Electrical Conductivity of Ionic Liquids 1-Hexyl-3-Methylimidazolium Chloride (HMIM) and 1-Methyl-3-Octylimidazolium Chloride (OMIM) in Mixtures with Selected Alkoxy Alcohols over a Wide Temperature Range
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Conductometric Measurements
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wasserscheid, P.; Van Hal, R.; Bösmann, A. 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—An even ‘greener’ionic liquid. Green Chem. 2002, 4, 400–404. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H. Innovative Applications of Ionic Liquids as ‘‘Green’’ Engineering Liquids. Chem. Eng. Comm. 2006, 193, 1660–1677. [Google Scholar] [CrossRef]
- Wishart, J.F. Energy applications of ionic liquids. Energy Environ. Sci. 2009, 2, 956–961. [Google Scholar] [CrossRef]
- Schlücker, E. Method for High-Pressure Pulsation Testing of Machinery Components. WO2008083961 A1, 17 July 2008. [Google Scholar]
- Domańska, U.; Wiśniewska, A.; Dąbrowski, Z.; Więckowski, M. Ionic Liquids as Efficient Extractants for Quercetin from Red Onion (Allium cepa L.). J. Appl. Sol. Chem. Model. 2018, 7, 21–38. [Google Scholar] [CrossRef]
- Karpińska, M.; Domańska, U. Liquid-liquid extraction of styrene from ethylbenzene using ionic liquids. J. Chem. Thermodyn. 2018, 124, 153–159. [Google Scholar] [CrossRef]
- Domańska, U.; Wlazło, M.; Karpińska, M.; Zawadzki, M. New ionic liquid [P4, 4, 4, 4][NTf2] in bio-butanol extraction on investigation of limiting activity coefficients. Fluid Phase Equilib. 2018, 475, 89–94. [Google Scholar] [CrossRef]
- Domańska, U.; Karpińska, M.; Wiśniewska, A.; Dąbrowski, Z. Ammonium ionic liquids in extraction of bio-butan-1-ol from water phase using activity coefficients at infinite dilution. Fluid Phase Equilib. 2019, 479, 9–16. [Google Scholar] [CrossRef]
- Ventura, S.P.; e Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem. Rev. 2017, 117, 6984–7052. [Google Scholar] [CrossRef]
- Sun, X.; Luo, H.; Dai, S. Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 2011, 112, 2100–2128. [Google Scholar] [CrossRef]
- Lee, J.H.; Ryu, J.B.; Lee, A.S.; Na, W.; Yoon, H.S.; Kim, W.J.; Koo, C.M. High–voltage ionic liquid electrolytes based on ether functionalized pyrrolidinium for electric double–layer capacitors. Electrochim. Acta 2016, 222, 1847–1852. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Tachikawa, N.; Forsyth, M.; Pringle, J.M.; Howlett, P.C.; Elliott, G.D.; Davis, J.H.; Watanabe, M.; Simon, P.; Angell, C.A. Energy applications of ionic liquids. Energy Environ. Sci. 2014, 7, 232–250. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.C. Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature. Green Chem. 2002, 4, 376–379. [Google Scholar] [CrossRef]
- Domańska, U.; Wlazło, M. Effect of the cation and anion of the ionic liquid on desulfurization of model fuels. Fuel 2014, 134, 114–125. [Google Scholar] [CrossRef]
- Ngo, H.L.; LeCompte, K.; Hargens, L.; McEwan, A.B. Thermal properties of imidazolium ionic liquids. Thermochim. Acta 2000, 357-358, 97–102. [Google Scholar] [CrossRef]
- Pernak, J.; Feder-Kubis, J.; Cieniecka-Rosłonkiewicz, A.; Fischmeister, C.; Griffin, S.T.; Rogers, R.D. Synthesis and properties of chiral imidazolium ionic liquids with a (1R,2S,5R)-(–)- menthoxymethyl substituent. New J. Chem. 2007, 31, 879–892. [Google Scholar] [CrossRef]
- Zhao, H.; Malhotra, S.V. Applications of ionic liquids in organic synthesis. Aldrichim. Acta 2002, 35, 75–83. [Google Scholar] [CrossRef]
- Miao, W.; Chan, T.H. Ionic–liquid–supported synthesis: A novel liquid-phase strategy for organic synthesis. Acc. Chem. Res. 2006, 39, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Seddon, K.R.; Stark, A.; Torres, M.J. Viscosity and density of 1-alkyl-3-methylimidazolium ionic liquids. In Clean Solvents; American Chemical Society: Washington, DC, USA, 2002; Volume 819, pp. 34–49. [Google Scholar]
- Qureshi, Z.S.; Deshmukh, K.M.; Bhanage, B.M. Applications of ionic liquids in organic synthesis and catalysis. Clean Technol. Environ. Policy 2014, 16, 1487–1513. [Google Scholar] [CrossRef]
- Amarasekara, A.S. Acidic ionic liquids. Chem. Rev. 2016, 116, 6133–6183. [Google Scholar] [CrossRef]
- Wasserscheid, P.; Keim, W. Ionic Liquids-New “Solutions” for Transition Metal Catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772–3789. [Google Scholar] [CrossRef]
- Pârvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev. 2007, 107, 2615–2665. [Google Scholar] [CrossRef] [PubMed]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- Namboodiri, V.V.; Varma, R.S. An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Lett. 2002, 43, 5381–5383. [Google Scholar] [CrossRef]
- Van Valkenburg, M.E.; Vaughn, R.L.; Williams, M.; Wilkes, J.S. Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 2005, 425, 181–188. [Google Scholar] [CrossRef]
- Itoh, T. Ionic Liquids as Tool to Improve Enzymatic Organic Synthesis. Chem. Rev. 2017, 117, 10567–10607. [Google Scholar] [CrossRef]
- Carmichael, A.J.; Seddon, K.R. Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red. J. Phys. Org. Chem. 2000, 13, 591–595. [Google Scholar] [CrossRef]
- Lochhead, R.Y.; Gruber, J.V. Principles of Polymer Science and Technology in Cosmetics and Personal Care; Goddard, E.D., Gruber, J.V., Eds.; Marcel Dekker: New York, NY, USA, 1999. [Google Scholar]
- Powell, G.M. Handbook of Water Soluble Gums and Resins; Davidson, R.L., Ed.; McGraw-Hill Book Company: New York, NY, USA, 1980; Chapter 18. [Google Scholar]
- Albertsson, A.P. Partition of Cell Particles and Macromolecules, 3rd ed.; John Wiley and Sons: New York, NY, USA, 1986. [Google Scholar]
- Soane, D.S. Polymer Applications for Biotechnology; Prentice Hall: Englewood Cliffs, NJ, USA, 1992. [Google Scholar]
- Zaslavsky, B.Y. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Smith, R.L. Review of Glycol Ether and Glycol Ether Ester Solvents Used in the Coating Industry. Environ. Health Perspect. 1984, 57, 1–4. [Google Scholar] [CrossRef]
- Kinart, Z. Conductometric studies of dissociation constants of selected monocarboxylic acids a wide range of temperatures. J. Mol. Liq. 2019, 292, 111405. [Google Scholar] [CrossRef]
- Apelblat, A. Dissociation constants and limiting conductances of organic acids in water. J. Mol. Liq. 2002, 95, 99–145. [Google Scholar] [CrossRef]
- Barthel, J.M.G.; Krienke, H.; Kunz, W. Physical Chemistry of Electrolyte Solutions: Modern Aspects; Springer: New York, NY, USA, 1998. [Google Scholar]
- Bešter-Rogač, M.; Fedotova, M.V.; Kruchinin, S.E.; Klähn, M. Mobility and association of ions in aqueous solutions: The case of imidazolium based ionic liquids. Phys. Chem. Chem. Phys. 2016, 18, 28594–28605. [Google Scholar] [CrossRef]
- Fuoss, R.M. Paired ions: Dipolar pairs as subset of diffusion pairs. Proc. Natl. Acad. Sci. USA 1978, 75, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Bešter-Rogač, M. Nonsteriodal anti-inflammatory drugs ion mobility: A conductometric study of salicylate, naproxen, diclofenac and ibuprofen dilute aqueous solutions. Acta Chim. Slov. 2009, 56, 70–77. [Google Scholar]
- Bešter-Rogač, M. Sodium salts of benzoic, m-salicylic, and p-salicylic acid: A conductivity study of diluted aqueous solutions. J. Chem. Eng. Data 2011, 56, 4965–4971. [Google Scholar] [CrossRef]
- Kinart, Z.; Ćwiklińska, A. Studies on the internal structure of the binary mixtures of N,N-dimethylacetamide with 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol and 2-butoxyethanol by means of measuring their densities and relative permittivities at 298.15 K. Phys. Chem. Liq. 2019, 57, 779–789. [Google Scholar] [CrossRef]
- Pal, A.; Kumar, H.; Kumar, A.; Dass, G. Excess molar volumes and viscosities of mixtures of some n- alkoxyethanols with dialkyl carbonates at 298.15 K. Fluid Phase Equilbr. 1999, 66, 245–258. [Google Scholar] [CrossRef]
- Marcheselli, L.; Marchetti, A.; Tagliazucchi, M.; Tassi, L.; Tosi, G. N,N-Dimethylformamide–2-methoxyethanol solvent system. Densities and excess molar volumea at various temperatures. J. Chem. Soc. Faraday Trans. 1992, 88, 3159–3163. [Google Scholar] [CrossRef]
- Rubio, M.A.; Gonzalez, M.J.; De la Fuente IG, I.G.; Cobos, J.C. Thermodynamic properties of n-alkoxyethanols + organic solvent mixtures. IX. Liquid-liquid equilibria of systems containing 2-methoxyethanol or 2-ethoxyethanol and selected n-alkanes. J. Chem. Eng. Data 1998, 43, 811–814. [Google Scholar] [CrossRef]
- Aralaguppi, M.I.; Jadar, C.V.; Aminabhavi, T.M. Density, refractive index, and speed of sound in binary mixtures of 2-ethoxyethanol with dimethyl sulfoxide, N,N′-dimethylformamide, N,N′-dimethylacetamide at different temperatures. J. Chem. Eng. Data 1997, 42, 301–303. [Google Scholar] [CrossRef]
- Pall, A.; Bhardway, R.K. Excess molar volumes and viscosities for binary mixtures of 2-propoxyethanol and of 2-isopropoxyethanol with 2-pyrrolidinone, N-methyl-2-pyrrolidinone, N,N-dimethylformamide, and N,N-dimethylacetamide at 298.15 K. J. Chem. Eng. Data 2002, 47, 1128–1134. [Google Scholar] [CrossRef]
- Douhĕret, G.; Davis, M.L.; Hoiland, H. Speeds of sound and excess volumetric properties of mixtures of water with ethylene glycol monopropyl ether at 298.15 K. J. Mol. Liq. 1999, 80, 1–18. [Google Scholar] [CrossRef]
- Sastry, N.V.; Patel, M.C. Densities, excess molar volumes at T = (298.15 to 313.15) K, speeds of sound, excess isentropic compressibilities, relative permittivities, and deviations of molar polarization at T = (298.15 to 308.15) K for methyl methacrylate + 2-buthoxyethanol or dibutyl ether + benzene, toluene or p-xylene. J. Chem. Eng. Data 2004, 49, 1116–1126. [Google Scholar]
- Pal, A.; Sharma, S.; Kumar, H. Volumetric properties of binary mixtures of alkoxyethanols with N,N-dimethylformamide and N,N-dimethylacetamide at 298.15 K. J. Mol. Liq. 2003, 108, 231–255. [Google Scholar] [CrossRef]
- Bald, A.; Kinart, Z. Conductance studies of NaCl, KCl, NaBr, KBr, NaI, Bu4NI, and NaBPh4 in water + 2-propoxyethanol mixtures at 298.15 K. Ionics 2015, 21, 2781–2787. [Google Scholar] [CrossRef]
- Boruń, A.; Bald, A. Ionic association and conductance of ionic liquids in dichloromethane at temperatures from 278.15 to 303.15 K. Ionics 2016, 22, 859–867. [Google Scholar] [CrossRef]
- Kinart, Z.; Tomaš, R. Conductivity properties of selected aliphatic monocarboxylic acid anions in water at 298.15 K. Int. J. Electrochem. Sci. 2020, 15, 10007–10027. [Google Scholar] [CrossRef]
- Kinart, Z. Conductance studies of sodium salts of some aliphatic carboxylic acids in water at different temperatures. J. Mol Liq. 2017, 248, 1059–1064. [Google Scholar] [CrossRef]
- Barthel, J.; Feuerlein, F.; Neueder, R.; Wachter, R. Calibration of conductance cells at various temperatures. J. Solut. Chem. 1980, 9, 209–219. [Google Scholar] [CrossRef]
- Bešter-Rogač, M.; Hunger, J.; Stoppa, A.; Buchner, R. 1-Ethyl-3-methylimidazolium ethylsulfate in water, acetonitrile, and dichloromethane: Molar conductivities and association constants. J. Chem. Eng. Data 2011, 56, 1261–1267. [Google Scholar] [CrossRef]
- Bešter-Rogač, M.; Habe, D. Modern advances in electrical conductivity measurements of solutions. Acta Chim. Slov. 2006, 53, 391–395. [Google Scholar]
T/K | Λo [S·cm2·mol−1] | KA [dm3·mol−1] | σ (Λo) [S·cm2·mol−1] | Λo [S·cm2·mol−1] | KA [dm3·mol−1] | σ (Λo) [S·cm2·mol−1] |
---|---|---|---|---|---|---|
1-Hexyl-3-Methylimidazolium Chloride [HMIM] + 2-Methoxyethanol | 1-Methyl-3-Octylimidazolium Chloride [OMIM] + 2-Methoxyethanol | |||||
278.15 | 18.71 | 58.87 | 0.01 | 17.61 | 47.85 | 0.01 |
283.15 | 20.60 | 69.71 | 0.01 | 19.50 | 58.65 | 0.02 |
288.15 | 23.42 | 79.35 | 0.01 | 22.32 | 68.32 | 0.01 |
293.15 | 25.21 | 92.49 | 0.02 | 24.11 | 81.52 | 0.01 |
298.15 | 27.50 | 103.38 | 0.02 | 26.40 | 92.40 | 0.02 |
303.15 | 29.93 | 117.35 | 0.02 | 28.83 | 106.32 | 0.02 |
308.15 | 32.51 | 127.89 | 0.02 | 31.41 | 116.91 | 0.03 |
313.15 | 35.09 | 138.18 | 0.03 | 33.99 | 127.15 | 0.02 |
1-hexyl-3-methylimidazolium chloride [HMIM] + 2-ethoxyethanol | 1-methyl-3-octylimidazolium chloride [OMIM] + 2-ethoxyethanol | |||||
278.15 | 13.66 | 68.82 | 0.01 | 12.36 | 56.85 | 0.01 |
283.15 | 15.17 | 81.22 | 0.02 | 13.87 | 69.25 | 0.02 |
288.15 | 17.02 | 92.91 | 0.01 | 15.72 | 80.95 | 0.01 |
293.15 | 18.72 | 106.42 | 0.01 | 17.42 | 94.45 | 0.01 |
298.15 | 20.61 | 118.72 | 0.01 | 19.30 | 106.74 | 0.02 |
303.15 | 22.51 | 129.61 | 0.02 | 21.21 | 117.65 | 0.03 |
308.15 | 24.51 | 142.49 | 0.01 | 23.20 | 130.52 | 0.01 |
313.15 | 26.51 | 155.29 | 0.02 | 25.21 | 143.32 | 0.01 |
1-hexyl-3-methylimidazolium chloride [HMIM] + 2-propoxyethanol | 1-methyl-3-octylimidazolium chloride [OMIM] + 2-propoxyethanol | |||||
278.15 | 7.18 | 83.55 | 0.02 | 5.98 | 70.52 | 0.03 |
283.15 | 8.01 | 97.18 | 0.01 | 6.81 | 84.15 | 0.02 |
288.15 | 8.91 | 111.28 | 0.01 | 7.71 | 98.25 | 0.01 |
293.15 | 9.65 | 125.35 | 0.02 | 8.45 | 112.32 | 0.02 |
298.15 | 10.54 | 139.34 | 0.02 | 9.34 | 126.31 | 0.01 |
303.15 | 11.51 | 152.15 | 0.02 | 10.31 | 139.12 | 0.02 |
308.15 | 12.32 | 165.22 | 0.01 | 11.12 | 152.19 | 0.01 |
313.15 | 13.22 | 178.02 | 0.02 | 12.02 | 164.90 | 0.01 |
1-hexyl-3-methylimidazolium chloride [HMIM] + 2-butoxyethanol | 1-methyl-3-octylimidazolium chloride [OMIM] + 2-butoxyethanol | |||||
278.15 | 3.95 | 96.29 | 0.01 | 2.75 | 84.32 | 0.02 |
283.15 | 4.31 | 112.12 | 0.01 | 3.11 | 100.15 | 0.01 |
288.15 | 4.58 | 126.95 | 0.01 | 3.38 | 114.98 | 0.02 |
293.15 | 5.01 | 143.84 | 0.02 | 3.81 | 131.85 | 0.01 |
298.15 | 5.39 | 156.48 | 0.01 | 4.19 | 144.52 | 0.02 |
303.15 | 5.81 | 167.58 | 0.01 | 4.61 | 155.62 | 0.02 |
308.15 | 6.21 | 183.39 | 0.01 | 5.01 | 171.42 | 0.02 |
313.15 | 6.63 | 195.38 | 0.01 | 5.43 | 183.42 | 0.02 |
ΔG0/[J·mol−1] | ||||
---|---|---|---|---|
1-Hexyl-3-Methylimidazolium Chloride [HMIM] | ||||
T [K] | 2-Methoxyethanol | 2-Ethoxyethanol | 2-Propoxyethanol | 2-Butoxyethanol |
278.15 | −9424 | −9785 | −10,234 | −10,562 |
283.15 | −9991 | −10,351 | −10,774 | −11,110 |
288.15 | −10,478 | −10,856 | −11,289 | −11,604 |
293.15 | −11,034 | −11,376 | −11,775 | −12,110 |
298.15 | −11,498 | −11,841 | −12,238 | −12,525 |
303.15 | −12,010 | −12,261 | −12,665 | −12,908 |
308.15 | −12,429 | −12,705 | −13,085 | −13,352 |
313.15 | −12,832 | −13,136 | −13,491 | −13,733 |
1-methyl-3-octylimidazolium chloride [OMIM] | ||||
T [K] | 2-methoxyethanol | 2-ethoxyethanol | 2-propoxyethanol | 2-butoxyethanol |
278.15 | −8945 | −9344 | −9842 | −10,255 |
283.15 | −9585 | −9976 | −10,435 | −10,845 |
288.15 | −10,120 | −10,526 | −10,990 | −11,367 |
293.15 | −10,726 | −11,085 | −11,507 | −11,898 |
298.15 | −11,219 | −11,577 | −11,994 | −12,328 |
303.15 | −11,761 | −12,016 | −12,439 | −12,721 |
308.15 | −12,199 | −12,481 | −12,874 | −13,179 |
313.15 | −12,615 | −12,927 | −13,292 | −13,569 |
∆S0 [J∙mol−1·K−1], | ||||
---|---|---|---|---|
1-Hexyl-3-Methylimidazolium Chloride [HMIM] | ||||
T [K] | 2-Methoxyethanol | 2-Ethoxyethanol | 2-Propoxyethanol | 2-Butoxyethanol |
278.15 | 113.79 | 111.08 | 109.29 | 107.99 |
283.15 | 109.24 | 106.49 | 104.56 | 102.80 |
288.15 | 104.69 | 101.90 | 99.83 | 97.61 |
293.15 | 100.14 | 97.31 | 95.10 | 92.41 |
298.15 | 95.59 | 92.72 | 90.37 | 87.22 |
303.15 | 91.04 | 88.13 | 85.64 | 82.03 |
308.15 | 86.50 | 83.54 | 80.91 | 76.84 |
313.15 | 81.95 | 78.95 | 76.18 | 71.64 |
1-methyl-3-octylimidazolium chloride [OMIM] | ||||
T [K] | 2-methoxyethanol | 2-ethoxyethanol | 2-propoxyethanol | 2-butoxyethanol |
278.15 | 127.38 | 122.94 | 119.31 | 115.41 |
283.15 | 121.03 | 116.78 | 113.24 | 109.22 |
288.15 | 114.68 | 110.61 | 107.17 | 103.02 |
293.15 | 108.34 | 104.45 | 101.10 | 96.83 |
298.15 | 101.99 | 98.29 | 95.04 | 90.63 |
303.15 | 95.64 | 92.13 | 88.97 | 84.44 |
308.15 | 89.29 | 85.97 | 82.90 | 78.24 |
313.15 | 82.94 | 79.80 | 76.83 | 72.05 |
∆H0 [J∙mol−1] | ||||
1-hexyl-3-methylimidazolium chloride [HMIM] | ||||
T [K] | 2-methoxyethanol | 2-ethoxyethanol | 2-propoxyethanol | 2-butoxyethanol |
278.15 | 22,226 | 21,111 | 20,164 | 19,476 |
283.15 | 20,940 | 19,801 | 18,832 | 17,998 |
288.15 | 19,688 | 18,506 | 17,477 | 16,521 |
293.15 | 18,323 | 17,150 | 16,104 | 14,981 |
298.15 | 17,003 | 15,803 | 14,706 | 13,480 |
303.15 | 15,590 | 14,456 | 13,297 | 11,959 |
308.15 | 14,225 | 13,037 | 11,848 | 10,325 |
313.15 | 12,830 | 11,587 | 10,365 | 8701 |
1-methyl-3-octylimidazolium chloride [OMIM] | ||||
T [K] | 2-methoxyethanol | 2-ethoxyethanol | 2-propoxyethanol | 2-butoxyethanol |
278.15 | 26,486 | 24,852 | 23,345 | 21,847 |
283.15 | 24,685 | 23,089 | 21,630 | 20,080 |
288.15 | 22,927 | 21,347 | 19,892 | 18,319 |
293.15 | 21,033 | 19,535 | 18,132 | 16,487 |
298.15 | 19,188 | 17,728 | 16,340 | 14,694 |
303.15 | 17,232 | 15,912 | 14,531 | 12,876 |
308.15 | 15,317 | 14,010 | 12,671 | 10,931 |
313.15 | 13,359 | 12,064 | 10,767 | 8993 |
Structure | Name, Abbreviation | CAS Number | Purity/% | Source |
---|---|---|---|---|
2-Methoxyethanol | 109-86-4 | ≥99 | Sigma-Aldrich | |
2-Ethoxyethanol | 110-80-5 | ≥99 | Sigma–Aldrich | |
Ethylene glycol monopropyl ether | 2807-30-9 | ≥99 | Sigma–Aldrich | |
Ethylene glycol butyl ether | 111-76-2 | ≥99 | Sigma–Aldrich | |
1-Hexyl-3-Methylimidazolium Chloride, | 1142-20-7 | ≥98.5 | IoLiTec | |
1-Methyl-3-octylimidazolium chloride | 64697-40-1 | >99.9 | IoLiTec |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinart, Z. Electrical Conductivity of Ionic Liquids 1-Hexyl-3-Methylimidazolium Chloride (HMIM) and 1-Methyl-3-Octylimidazolium Chloride (OMIM) in Mixtures with Selected Alkoxy Alcohols over a Wide Temperature Range. Molecules 2023, 28, 7831. https://doi.org/10.3390/molecules28237831
Kinart Z. Electrical Conductivity of Ionic Liquids 1-Hexyl-3-Methylimidazolium Chloride (HMIM) and 1-Methyl-3-Octylimidazolium Chloride (OMIM) in Mixtures with Selected Alkoxy Alcohols over a Wide Temperature Range. Molecules. 2023; 28(23):7831. https://doi.org/10.3390/molecules28237831
Chicago/Turabian StyleKinart, Zdzisław. 2023. "Electrical Conductivity of Ionic Liquids 1-Hexyl-3-Methylimidazolium Chloride (HMIM) and 1-Methyl-3-Octylimidazolium Chloride (OMIM) in Mixtures with Selected Alkoxy Alcohols over a Wide Temperature Range" Molecules 28, no. 23: 7831. https://doi.org/10.3390/molecules28237831
APA StyleKinart, Z. (2023). Electrical Conductivity of Ionic Liquids 1-Hexyl-3-Methylimidazolium Chloride (HMIM) and 1-Methyl-3-Octylimidazolium Chloride (OMIM) in Mixtures with Selected Alkoxy Alcohols over a Wide Temperature Range. Molecules, 28(23), 7831. https://doi.org/10.3390/molecules28237831