Synthesis of C12-C18 Fatty Acid Isobornyl Esters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Orthogonal Experiment and Reaction Kinetics
2.1.1. Orthogonal Experiment
2.1.2. Reaction Kinetics
2.2. Comparison of Test Results of Different Catalysts
2.3. Catalyst Life
2.4. Separation, Purification, and Structural Identification of Long-Chain Fatty Acid Isobornyl Ester
2.4.1. Separation and Purification of Isobornyl Laurate
2.4.2. Synthesis and Separation of C14–C18 Fatty Acid Isobornyl Ester
2.5. Toxicity Test
3. Experimental Section
3.1. Materials and Apparatus
3.2. Experimental Methods
3.2.1. Synthesis of Long-Chain Fatty Acid Isobornyl Ester
Synthesis
Separation and Purification
Orthogonal Experiment for the Synthesis of Isobornyl Laurate
3.3. Analysis and Test Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, Y.G.; Hu, W.J.; Tian, J.; Lu, W.Y.; Chen, L.; Du, H.H. Research progress on toxicity of plasticizer in food contact materials. J. Food Saf. Qual. 2022, 13, 2210–2216. [Google Scholar] [CrossRef]
- Gao, J.; Li, H.Y.; Ma, J.W.; Fang, Y.R. Research and Development Trend of Plasticizers in China and Abroad. Technol. Dev. Chem. Ind. 2019, 48, 49–52+57. [Google Scholar]
- Wai, P.T.; Jiang, P.P.; Shen, Y.R.; Zhang, P.B.; Gu, Q.; Leng, Y. Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Adv. 2019, 9, 38119–38136. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Lin, C.X.; Wang, M.M.; Liang, Y.Y.; Li, Y.J. Effects of epoxidized soybean oil on the properties of PVC. J. Hangzhou Norm. Univ. 2015, 14, 591–595. [Google Scholar] [CrossRef]
- Alfredo, C.V.; David, G.S.; Amparo, J.V.; Lourdes, S.N.; Rafael, B. A new biobased plasticizer for poly (vinyl chloride) based on epoxidized cottonseed oil. J. Appl. Polym. Sci. 2016, 133, 43642–43651. [Google Scholar] [CrossRef]
- Gu, Y.C.; Cao, J.R.; Wu, Z.B.; Zhang, M.; Sun, W. Main Factors Affecting the Esterification of Camphene with Lower Aliphatic Acid and Synthesis of Isobornyl Carboxylate. Flavour Fragr. Cosmet. 2013, 6, 60–62. [Google Scholar]
- Wang, Y.L. Study on the Synthesis, Separation, Purification and Anti-Cancer Effect of BCLA (Conjugated Linoleic Acid Borneol Ester). Ph.D. Thesis, Southern Medical University, Guangzhou, China, 2010. [Google Scholar]
- Zhao, Y.; Wang, X.S.; Jin, Q.Z.; Wang, X.G. Enzymatic synthesis of bornyloleate. Highlights Sci. Online 2020, 13, 106–114. [Google Scholar]
- Silva, A.T.M.; Pereira, V.V.; Takahashi, J.A.; Silva, R.R.; Duarte, L.P. Microwave-assisted synthesis of borneol esters and their antimicrobial activity. Nat. Prod. Res. 2018, 32, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, R.M.C.; Leite, F.C.; Leite, J.A.; Rodrigues, M. Synthesis, acute toxicity and anti-inflammatory effect of bornyl salicylate, a salicylic acid derivative. Immunopharmacol. Immunotoxicol. 2012, 34, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xu, H.W.; Kang, M.E. Preparation Method of Fatty Acid Borneol Ester. CN Patent CN10789934, 6 April 2018. [Google Scholar]
- Liu, D.H.; Guan, Q.Q.; Fang, D.Y.; Tao, A.J. Kinetics of Camphene Esterification to Isobornyl Acetate. Adv. Mater. Res. Vols. 2011, 233–235, 990–998. [Google Scholar] [CrossRef]
- Ma, W.L. Preparation of isobornyl acetate from camphene with D72 resin infixed bed as catalyst. Chem. Ind. For. Prod. 1989, 9, 18–26. [Google Scholar]
- Lou, J.Y.; Chen, R.; An, X.N. Syntheses of Isobornyl Acetate Catalyzed by MoO3/ZrO2. J. Nanjing For. Univ. 2006, 30, 51–54. [Google Scholar]
- Cui, J.T.; Yang, Y.Z.; Liang, X.H.; Zhao, Z.D.; Huang, J.L. Synthesis of isobornyl acetate from camphene isomeric esterification catalyzed by Lewis acids. Chem. Ind. For. Prod. 2018, 38, 110–114. [Google Scholar]
- Qu, Y.Y.; Zheng, H.D.; Zou, W.H.; Wang, Y.S.; Wu, Y.X. The Deactivation Mechanism and Regeneration Methods of Resin Catalyst for the Esterification of Camphene. Chem. Ind. For. Prod. 2013, 33, 69–73. [Google Scholar] [CrossRef]
- Tao, A.J.; Jiang, X.Z. Syntheses of Isobornyl Acetate Catalyzed by Sulphonated Cross-linked Polystyrene Resin. Shanghai Chem. Ind. 2008, 33, 14–16. [Google Scholar]
- Ning, C.L.; Liu, J.L.; Zhang, Q.J.; Zhang, C.L. Study on the catalyst for the synthesis of isobornyl acetate. Ind. Catal. 2012, 20, 71–75. [Google Scholar]
- Kelly, A.D.; Ivan, V.K.; Elena, V.G. Hydration and acetoxylation of camphene catalyzed by heteropoly acid. J. Mol. Catal. A Chem. 2003, 192, 129–134. [Google Scholar] [CrossRef]
- Ivo, J.D.; Huibert, L.F.; Cornelis, A.V.; John, W.G.; Leonardus, W.J. Alkyl sulphonic acid surface-functionalised silica as heterogeneous acid catalyst in the solvent-free liquid phase addition of acid to camphene. J. Mol. Catal. A Chem. 2002, 188, 209–224. [Google Scholar] [CrossRef]
- Ivo, J.D.; Huibert, L.F.; Alwies, J.M.; John, W.G.; Leonardus, W.J. The catalytic performance of sulphonated cross-linked polystyrene beads in the formation of isoobornyl acetate. Appl. Catal. A Gen. 2003, 241, 185–203. [Google Scholar] [CrossRef]
- Ivo, J.D.; Roene, D.K.; John, W.G.; Leonardus, W.J. Anhydrous zirconium(IV) sulfate and tin(W) sulfate: Solid Lewis acid catalysts in Liquid-phase hydro-acyloxy-addition reaction. Phys. Chem. Chem. Phys. 2001, 3, 4423–4429. [Google Scholar] [CrossRef]
- GB/T 21605-2008; Methods for Testing Acute Inhalation Toxicity of Chemicals. Standardization Administration of China: Beijing, China, 2008.
Number | Camphene (g) | Molar Ratio of Lauric Acid to Camphene (A) | Mass Ratio of Titanium Sulfate to Camphene (B) | Temperature (°C) (C) | Time (h) (D) | Camphene Conversion (%) | GC Content of Isobornyl Laurate (%) |
---|---|---|---|---|---|---|---|
1 | 10 | 1 | 0.1 | 80 | 15 | 27.52 | 23.75 |
2 | 10 | 2 | 0.2 | 80 | 25 | 66.36 | 62.58 |
3 | 10 | 2.5 | 0.25 | 80 | 30 | 85.78 | 79.72 |
4 | 10 | 1.5 | 0.15 | 80 | 20 | 56.48 | 51.62 |
5 | 10 | 1.5 | 0.25 | 100 | 15 | 71.29 | 64.72 |
6 | 10 | 2.5 | 0.20 | 90 | 15 | 52.43 | 47.36 |
7 | 10 | 2 | 0.15 | 110 | 15 | 70.95 | 66.58 |
8 | 10 | 1 | 0.25 | 110 | 25 | 76.95 | 67.16 |
9 | 10 | 2.5 | 0.10 | 110 | 20 | 69.75 | 66.47 |
10 | 10 | 1 | 0.20 | 100 | 20 | 80.86 | 74.53 |
11 | 10 | 1.5 | 0.20 | 110 | 30 | 60.92 | 54.81 |
12 | 10 | 1.5 | 0.10 | 90 | 25 | 66.61 | 61.75 |
13 | 10 | 2 | 0.10 | 100 | 30 | 68.49 | 65.06 |
14 | 10 | 2 | 0.25 | 90 | 20 | 69.95 | 66.59 |
15 | 10 | 2.5 | 0.15 | 100 | 25 | 78.49 | 71.59 |
16 | 10 | 1 | 0.15 | 90 | 30 | 38.65 | 31.91 |
K1 | 197.35 | 217.03 | 222.19 | 202.41 | |||
K2 | 232.9 | 221.97 | 207.61 | 259.21 | |||
K3 | 260.81 | 239.28 | 276.17 | 263.35 | |||
K4 | 269.93 | 282.71 | 255.02 | 236.02 | |||
R | 72.58 | 65.68 | 68.56 | 60.94 | |||
Order | 1 | 3 | 2 | 4 | |||
Scheme | 4 | 4 | 3 | 3 |
Temperature/k | Rate Constant/kb Min−1 | Kinetic Equation |
---|---|---|
353.15 | 0.0015 | lnn = −0.0015t − 1.1672, R2 = 0.99 |
363.15 | 0.002 | lnn = −0.002t − 1.1949, R2 = 0.99 |
373.15 | 0.0027 | lnn = −0.0027t − 1.1216, R2 = 0.99 |
383.15 | 0.0034 | lnn = −0.0034t − 1.1691, R2 = 0.99 |
Number | Catalyst | Camphene (g) | Molar Ratio of Lauric Acid: Camphene | Mass Ratio of Catalyst: Camphene | Temperature (°C) | Time/(h) | GC Content of Isobornyl Laurate (%) |
---|---|---|---|---|---|---|---|
1 | No catalyst | 10 | 2.5 | 0 | 80 | 25 | - |
2 | titanium sulfate | 10 | 2.5 | 0.10 | 80 | 25 | 55.49 |
3 | sulfuric acid | 10 | 2.5 | 0.10 | 80 | 25 | 48.31 |
Number | Camphene Conversion (%) | GC Content of Isobornyl Laurate (%) |
---|---|---|
1 | 80.93 | 74.49 |
2 | 79.47 | 73.58 |
3 | 78.15 | 72.35 |
Name | Sex of KM Mice | Number of Animals | Number of Dead KM Mice | Percent Mortality |
---|---|---|---|---|
Isobornyl laurate | Female | 10 | 0 | 0 |
Male | 10 | 0 | 0 | |
Isobornyl myristate | Female | 10 | 0 | 0 |
Male | 10 | 0 | 0 | |
Isobornyl palmitate | Female | 10 | 0 | 0 |
Male | 10 | 0 | 0 | |
Isobornyl stearate | Female | 10 | 0 | 0 |
Male | 10 | 0 | 0 |
Level | Factor A | Factor B | Factor C | Factor D |
---|---|---|---|---|
1 | 1:1 | 0.1:1 | 80 | 15 |
2 | 1.5:1 | 0.15:1 | 90 | 20 |
3 | 2:1 | 0.20:1 | 100 | 25 |
4 | 2.5:1 | 0.25:1 | 110 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, R.; Chen, H.; Wen, R.; Liang, Z.; Meng, Z. Synthesis of C12-C18 Fatty Acid Isobornyl Esters. Molecules 2023, 28, 7510. https://doi.org/10.3390/molecules28227510
Qin R, Chen H, Wen R, Liang Z, Meng Z. Synthesis of C12-C18 Fatty Acid Isobornyl Esters. Molecules. 2023; 28(22):7510. https://doi.org/10.3390/molecules28227510
Chicago/Turabian StyleQin, Rongxiu, Haiyan Chen, Rusi Wen, Zhongyun Liang, and Zhonglei Meng. 2023. "Synthesis of C12-C18 Fatty Acid Isobornyl Esters" Molecules 28, no. 22: 7510. https://doi.org/10.3390/molecules28227510
APA StyleQin, R., Chen, H., Wen, R., Liang, Z., & Meng, Z. (2023). Synthesis of C12-C18 Fatty Acid Isobornyl Esters. Molecules, 28(22), 7510. https://doi.org/10.3390/molecules28227510