Excitation-Controlled Host–Guest Multicolor Luminescence in Lanthanide-Doped Calcium Zirconate for Information Encryption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Compositional Analysis of Undoped and Tb3+/Eu3+-Doped CaZrO3
2.2. Luminescent Properties and Mechanisms of Undoped CaZrO3, CaZrO3:Tb3+, and CaZrO3:Eu3+
2.3. Luminescent Properties and Mechanisms of CaZrO3:Tb3+/Eu3+
2.4. Excitation Controlled Multicolor Luminescence
2.5. Cases of Information Encryption
3. Materials and Methods
3.1. Materials and Synthesis
3.2. Characterization
3.3. Methods to Establish the Luminescent Patterns for Anti-Counterfeiting and Optical Information Encryption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Zhang, Y. Orthogonal emissive upconversion nanoparticles: Material design and applications. Small 2021, 17, e2004552. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yan, L.; Huang, J.; Zhang, Q.; Zhou, B. Controlling upconversion in emerging multilayer core-shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, Z.; Wen, S.; Han, Q.; Fu, L.; Yan, L.; Jin, D.; Bünzli, J.-C.G.; Bao, G. Magnetic regulation of the luminescence of hybrid lanthanide-doped nanoparticles. Coordin. Chem. Rev. 2022, 469, 214653. [Google Scholar] [CrossRef]
- Algar, W.R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K.D.; Darwish, G.H.; Peveler, W.J.; Xiao, Z.; Tsai, H.Y.; Gupta, R.; et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 2021, 121, 9243–9358. [Google Scholar] [CrossRef]
- Xie, Y.; Song, Y.; Sun, G.; Hu, P.; Bednarkiewicz, A.; Sun, L. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage. Light-Sci. Appl. 2022, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Gao, C.; Wang, Y.; Ju, D.; Zhou, A.; Song, F.; Huang, L.; Huang, W. Spatially confined luminescence process in tip-modified heterogeneous-structured microrods for high-level anti-counterfeiting. Phys. Chem. Chem. Phys. 2018, 20, 9516–9522. [Google Scholar] [CrossRef]
- Chen, X.; Yao, W.; Wang, Q.; Wu, W. Designing multicolor dual-mode lanthanide-doped NaLuF4/Y2O3 composites for advanced anticounterfeiting. Adv. Opt. Mater. 2020, 8, 1901209. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Q.; Hu, Q.; Li, C.; Chen, M.; Sun, J.; Wang, Y.; Sun, Q.; Geng, B. Dual-mode long-lived luminescence of Mn2+-doped nanoparticles for multilevel anticounterfeiting. ACS Appl. Mater. Interfaces 2019, 11, 30146–30153. [Google Scholar] [CrossRef]
- Wei, T.; Han, Y.; Wei, Y.; Gao, C.; Ma, H.; Zhang, F.; Bao, S.; Jing, S.; Huang, L. CaSc2O4 hosted upconversion and downshifting luminescence. J. Mater. Chem. C 2021, 9, 3800–3805. [Google Scholar] [CrossRef]
- Liu, S.; Yan, L.; Li, Q.; Huang, J.; Tao, L.; Zhou, B. Tri-channel photon emission of lanthanides in lithium-sublattice core-shell nanostructures for multiple anti-counterfeiting. Chem. Eng. J. 2020, 397, 125451. [Google Scholar] [CrossRef]
- Mei, Q.; Bansal, A.; Jayakumar, M.K.G.; Zhang, Z.; Zhang, J.; Huang, H.; Yu, D.; Ramachandra, C.J.A.; Hausenloy, D.J.; Soong, T.W.; et al. Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation. Nat. Commun. 2019, 10, 4416. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.R.; Kyhm, J.H.; Kang, G.; Jang, H.S. Orthogonal R/G/B upconversion luminescence-based full-color tunable upconversion nanophosphors for transparent displays. Nano Lett. 2021, 21, 4838–4844. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Qiu, H.; Zhang, X.; Luo, W.; Chen, Y.; Zhang, J.; Chen, Y.; Wang, G.; Zheng, K. Orthogonal trichromatic upconversion with high color purity in core-shell nanoparticles for a full-color display. Angew. Chem. Int. Ed. 2023, 62, e202218491. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhou, J.; Yue, J.; Wei, Y.; Gao, C.; Xie, X.; Huang, L. Recent development in sensitizers for lanthanide-doped upconversion luminescence. Chem. Rev. 2022, 122, 15998–16050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jayakumar, M.K.G.; Zheng, X.; Shikha, S.; Zhang, Y.; Bansal, A.; Poon, D.J.J.; Chu, P.L.; Yeo, E.L.L.; Chua, M.L.K.; et al. Upconversion superballs for programmable photoactivation of therapeutics. Nat. Commun. 2019, 10, 4586. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Pan, Y.; Yuan, Z.; Wang, X.; Su, W.; Yin, L.; Xie, X.; Huang, L. Er3+ sensitized photon upconversion nanocrystals. Adv. Funct. Mater. 2018, 28, 1800208. [Google Scholar] [CrossRef]
- Han, Y.; Gao, C.; Wei, T.; Zhang, K.; Jiang, Z.; Zhou, J.; Xu, M.; Yin, L.; Song, F.; Huang, L. Modulating the rise and decay dynamics of upconversion luminescence through controlling excitations. Angew. Chem. Int. Ed. 2022, 61, e202212089. [Google Scholar] [CrossRef]
- Li, Y.; You, W.; Zhao, J.; Zhang, X.; Pan, G.; Liu, P.; Mao, Y. Unique excitation power density and pulse width-dependent multicolor upconversion emissions of Y2Mo4O15:Yb3+,Ho3+ for anti-counterfeiting and information encryption applications. J. Mater. Chem. C 2023, 11, 546–553. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Zhu, Y.; Wang, X.; Zhang, Q.; Hao, X. Achieving multicolor emission readout and tunable photoswitching via multiplexing of dual lanthanides in ferroelectric oxides. J. Mater. Chem. C 2019, 7, 5782–5791. [Google Scholar] [CrossRef]
- Pei, P.; Wei, R.; Wang, B.; Su, J.; Zhang, Z.; Liu, W. An advanced tunable multimodal luminescent La4GeO8:Eu2+, Er3+ phosphor for multicolor anticounterfeiting. Adv. Funct. Mater. 2021, 31, 2102479. [Google Scholar] [CrossRef]
- Zhang, J.C.; Pan, C.; Zhu, Y.F.; Zhao, L.Z.; He, H.W.; Liu, X.; Qiu, J. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting. Adv. Mater. 2018, 30, e1804644. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Su, Z.; Ye, R.; Chen, L.; Lu, Z.; Bai, G.; Xu, S. Creating dual-mode luminescence in piezoelectric calcium niobates through lanthanide-doped for anti-counterfeiting and temperature sensing. J. Alloys Compd. 2021, 856, 158188. [Google Scholar] [CrossRef]
- Lei, L.; Zhang, S.; Xia, H.; Tian, Y.; Zhang, J.; Xu, S. Controlled synthesis of lanthanide-doped Gd2O2S nanocrystals with novel excitation-dependent multicolor emissions. Nanoscale 2017, 9, 5718–5724. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Chung, H.; Hong, S.V.; Woo, H.Y.; Chae, J.Y.; Yoon, T.Y.; Diroll, B.T.; Paik, T. Dynamically tunable multicolor emissions from zero-dimensional Cs3LnCl6 (Ln: Europium and terbium) nanocrystals with wide color gamut. Nanoscale 2023, 15, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ping, Y.; Ma, H.; Lei, L. Defect-assisted dynamic multicolor modulation in KLu3F10:Tb crystals for anti-counterfeiting. Nanoscale 2023, 15, 4361–4366. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, J.; Zhang, H.; Fu, H.; Liu, W.; Zheng, J. Yb3+/Eu3+/Ho3+ tridoped Cs2Ag0.3Na0.7InCl6 double perovskite with excitation-wavelength-dependent triple emission for anti-counterfeiting application. Crystals 2023, 13, 13. [Google Scholar] [CrossRef]
- Zhou, J.; Li, C.; Lei, R.; Wang, H.; Li, M.; Li, D.; Yang, Q.; Hua, Y.; Xu, S. Novel optical thermometry strategy based on Gd3+ and defect-related luminescence of ZrO2:Gd3+ nanoparticles. J. Phys. Chem. C 2020, 124, 21664–21673. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ghosh, P.S.; Pathak, N.; Tewari, R. Nature of defects in blue light emitting CaZrO3: Spectroscopic and theoretical study. RSC Adv. 2015, 5, 56526–56533. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Ma, X.; Sheng, H.; Feng, P.; Shi, L.; Hu, R.; Wang, Y. Violet–blue up conversion photostimulated luminescence properties and first principles calculations of a novel un-doped CaZrO3 phosphor for application in optical storage. J. Alloys Compd. 2013, 550, 451–458. [Google Scholar] [CrossRef]
- Orihashi, T.; Nakamura, T.; Adachi, S. Resonant energy transfer in (Eu3+, Bi3+)-codoped CaZrO3 red-emitting phosphor. RSC Adv. 2016, 6, 66130–66139. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Ribeiro, R.A.P.; Gracia, L.; de Lazaro, S.R.; de Assis, M.; Oliva, M.; Rosa, I.L.V.; Gurgel, M.F.d.C.; Longo, E.; Andrés, J. Experimental and theoretical study of the energetic, morphological, and photoluminescence properties of CaZrO3:Eu3+. CrystEngComm 2018, 20, 5519–5530. [Google Scholar] [CrossRef]
- Khan, A.; Song, F.; Zhou, A.; Gao, X.; Feng, M.; Ikram, M.; Hu, H.; Sang, X.; Liu, L. Tuning white light upconversion emission from Yb3+/Er3+/Tm3+ triply doped CaZrO3 by altering Tm3+ concentration and excitation power. J. Alloys Compd. 2020, 835, 155286. [Google Scholar] [CrossRef]
- Khan, A.; Song, F.; Gao, X.; Chen, Z.; Sang, X.; Feng, M.; Liu, L. Introduction of molybdenum into the lattice of single-host CaZrO3:Dy3+/Eu3+ to enhance luminescence intensity of the phosphor for white light emission. J. Alloys Compd. 2021, 881, 160652. [Google Scholar] [CrossRef]
- Navami, D.; Darshan, G.P.; Lavanya, D.R.; Premkumar, H.B.; Sharma, S.C.; Adarsha, H.; Prameela, H.C.; Nagabhushana, H. Design of green emitting CaZrO3:Tb3+ nanophosphor: Luminescence based platform for real-time ultrasensitive detection of latent fingerprints and anti-counterfeiting applications. Opt. Mater. 2021, 122, 111474. [Google Scholar] [CrossRef]
- Drag-Jarzabek, A.; John, L.; Petrus, R.; Kosinska-Klahn, M.; Sobota, P. Alkaline earth metal zirconate perovskites MZrO3 (M = Ba2+, Sr2+, Ca2+) derived from molecular precursors and doped with Eu3+ ions. Chem. Eur. J. 2016, 22, 4780–4788. [Google Scholar] [CrossRef]
- Kunti, A.K.; Patra, N.; Harris, R.A.; Sharma, S.K.; Bhattacharyya, D.; Jha, S.N.; Swart, H.C. Structural properties and luminescence dynamics of CaZrO3:Eu3+ phosphors. Inorg. Chem. Front. 2021, 8, 821–836. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Shu, Y.; Luo, K.; Liu, H.; Zhang, P.; Huang, Y.; Liu, G.; Fan, Y. Photoluminescence properties of tunable full-color-emitting CaZrO3: Ln (Ln = Tb3+, Eu3+, Tb3+/Eu3+) phosphors for white LEDs. J. Lumin. 2022, 252, 119305. [Google Scholar] [CrossRef]
- Ueda, K.; Ogata, T.; Honma, T. Effects of codoping on site-dependent Eu3+ luminescence in perovskite-type calcium zirconate and hafnate. Inorg. Chem. 2023, 62, 2146–2152. [Google Scholar] [CrossRef]
- Jang, S.; Lee, J.; Wi, S.W.; Lim, H.; Jeong, Y.J.; Chung, J.S.; Kang, W.K.; Lee, Y.S. Investigation on photoluminescence and Judd–Ofelt parameters in Eu ion-doped CaZrO3 in relation to the local structural property. J. Lumin. 2021, 240, 118433. [Google Scholar] [CrossRef]
- Katyayan, S.; Agrawal, S. Study of optical behaviour of Eu3+ and Tb3+ doped zirconate perovskite phosphors prepared by molten salt technique. Opt. Quant. Electron. 2020, 52, 18. [Google Scholar] [CrossRef]
- Tian, X.; Wang, C.; Dou, H.; Wu, L. Photoluminescence origin and non-contact thermometric properties in Pb2+-activated CaZrO3 perovskite phosphor. J. Alloys Compd. 2021, 892, 162250. [Google Scholar] [CrossRef]
- Cao, R.; Han, P.; Luo, W.; Fu, T.; Luo, Z.; Liu, P.; Chen, Z.; Yu, X. Synthesis, luminescence properties and energy transfer of CaZrO3:Sm3+, Bi3+ phosphor. J. Electron. Mater. 2016, 45, 3361–3366. [Google Scholar] [CrossRef]
- Chi, F.; Pan, L.; Jiang, B.; Ji, Z.; Cheng, J.; Wang, B.; Wei, X.; Liu, S. Luminescence properties of multicolor emitting La4GeO8:Tb3+, Eu3+ phosphors. Ceram. Int. 2023, 49, 2522–2530. [Google Scholar] [CrossRef]
- Posokhova, S.M.; Morozov, V.A.; Deyneko, D.V.; Nikiforov, I.V.; Redkin, B.S.; Spassky, D.A.; Belik, A.A.; Pavlova, E.T.; Lazoryak, B.I. K5Eu1-xTbx(MoO4)4 phosphors for solid-state lighting applications: Aperiodic structures and the Tb3+ → Eu3+ energy transfer. Inorg. Chem. 2022, 61, 7910–7921. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Pathak, N.; Ali, K.; Das, D.; Dutta, D. Tailoring defect structure and dopant composition and the generation of various color characteristics in Eu3+ and Tb3+ doped MgF2 phosphors. Phys. Chem. Chem. Phys. 2022, 24, 10915–10927. [Google Scholar] [CrossRef]
- Bu, X.; Liu, Y.-g.; Chen, J. Band structure, photoluminescent properties, and energy transfer behavior of a multicolor tunable phosphor K3Lu(PO4)2: Tb3+, Eu3+ for warm white light-emitting diodes. J. Lumin. 2022, 251, 119133. [Google Scholar] [CrossRef]
- Chen, X.; Shu, Q.; He, J. Luminescent properties and energy transfer mechanism from Tb3+ to Eu3+ in single-phase color-adjustable Sr3MgSi2O8:Eu3+,Tb3+ phosphor prepared by the sol-gel method. J. Alloys Compd. 2022, 891, 161878. [Google Scholar] [CrossRef]
- Xing, L.; Sun, Y.; Hu, C.; Wei, D.; Wang, Y.; Hao, J.; Li, W.; Gao, X.; Wang, W.; Li, H. Lanthanide ions-activated Gd2B2WO9: Multicolor tunable phosphors under single-wavelength excitation. J. Alloys Compd. 2021, 867, 159026. [Google Scholar] [CrossRef]
- Back, M.; Ueda, J.; Xu, J.; Asami, K.; Amidani, L.; Trave, E.; Tanabe, S. Uncovering the origin of the emitting states in Bi3+-activated CaMO3 (M = Zr, Sn, Ti) perovskites: Metal-to-metal charge transfer versus s–p transitions. J. Phys. Chem. C 2019, 123, 14677–14688. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Li, A.; Luo, L.; Du, P.; Li, W.; Runowski, M.; Zhou, J. Tailoring of polychromatic emissions in Tb3+/Eu3+ codoped NaYbF4 nanoparticles via energy transfer strategy for white light-emitting diodes. Mater. Today Chem. 2022, 24, 100916. [Google Scholar] [CrossRef]
- Kunti, A.K.; Patra, N.; Harris, R.A.; Sharma, S.K.; Bhattacharyya, D.; Jha, S.N.; Swart, H.C. Local structure and spectroscopic properties of Eu3+-doped BaZrO3. Inorg. Chem. 2019, 58, 3073–3089. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Shimizu, Y.; Takashima, H.; Massuyeau, F.; Jobic, S. Photo- and cathodoluminescence of Eu3+ or Tb3+ doped CaZrO3 films prepared by pulsed laser deposition. Opt. Mater. 2017, 73, 504–508. [Google Scholar] [CrossRef]
- Shimizu, Y.; Sakagami, S.; Goto, K.; Nakachi, Y.; Ueda, K. Tricolor luminescence in rare earth doped CaZrO3 perovskite oxides. Mater. Sci. Eng. B 2009, 161, 100–103. [Google Scholar] [CrossRef]
- Manjunatha, S.; Manjunatha, H.C.; Vidya, Y.S.; Sridhar, K.N.; Seenappa, L.; Chinnappa Reddy, B.; Santhosh, A.N.; Munirathnam, R.; Damodara Gupta, P.S.; Dharmaprakash, M.S. Microwave assisted synthesis, photoluminescence and X-ray/gamma ray absoprtion properties of red CaZrO3:Eu3+ perovskite. J. Solid State Chem. 2022, 313, 123245. [Google Scholar] [CrossRef]
- Dong, H.; Sun, L.D.; Wang, Y.F.; Ke, J.; Si, R.; Xiao, J.W.; Lyu, G.M.; Shi, S.; Yan, C.H. Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals. J. Am. Chem. Soc. 2015, 137, 6569–6576. [Google Scholar] [CrossRef]
- Dexter, D.L.; Schulman, J.H. Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 1954, 22, 1063–1070. [Google Scholar] [CrossRef]
- Blasse, G. Energy transfer in oxidic phosphors. Phys. Lett. 1968, 28, 444–445. [Google Scholar] [CrossRef]
- Li, J.; Lin, L.; Jiang, W.; Zhang, Z.; Zhang, X.; Kuang, M.; Zhuang, J.; Zhang, Q.; Ni, H.; Shi, J. A terbium-sensitized Eu3+-activated deep-red-emitting phosphor for plant growth LED application. J. Alloys Compd. 2021, 885, 160966. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Geng, D.; Lian, J.; Zhang, G.; Hou, Z.; Lin, J. CaGdAlO4:Tb3+/Eu3+ as promising phosphors for full-color field emission displays. J. Mater. Chem. C 2014, 2, 9924–9933. [Google Scholar] [CrossRef]
- Rathaiah, M.; Haritha, P.; Lozano-Gorrín, A.D.; Babu, P.; Jayasankar, C.K.; Rodríguez-Mendoza, U.R.; Lavín, V.; Venkatramu, V. Stokes and anti-Stokes luminescence in Tm3+/Yb3+-doped Lu3Ga5O12 nano-garnets: A study of multipolar interactions and energy transfer dynamics. Phys. Chem. Chem. Phys. 2016, 18, 14720–14729. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Han, Y.; Liu, R.; Duan, C.; Li, H. Excitation-Controlled Host–Guest Multicolor Luminescence in Lanthanide-Doped Calcium Zirconate for Information Encryption. Molecules 2023, 28, 7623. https://doi.org/10.3390/molecules28227623
Wang Y, Han Y, Liu R, Duan C, Li H. Excitation-Controlled Host–Guest Multicolor Luminescence in Lanthanide-Doped Calcium Zirconate for Information Encryption. Molecules. 2023; 28(22):7623. https://doi.org/10.3390/molecules28227623
Chicago/Turabian StyleWang, Yangbo, Yingdong Han, Runfa Liu, Cunping Duan, and Huaiyong Li. 2023. "Excitation-Controlled Host–Guest Multicolor Luminescence in Lanthanide-Doped Calcium Zirconate for Information Encryption" Molecules 28, no. 22: 7623. https://doi.org/10.3390/molecules28227623
APA StyleWang, Y., Han, Y., Liu, R., Duan, C., & Li, H. (2023). Excitation-Controlled Host–Guest Multicolor Luminescence in Lanthanide-Doped Calcium Zirconate for Information Encryption. Molecules, 28(22), 7623. https://doi.org/10.3390/molecules28227623