Ultrasonic-Assisted Extraction of Antioxidants from Perilla frutescens Leaves Based on Tailor-Made Deep Eutectic Solvents: Optimization and Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of DESs
2.2. Single-Factor Experiments
2.3. Model Fitting and Response Surface Analysis
2.4. Verification of Optimal Conditions for DES-Based UAE
2.5. Comparison of Different Solvent-Based UAE
2.6. SEM Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Preparation and Screening of DESs
3.3. Single-Factor Experiments
3.4. Box–Behnken Design
3.5. Comparison of Different Solvent-Based UAE for Antioxidant Extraction
4. Analytical Methods
4.1. Determination of Antioxidant Activity
4.2. Determination of TPC
4.3. Determination of TFC
4.4. SEM Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AcA | Acetic acid |
BBD | Box–Behnken design |
ChCl | Choline chloride |
DES | Deep eutectic solvent |
DPPH | 2,2-diphenyl-1-picrylhyldrazyl |
EthG | Ethylene glycol |
FRAP | Ferric-reducing antioxidant activity |
Gly | Glycerol |
Glu | Glucose |
LaA | Lactic acid |
MaA | Malic acid |
OcA | Octanoic acid |
OxA | Oxalic acid |
Prop | 1,2-Propanediol |
RSM | Response surface methodology |
SEM | Scanning electron microscopy |
TPC | Content of total polyphenols |
TFC | Content of total flavonoids |
UAE | Ultrasonic-assisted extraction |
Xyl | Xylose |
References
- Zhi-Jun, Z.; Li, N.; Li, H.-Z.; Li, X.-J.; Cao, J.-M.; He, G.-P. Preparation and characterization of biocomposite chitosan film containing Perilla frutescens (L.) Britt. essential oil. Ind. Crops Prod. 2018, 112, 660–667. [Google Scholar]
- Li, H.; Zhang, H.; Zhang, Z.; Cui, L. Optimization of ultrasound-assisted enzymatic extraction and in vitro antioxidant activities of polysaccharides extracted from the leaves of Perilla frutescens. Food Sci. Technol. 2020, 60, 36–45. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Ju, J. Perilla frutescens Britton var. frutescens leaves attenuate dextran sulfate sodium-induced acute colitis in mice and lipopolysaccharide-stimulated angiogenic processes in human umbilical vein endothelial cells. Food Sci. Biotechnol. 2020, 29, 131–140. [Google Scholar] [CrossRef]
- Hashimoto, M.; Tanabe, Y.; Hossain, S.; Matsuzaki, K.; Ohno, M.; Kato, S.; Katakura, M.; Shido, O. Intake of Alpha-Linolenic Acid-Rich Perilla frutescens Leaf Powder Decreases Home Blood Pressure and Serum Oxidized Low-Density Lipoprotein in Japanese Adults. Molecules 2020, 25, 2099. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Qin, L.; Guo, S.; Fang, G.; Luo, Z.; Liang, S. Balanced Interfacial Ion Concentration and Migration Steric Hindrance Promoting High-Efficiency Deposition/Dissolution Battery Chemistry. Adv. Mater. 2022, 34, 2204681. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Guo, Q.; Yang, H. pH-controlled reversible deep-eutectic solvent based enzyme system for simultaneous extraction and in-situ separation of isoflavones from Pueraria lobata. Sep. Purif. Technol. 2022, 292, 120992–121001. [Google Scholar] [CrossRef]
- Suresh, P.S.; Singh, P.P.; Kapoor, S.; Padwad, Y.S.; Sharma, U. Lactic acid-based deep eutectic solvent: An efficient green media for the selective extraction of steroidal saponins from Trillium govanianum. Sep. Purif. Technol. 2022, 294, 121105–121115. [Google Scholar] [CrossRef]
- Pontes, P.V.D.A.; Shiwaku, I.A.; Maximo, G.J.; Batista, E.A.C. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization—ScienceDirect. Food Chem. 2021, 352, 129346–129356. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, Y.; Fu, X.; Zou, Y.; Li, Q.; Luo, Z. Integrated natural deep eutectic solvent and pulse-ultrasonication for efficient extraction of crocins from gardenia fruits (Gardenia jasminoides Ellis) and its bioactivities. Food Chem. 2022, 380, 132216–132226. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, K.; Liu, Y.; Liu, A.; Zhang, Q.; Han, G.; Liu, S.; Yang, Y.; Zhu, Y.; Zhu, D. Optimization of microwave-assisted extraction of oil from tiger nut (Cyperus esculentus L.) and its quality evaluation. Ind. Crops Prod. 2018, 115, 290–297. [Google Scholar] [CrossRef]
- Ferreira, W.S.; Viganó, J.; Veggi, P.C. Economic assessment of emerging extraction techniques: Hybridization of high-pressure extraction and low-frequency ultrasound to produce piceatannol-rich extract from passion fruit bagasse. Chem. Eng. Process. 2022, 174, 108850–108859. [Google Scholar] [CrossRef]
- Balbino, S.; Repaji, M.; Obranovi, M.; Medved, A.M.; Tonkovi, P.; Dragovi-Uzelac, V. Characterization of lipid fraction of Apiaceae family seed spices: Impact of species and extraction method. J. Appl. Res. Med. Aroma 2021, 25, 100326. [Google Scholar] [CrossRef]
- Bell, J.M.L.N.d.M.; Dias, F.F.G. Understanding the impact of enzyme-assisted aqueous extraction on the structural, physicochemical, and functional properties of protein extracts from full-fat almond flour. Food Hydrocolloid 2022, 127, 107534–107544. [Google Scholar]
- Belwal, T.; Chemat, F.; Venskutonis, P.R.; Cravotto, G.; Jaiswal, D.K.; Bhatt, I.D.; Devkota, H.P.; Luo, Z. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trend Anal. Chem. 2020, 127, 115895–115919. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Zhang, Z.; Ren, Z.; Yang, F. Extraction, preparative monomer separation and antibacterial activity of total polyphenols from Perilla frutescens. Food Funct. 2022, 13, 880–890. [Google Scholar] [CrossRef]
- Yang, M.C. Insights into the major phenolic acids in Perilla frutescens obtained by a sustainable procedure. J. Ind. Eng. Chem. 2021, 96, 109–120. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, Z.; Li, H.; Li, N.; Li, X.; Chen, T. Optimization of Ultrasound Assisted Extraction of Phenolic Compounds and Anthocyanins from Perilla Leaves Using Response Surface Methodology. Food Sci. Technol. Res. 2017, 23, 535–543. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, M.; Hu, J.; Zhang, Y.; Yang, L.; Hou, X. Chemical Compositions, Extraction Optimizations, and In Vitro Bioactivities of Flavonoids from Perilla Leaves (Perillae folium) by Microwave-Assisted Natural Deep Eutectic Solvents. Antioxidants 2023, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, R.; Li, Z.; Li, S.; Li, C.; Wang, L. Tailor-made deep eutectic solvents-based green extraction of natural antioxidants from partridge leaf—Tea (Mallotus furetianus L.). Sep. Purif. Technol. 2021, 275, 119159–119169. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, Z.; Xie, X.; Cui, H.; Kong, K.W.; Zhang, L. Perilla frutescens Leaf Extract and Fractions: Polyphenol Composition, Antioxidant, Enzymes (α-Glucosidase, Acetylcholinesterase, and Tyrosinase) Inhibitory, Anticancer, and Antidiabetic Activities. Foods 2021, 10, 315. [Google Scholar] [CrossRef]
- Faller, A.L.K.; Fialho, E. Polyphenol content and antioxidant capacity in organic and conventional plant foods. J. Food Compos. Anal. 2010, 23, 561–568. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Shen, H.; Fan, X.H.; Shen, Y.; Wang, X.; Song, Y. Changes of gallic acid mediated by ultrasound in a model extraction solution. Ultrason. Sonochem 2015, 22, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Huang, L.; Zhang, C.; Deng, Y.; Wang, X. Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem. 2018, 276, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, D.; Belwal, T.; Xu, Y.; Luo, Z. Sonication-synergistic natural deep eutectic solvent as a green and efficient approach for extraction of phenolic compounds from peels of Carya cathayensis Sarg. Food Chem. 2021, 355, 129577–129588. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2020, 247, 117014–117024. [Google Scholar] [CrossRef]
- Wojeicchowski, J.P.; Marques, C.; Igarashi-Mafra, L.; Coutinho, J.A.P.; Mafra, M.R. Extraction of phenolic compounds from rosemary using choline chloride—Based Deep Eutectic Solvents. Sep. Purif. Technol. 2021, 258, 117975–117982. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, L.; Wen, Y.; Qin, W.; Zhang, Q. Comparison of apple polyphenol-gelatin binary complex and apple polyphenol-gelatin-pectin ternary complex: Antioxidant and structural characterization. LWT-Food Sci. Technol. 2021, 148, 111740–111749. [Google Scholar] [CrossRef]
- Wang, L.; Lin, X.; Zhang, J.; Zhang, W.; Hu, X.; Li, W.; Li, C.; Liu, S. Extraction methods for the releasing of bound phenolics from Rubus idaeus L. leaves and seeds. Ind. Crops Prod. 2019, 135, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, X.L.; Zhong, F.L. Content Determination of Total Flavonoids in Extracts of Rosa davurica Pall. Leaves with Aluminium Trichloride Chromogenic Method. Spec. Wild Econ. Anim. Plant Res. 2017, 39, 50–53. [Google Scholar] [CrossRef]
Exp. | Variable | Response | |||||
---|---|---|---|---|---|---|---|
Time | Water Content | Power | Liquid–Solid Ratio | Temperature | DPPH (%) | FRAP | |
1 | 25 | 25 | 240 | 40 | 30 | 58.36 | 0.207 |
2 | 40 | 25 | 240 | 20 | 40 | 44.66 | 0.282 |
3 | 25 | 25 | 160 | 30 | 50 | 53.21 | 0.336 |
4 | 25 | 10 | 160 | 30 | 40 | 39.26 | 0.286 |
5 | 10 | 25 | 160 | 30 | 40 | 56.31 | 0.253 |
6 | 25 | 25 | 320 | 40 | 40 | 61.23 | 0.146 |
7 | 25 | 25 | 240 | 20 | 50 | 43.15 | 0.239 |
8 | 25 | 25 | 240 | 40 | 50 | 55.23 | 0.254 |
9 | 10 | 25 | 240 | 40 | 40 | 62.51 | 0.219 |
10 | 40 | 40 | 240 | 30 | 40 | 59.97 | 0.204 |
11 | 25 | 10 | 240 | 20 | 40 | 38.21 | 0.236 |
12 | 10 | 25 | 240 | 30 | 50 | 44.97 | 0.243 |
13 | 25 | 40 | 240 | 30 | 30 | 50.26 | 0.258 |
14 | 10 | 40 | 240 | 30 | 40 | 45.39 | 0.296 |
15 | 10 | 10 | 240 | 30 | 40 | 42.84 | 0.203 |
16 | 40 | 25 | 240 | 30 | 30 | 53.12 | 0.346 |
17 | 25 | 25 | 320 | 30 | 50 | 52.39 | 0.111 |
18 | 40 | 25 | 240 | 30 | 50 | 56.36 | 0.258 |
19 | 25 | 25 | 240 | 30 | 40 | 63.34 | 0.415 |
20 | 25 | 40 | 240 | 20 | 40 | 50.12 | 0.313 |
21 | 25 | 25 | 160 | 30 | 30 | 42.38 | 0.218 |
22 | 10 | 25 | 240 | 30 | 30 | 41.93 | 0.248 |
23 | 25 | 40 | 240 | 40 | 40 | 56.63 | 0.139 |
24 | 40 | 25 | 320 | 30 | 40 | 60.12 | 0.224 |
25 | 25 | 40 | 240 | 30 | 50 | 54.05 | 0.149 |
26 | 25 | 25 | 240 | 20 | 30 | 33.65 | 0.358 |
27 | 40 | 25 | 160 | 30 | 40 | 53.29 | 0.409 |
28 | 25 | 25 | 320 | 30 | 30 | 49.98 | 0.340 |
29 | 25 | 40 | 160 | 30 | 40 | 54.05 | 0.287 |
30 | 25 | 25 | 240 | 30 | 40 | 59.31 | 0.409 |
31 | 10 | 25 | 320 | 30 | 40 | 49.78 | 0.299 |
32 | 25 | 25 | 240 | 30 | 40 | 59.92 | 0.404 |
33 | 25 | 10 | 240 | 30 | 30 | 32.43 | 0.237 |
34 | 25 | 10 | 240 | 30 | 50 | 38.43 | 0.273 |
35 | 25 | 25 | 160 | 40 | 40 | 58.72 | 0.348 |
36 | 25 | 40 | 320 | 30 | 40 | 59.65 | 0.158 |
37 | 10 | 25 | 240 | 20 | 40 | 43.86 | 0.317 |
38 | 25 | 25 | 160 | 20 | 40 | 44.13 | 0.299 |
39 | 40 | 25 | 240 | 40 | 40 | 65 | 0.280 |
40 | 25 | 25 | 320 | 20 | 40 | 43.59 | 0.386 |
41 | 25 | 25 | 240 | 30 | 40 | 62.72 | 0.430 |
42 | 25 | 25 | 240 | 30 | 40 | 62.19 | 0.420 |
43 | 25 | 25 | 240 | 30 | 40 | 62.46 | 0.416 |
44 | 40 | 10 | 240 | 30 | 40 | 41.77 | 0.359 |
45 | 25 | 10 | 240 | 40 | 40 | 53.56 | 0.321 |
46 | 25 | 10 | 320 | 30 | 40 | 50.85 | 0.284 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 0.30 | 20 | 1.51 × 10−2 | 60.68 | <0.0001 |
A-Time | 5.04 × 10−3 | 1 | 5.04 × 10−3 | 20.32 | 0.0001 |
B-Water content | 9.75 × 10−3 | 1 | 9.75 × 10−3 | 39.31 | <0.0001 |
C-Power | 1.48 × 10−2 | 1 | 1.49 × 10−2 | 60.00 | <0.0001 |
D-Liquid–solid ratio | 1.66 × 10−2 | 1 | 1.66 × 10−2 | 67.09 | <0.0001 |
E-Temperature | 7.61 × 10−3 | 1 | 7.61 × 10−3 | 30.69 | <0.0001 |
AB | 1.54 × 10−2 | 1 | 1.54 × 10−2 | 61.99 | <0.0001 |
AC | 1.33 × 10−2 | 1 | 1.33 × 10−2 | 53.78 | <0.0001 |
AD | 2.30 × 10−3 | 1 | 2.30 × 10−3 | 9.29 | 0.0054 |
AE | 1.72 × 10−3 | 1 | 1.72 × 10−3 | 6.94 | 0.0142 |
BC | 4.03 × 10−3 | 1 | 4.03 × 10−3 | 16.26 | 0.0005 |
BD | 1.68 × 10−2 | 1 | 1.68 × 10−2 | 67.61 | <0.0001 |
BE | 5.26 × 10−3 | 1 | 5.26 × 10−3 | 21.19 | 0.0001 |
CD | 2.09 × 10−2 | 1 | 2.09 × 10−2 | 84.18 | <0.0001 |
CE | 3.01 × 10−2 | 1 | 0.03 | 121.35 | <0.0001 |
DE | 6.89 × 10−3 | 1 | 6.89 × 10−3 | 27.77 | <0.0001 |
A2 | 3.05 × 10−2 | 1 | 3.05 × 10−2 | 123.08 | <0.0001 |
B2 | 7.97 × 10−2 | 1 | 7.97 × 10−2 | 321.30 | <0.0001 |
C2 | 3.55 × 10−2 | 1 | 3.55 × 10−2 | 143.27 | <0.0001 |
D2 | 3.93 × 10−2 | 1 | 3.93 × 10−2 | 158.62 | <0.0001 |
E2 | 7.00 × 10−2 | 1 | 0.07 | 282.22 | <0.0001 |
Residual | 6.20 × 10−3 | 25 | 2.48 × 10−4 | ||
Lack of fit | 5.80 × 10−3 | 20 | 2.89 × 10−4 | 3.57 | 0.0812 |
Pure error | 4.05 × 10−4 | 5 | 8.11 × 10−5 | ||
Cor total | 0.31 | 45 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 3113.87 | 20 | 155.69 | 15.78 | <0.0001 |
A-Time | 136.31 | 1 | 136.31 | 13.82 | 0.0010 |
B-Water content | 537.89 | 1 | 537.89 | 54.52 | <0.0001 |
C-Power | 43.03 | 1 | 43.03 | 4.36 | 0.0471 |
D-Liquid–solid ratio | 1054.14 | 1 | 1054.14 | 106.85 | <0.0001 |
E-Temperature | 79.57 | 1 | 79.57 | 8.07 | 0.0088 |
AB | 61.23 | 1 | 61.23 | 6.21 | 0.0197 |
AC | 44.62 | 1 | 44.62 | 4.52 | 0.0435 |
AD | 0.7140 | 1 | 0.7140 | 0.0724 | 0.7901 |
AE | 0.0100 | 1 | 0.0100 | 0.0010 | 0.9749 |
BC | 8.97 | 1 | 8.97 | 0.9092 | 0.3494 |
BD | 19.54 | 1 | 19.54 | 1.98 | 0.1717 |
BE | 1.22 | 1 | 1.22 | 0.1238 | 0.7279 |
CD | 2.33 | 1 | 2.33 | 0.2357 | 0.6315 |
CE | 17.72 | 1 | 17.72 | 1.80 | 0.1922 |
DE | 39.88 | 1 | 39.88 | 4.04 | 0.0553 |
A2 | 133.37 | 1 | 133.37 | 13.52 | 0.0011 |
B2 | 622.17 | 1 | 622.17 | 63.07 | <0.0001 |
C2 | 96.24 | 1 | 96.24 | 9.76 | 0.0045 |
D2 | 191.28 | 1 | 191.28 | 19.39 | 0.0002 |
E2 | 718.61 | 1 | 718.61 | 72.84 | <0.0001 |
Residual | 246.63 | 25 | 9.87 | ||
Lack of fit | 233.22 | 20 | 11.66 | 4.35 | 0.0551 |
Pure error | 13.42 | 5 | 2.68 | ||
Cor total | 3360.50 | 45 |
Water-Based UAE | Ethanol-Based UAE | Butanol-Based UAE | ChCl-AcA-Based UAE | |
---|---|---|---|---|
TPC | 10.94 ± 0.27 | 3.39 ± 0.03 | 2.76 ± 0.15 | 4.25 ± 0.05 |
TFC | 2.80 ± 0.19 | 2.44 ± 0.28 | 2.21 ± 0.18 | 1.16 ± 0.05 |
DPPH | 48.03% ± 1.4% | 14.70% ± 4.68% | 1.64% ± 1.15% | 66.75% ± 1.56% |
FRAP | 0.26 ± 0.013 | 0.17 ± 6.70 × 10−3 | 0.14 ± 0.01 | 0.29 ± 0.015 |
No. | Solvent Abbreviation | Hydrogen Bond Acceptor | Hydrogen Bond Donor | Molar Ratio |
---|---|---|---|---|
1 | ChCl-MaA | Choline chloride | Malic acid | 1:1 |
2 | ChCl-EthG | Ethylene glycol | 1:2 | |
3 | ChCl-AcA | Acetic acid | 1:2 | |
4 | ChCl-Gly | Glycerol | 1:1 | |
5 | ChCl-Xyl | Xylose | 2:1 | |
6 | ChCl-Glu | Glucose | 1:1 | |
7 | ChCl-Prop | 1,2-Propanediol | 1:2 | |
8 | ChCl-OcA | Octanoic acid | 1:2 | |
9 | ChCl-LaA | Lactic acid | 1:2 | |
10 | ChCl-OxA | Oxalic acid | 1:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, P.; He, X.; Ma, S.; Wang, S.; Niu, Q. Ultrasonic-Assisted Extraction of Antioxidants from Perilla frutescens Leaves Based on Tailor-Made Deep Eutectic Solvents: Optimization and Antioxidant Activity. Molecules 2023, 28, 7554. https://doi.org/10.3390/molecules28227554
Jiao P, He X, Ma S, Wang S, Niu Q. Ultrasonic-Assisted Extraction of Antioxidants from Perilla frutescens Leaves Based on Tailor-Made Deep Eutectic Solvents: Optimization and Antioxidant Activity. Molecules. 2023; 28(22):7554. https://doi.org/10.3390/molecules28227554
Chicago/Turabian StyleJiao, Pengfei, Xingmei He, Shihua Ma, Shengping Wang, and Qiuhong Niu. 2023. "Ultrasonic-Assisted Extraction of Antioxidants from Perilla frutescens Leaves Based on Tailor-Made Deep Eutectic Solvents: Optimization and Antioxidant Activity" Molecules 28, no. 22: 7554. https://doi.org/10.3390/molecules28227554
APA StyleJiao, P., He, X., Ma, S., Wang, S., & Niu, Q. (2023). Ultrasonic-Assisted Extraction of Antioxidants from Perilla frutescens Leaves Based on Tailor-Made Deep Eutectic Solvents: Optimization and Antioxidant Activity. Molecules, 28(22), 7554. https://doi.org/10.3390/molecules28227554