Application of Inverse Design Approaches to the Discovery of Nonlinear Optical Switches
Abstract
:1. Introduction
2. Methodology
2.1. Inverse Design Algorithm-Best-First Search
2.2. Figure of Merit for the Design of NLO Switches
3. Results and Discussion
3.1. Functionalized [26]- and [30]-Hexaphyrin-Based Switches: What Sets Them Apart?
3.1.1. Applying the BFS algorithm on the 26R → 28R and 30R → 28R
3.1.2. Steepest Ascent of the BFS Optima
3.1.3. Dataset Comparison: 26R → 28R versus 30R → 28R
3.2. Towards Optimal Hexaphyrin Based Three-State Molecular Switches
3.2.1. Finding the Best Three-State Hexaphyrin Switch with the BFS Algorithm
3.2.2. Steepest Ascent of the Best 26R → 28R → 30R Molecular Switch
3.2.3. Chemical Space Visualization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feringa, B.L. The art of building small: From molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 2017, 56, 11060–11078. [Google Scholar] [CrossRef] [PubMed]
- Steen, J.D.; Duijnstee, D.R.; Browne, W.R. Molecular switching on surfaces. Surf. Sci. Rep. 2023, 78, 100596. [Google Scholar] [CrossRef]
- Mondal, A.; Toyoda, R.; Costil, R.; Feringa, B.L. Chemically driven rotatory molecular machines. Angew. Chem. Int. Ed. 2022, 61, e202206631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Zhong, J.Q.; Lin, J.D.; Hu, W.P.; Wu, K.; Xu, G.Q.; Wee, A.T.S.; Chen, W. Towards single molecule switches. Chem. Soc. Rev. 2015, 44, 2998–3022. [Google Scholar] [CrossRef] [PubMed]
- Lerch, M.M.; Hansen, M.J.; van Dam, G.M.; Szymanski, W.; Feringa, B.L. Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 2016, 55, 10978–10999. [Google Scholar] [CrossRef]
- Ghorbani-Choghamarani, A.; Taherinia, Z. Recent advances utilized in artificial switchable catalysis. RSC Adv. 2022, 12, 23595–23617. [Google Scholar] [CrossRef]
- Natali, M.; Giordani, S. Molecular switches as photocontrollable “smart” receptors. Chem. Soc. Rev. 2012, 41, 4010–4029. [Google Scholar] [CrossRef]
- Sun, L.; Diaz-Fernandez, Y.A.; Gschneidtner, T.A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411. [Google Scholar] [CrossRef]
- Rajeshirke, M.; Sekar, N. Multi-stimuli responsive emissive NLOphoric colorants—A recent trend in research. Dyes Pigms. 2019, 163, 675–683. [Google Scholar] [CrossRef]
- Chandler, H.J.; Stefanou, M.; Campbell, E.E.B.; Schaub, R. Li@C60 as a multi-state molecular switch. Nat. Commun. 2019, 10, 2283. [Google Scholar] [CrossRef]
- Beaujean, P.; Sanguinet, L.; Rodriguez, V.; Castet, F.; Champagne, B. Multi-State second-order nonlinear optical switches incorporating one to three benzazolo-oxazolidine units: A quantum chemistry investigation. Molecules 2022, 27, 2770. [Google Scholar] [CrossRef]
- Castet, F.; Rodriguez, V.; Pozzo, J.L.; Ducasse, L.; Plaquet, A.; Champagne, B. Design and characterization of molecular nonlinear optical switches. Acc. Chem. Res. 2013, 46, 2656–2665. [Google Scholar] [CrossRef] [PubMed]
- Coe, B.J. Molecular materials possessing switchable quadratic nonlinear optical properties. Chem. Eur. J. 1999, 5, 2464–2471. [Google Scholar] [CrossRef]
- Delaire, J.A.; Nakatani, K. Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev. 2000, 100, 1817–1846. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yi, X.; Shang, J.; Liu, G.; Li, R.W. Organic and hybrid resistive switching materials and devices. Chem. Soc. Rev. 2019, 48, 1531–1565. [Google Scholar] [CrossRef]
- Nakano, M.; Champagne, B. Nonlinear optical properties in open-shell molecular systems. WIREs Comput. Mol. Sci. 2016, 6, 198–210. [Google Scholar] [CrossRef]
- Castet, F.; Tonnelé, C.; Muccioli, L.; Champagne, B. Predicting the second-order nonlinear optical responses of organic materials: The role of dynamics. Acc. Chem. Res. 2022, 55, 3716–3726. [Google Scholar] [CrossRef]
- Hassan, A.U.; Mohyuddin, A.; Güleryüz, C.; Nadeem, S.; Nkungli, N.K.; Hassan, S.U.; Javed, M. Novel pull–push organic switches with D–π–A structural designs: Computational design of star shape organic materials. Struct. Chem. 2023, 34, 399–412. [Google Scholar] [CrossRef]
- Avramopoulos, A.; Zaleśny, R.; Reis, H.; Papadopoulos, M.G. A computational strategy for the design of photochromic derivatives based on diarylethene and Nickel dithiolene with large contrast in nonlinear optical properties. J. Phys. Chem. C 2020, 124, 4221–4241. [Google Scholar] [CrossRef]
- Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 2018, 361, 360–365. [Google Scholar] [CrossRef]
- Green, J.D.; Fuemmeler, E.G.; Hele, T.J.H. Inverse molecular design from first principles: Tailoring organic chromophore spectra for optoelectronic applications. J. Chem. Phys. 2022, 156, 180901. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, J.L.; De Proft, F.; De Vleeschouwer, F. Tuning the HOMO–LUMO snergy gap of small diamondoids using inverse molecular design. J. Chem. Theory Comput. 2017, 13, 1351–1365. [Google Scholar] [CrossRef] [PubMed]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef]
- Pollice, R.; dos Passos Gomes, G.; Aldeghi, M.; Hickman, R.J.; Krenn, M.; Lavigne, C.; Lindner-D’Addario, M.; Nigam, A.; Ser, C.T.; Yao, Z.; et al. Data-driven strategies for accelerated materials design. Acc. Chem. Res. 2021, 54, 849–860. [Google Scholar] [CrossRef] [PubMed]
- De Vleeschouwer, F.; Geerlings, P.; De Proft, F. Molecular property optimizations with boundary conditions through the best first search scheme. ChemPhysChem 2016, 17, 1414–1424. [Google Scholar] [CrossRef]
- Teunissen, J.L.; De Proft, F.; De Vleeschouwer, F. Acceleration of inverse molecular design by using predictive techniques. J. Chem. Inf. Model. 2019, 59, 2587–2599. [Google Scholar] [CrossRef]
- Alonso, M.; Geerlings, P.; De Proft, F. Viability of Möbius topologies in [26]- and [28]hexaphyrins. Chem. Eur. J. 2012, 18, 10916–10928. [Google Scholar] [CrossRef]
- Woller, T.; Geerlings, P.; De Proft, F.; Champagne, B.; Alonso, M. Fingerprint of aromaticity and molecular topology on the photophysical properties of octaphyrins. J. Phys. Chem. C 2019, 123, 7318–7335. [Google Scholar] [CrossRef]
- Yu, D.; Rong, C.; Lu, T.; Geerlings, P.; De Proft, F.; Alonso, M.; Liu, S. Switching between Hückel and Möbius aromaticity: A density functional theory and information-theoretic approach study. Phys. Chem. Chem. Phys. 2020, 22, 4715–4730. [Google Scholar] [CrossRef]
- Stuyver, T.; Perrin, M.; Geerlings, P.; De Proft, F.; Alonso, M. Conductance switching in expanded porphyrins through aromaticity and topology changes. J. Am. Chem. Soc. 2018, 140, 1313–1326. [Google Scholar] [CrossRef]
- Torrent-Sucarrat, M.; Navarro, S.; Marcos, E.; Anglada, J.M.; Luis, J.M. Design of Hückel–Möbius topological switches with high nonlinear optical properties. J. Phys. Chem. C 2017, 121, 19348–19357. [Google Scholar] [CrossRef]
- Tanaka, T.; Osuka, A. Chemistry of Meso-Aryl Expand. Porphyrins: Aromat. Mol. Twist. Chem. Rev. 2016, 117, 2584–2640. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.M.; Oh, J.; Cha, W.Y.; Kim, W.; Lim, J.M.; Yoon, M.C.; Kim, D. Control and switching of aromaticity in various all-aza-expanded porphyrins: Spectroscopic and theoretical analyses. Chem. Rev. 2017, 117, 2257–2312. [Google Scholar] [CrossRef]
- Casademont-Reig, I.; Woller, T.; García, V.; Contreras-García, J.; Tiznado, W.; Torrent-Sucarrat, M.; Matito, E.; Alonso, M. Quest for the most aromatic pathway in charged expanded porphyrins. Chem. Eur. J. 2023, 29, e202202264. [Google Scholar] [CrossRef] [PubMed]
- Bettens, T.; Hoffmann, M.; Alonso, M.; Geerlings, P.; Dreuw, A.; De Proft, F. Mechanochemically triggered topology changes in expanded porphyrins. Chem. Eur. J. 2021, 27, 3397–3406. [Google Scholar] [CrossRef]
- Desmedt, E.; Woller, T.; Teunissen, J.L.; De Vleeschouwer, F.; Alonso, M. Fine-tuning of nonlinear optical contrasts of hexaphyrin-based molecular switches using inverse design. Front. Chem. 2021, 9, 786036. [Google Scholar] [CrossRef]
- Desmedt, E.; Smets, D.; Woller, T.; Alonso, M.; De Vleeschouwer, F. Designing hexaphyrins for high-potential NLO switches: The synergy of core-modifications and Meso-Substitutions. Phys. Chem. Chem. Phys. 2023, 25, 17128–17142. [Google Scholar] [CrossRef]
- Pearl, J.; Korf, R.E. Search techniques. Ann. Rev. Comp. Sci. 1987, 2, 451–467. [Google Scholar] [CrossRef]
- Gordon, D.B.; Mayo, S.L. Branch-and-terminate: A combinatorial optimization algorithm for protein design. Structure 1999, 7, 1089–1098. [Google Scholar] [CrossRef]
- Dechter, R.; Pearl, J. Generalized best-first search strategies and the optimality of A*. J. Assoc. Comput. Mach. 1985, 32, 505–536. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: New York, NY, USA, 1998. [Google Scholar]
- David, E. Goldberg, Kalyanmoy Deb, J.H.C. Genetic algorithms, noise, and the sizing of populations. Complex Syst. 1992, 6, 333–362. [Google Scholar]
- Strasser, S.; Goodman, R.; Sheppard, J.; Butcher, S. A new discrete particle swarm optimization algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO ’16, Denver, CO, USA, 20–24 July 2016. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: New York, NY, USA, 2005. [Google Scholar]
- Häse, F.; Roch, L.M.; Kreisbeck, S.; Aspuru-Guzik, A. Phoenics: A Bayesian optimizer for chemistry. ACS Cent. Sci. 2018, 4, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Verbiest, T.; Clays, K.; Rodriguez, V. Second-Order Nonlinear Optical Characterization Techniques: An Introduction; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Clays, K.; Persoons, A. Hyper-rayleigh scattering in solution. Phys. Rev. Lett. 1991, 66, 2980–2983. [Google Scholar] [CrossRef]
- Hendrickx, E.; Clays, K.; Persoons, A. Hyper-Rayleigh scattering in isotropic solution. Acc. Chem. Res. 1998, 31, 675–683. [Google Scholar] [CrossRef]
- Ambhore, M.D.; Basavarajappa, A.; Anand, V.G. A wide-range of redox states of core-modified expanded porphyrinoids. Chem. Commun. 2019, 55, 6763–6766. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 16 Revision A.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Yanai, T.; Tew, D.; Handy, N. A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Hehre, W.J.; Radom, L.; Schleyer, P.v.R.; Pople, J.A. Ab Initio Molecular Orbital Theory; Wiley: Hoboken, NJ, USA, 1986. [Google Scholar]
- Torrent-Sucarrat, M.; Navarro, S.; Cossío, F.; Anglada, J.; Luis, J. Relevance of the DFT method to study expanded porphyrins with different topologies. J. Comput. Chem. 2017, 38, 2819–2828. [Google Scholar] [CrossRef]
- Woller, T.; Banerjee, A.; Sylvetsky, N.; Santra, G.; Deraet, X.; De Proft, F.; Martin, J.; Alonso, M. Performance of electronic structure methods for the description of Hückel–Möbius interconversions in extended π-systems. J. Phys. Chem. A 2020, 124, 2380–2397. [Google Scholar] [CrossRef]
- Sylvetsky, N.; Banerjee, A.; Alonso, M.; Martin, J. Performance of localized coupled cluster methods in a moderately strong correlation regime: Hückel–Möbius interconversions in expanded porphyrins. J. Chem. Theory Comput. 2020, 16, 3641–3653. [Google Scholar] [CrossRef]
- Torrent-Sucarrat, M.; Anglada, J.; Luis, J. Evaluation of the nonlinear optical properties for an expanded porphyrin Hückel-Möbius aromaticity switch. J. Chem. Phys. 2012, 137, 184306. [Google Scholar] [CrossRef]
- Torrent-Sucarrat, M.; Anglada, J.; Luis, J. Evaluation of the nonlinear optical properties for annulenes with Hückel and Möbius topologies. J. Chem. Theory Comput. 2011, 7, 3935–3943. [Google Scholar] [CrossRef] [PubMed]
- Plaquet, A.; Guillaume, M.; Champagne, B.; Castet, F.; Ducasse, L.; Pozzo, J.; Rodriguez, V. In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches. Phys. Chem. Chem. Phys. 2008, 10, 6223–6232. [Google Scholar] [CrossRef] [PubMed]
- Wergifosse, M.; Champagne, B. Electron correlation effects on the first hyperpolarizability of push–pull π-conjugated systems. J. Chem. Phys. 2011, 134, 074113. [Google Scholar] [CrossRef] [PubMed]
- Lescos, L.; Sitkiewicz, S.; Beaujean, P.; Blanchard-Desce, M.; Champagne, B.; Matito, E.; Castet, F. Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines. Phys. Chem. Chem. Phys. 2020, 22, 16579–16594. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, J. Inverse Molecular Design: Optimization and Application of Combinatorial and Stochastic Approaches; Vrije Universteit Brussel: Ixelles, Belgium, 2019. [Google Scholar]
- Teunissen, J. CINDES. GitHub Repository. Available online: https://gitlab.com/jlteunissen/CINDES (accessed on 1 October 2023).
- RDKit: Open-Source Cheminformatics. Software. Available online: http://www.rdkit.org (accessed on 7 September 2023).
- Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef]
- Cihan Sorkun, M.; Mullaj, D.; Koelman, J.; Er, S. ChemPlot, a python library for chemical space visualization. Chem. Methods 2022, 2, e202200005. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing high-dimensional data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Step | X | Y | R | R | R | Contrast (a.u.) | %B | %(B-P) | %(CB) |
---|---|---|---|---|---|---|---|---|---|
Parent | NH | NH | H | H | H | 2.09 × 10 | 3 | 0 | - |
1 | NH | NH | NH | H | H | 1.32 × 10 | 22 | 19 | 100 |
NH | NH | H | CN | H | 5.73 × 10 | 10 | 6 | 33 | |
NH | NH | H | H | NH | 1.09 × 10 | 18 | 15 | 80 | |
2 | NH | NH | NH | CN | H | 2.53 × 10 | 42 | 40 | 89 |
NH | NH | NH | H | NH | 2.83 × 10 | 47 | 45 | 100 | |
3 | NH | NH | NH | CN | NH | 5.99 × 10 | 100 | 100 | 100 |
Step | X | Y | R | R | R | contrast (a.u.) | Contrast (a.u.) | Function (a.u.) | %B | %(B-P) | %(CB) |
---|---|---|---|---|---|---|---|---|---|---|---|
Parent | NH | NH | H | H | H | 2.09 × 10 | 2.18 × 10 | 2.04 × 10 | 14 | 0 | - |
1 | NH | S | H | H | H | 1.36 × 10 | 2.01 × 10 | 1.15 × 10 | 8 | −7 | −74 |
NH | NH | NO | H | H | 9.52 × 10 | 3.47 × 10 | 3.00 × 10 | 2 | −13 | −144 | |
NH | NH | H | CN | H | 5.73 × 10 | 3.88 × 10 | 3.25 × 10 | 22 | 9 | 100 | |
NH | NH | H | H | NH | 1.94 × 10 | 3.49 × 10 | 2.30 × 10 | 15 | 2 | 22 | |
2 | NH | S | H | CN | H | 3.87 × 10 | 1.35 × 10 | 3.75 × 10 | 25 | 13 | 75 |
NH | NH | NO | CN | H | 1.35 × 10 | 4.31 × 10 | 1.57 × 10 | 10 | −4 | −21 | |
NH | NH | H | CN | NH | 2.47 × 10 | 6.76 × 10 | 4.31 × 10 | 29 | 17 | 100 | |
3 | NH | S | H | CN | NH | 2.04 × 10 | 6.94 × 10 | 4.65 × 10 | 31 | 20 | 100 |
NH | NH | NO | CN | NH | 1.68 × 10 | 3.77 × 10 | 4.17 × 10 | 28 | 16 | 82 | |
4 | NH | S | NO | CN | NH | 2.09 × 10 | 1.67 × 10 | 1.50 × 10 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desmedt, E.; Serrano Gimenez, L.; De Vleeschouwer, F.; Alonso, M. Application of Inverse Design Approaches to the Discovery of Nonlinear Optical Switches. Molecules 2023, 28, 7371. https://doi.org/10.3390/molecules28217371
Desmedt E, Serrano Gimenez L, De Vleeschouwer F, Alonso M. Application of Inverse Design Approaches to the Discovery of Nonlinear Optical Switches. Molecules. 2023; 28(21):7371. https://doi.org/10.3390/molecules28217371
Chicago/Turabian StyleDesmedt, Eline, Léa Serrano Gimenez, Freija De Vleeschouwer, and Mercedes Alonso. 2023. "Application of Inverse Design Approaches to the Discovery of Nonlinear Optical Switches" Molecules 28, no. 21: 7371. https://doi.org/10.3390/molecules28217371
APA StyleDesmedt, E., Serrano Gimenez, L., De Vleeschouwer, F., & Alonso, M. (2023). Application of Inverse Design Approaches to the Discovery of Nonlinear Optical Switches. Molecules, 28(21), 7371. https://doi.org/10.3390/molecules28217371