, 28(24), 7952. https://doi.org/10.3390/molecules28247952