ZIF-67-Derived Co/N-Doped Carbon-Functionalized MXene for Enhanced Electrochemical Sensing of Carbendazim
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. EIS Characterization
2.3. Electrochemical Behavior of CBZ at the Modified Electrodes
2.4. Optimization of Analytical Conditions
2.4.1. Effect of the Ratio of MXene and Co/NC
2.4.2. Effect of the Volume of MXene@Co/NC on GCE
2.4.3. Effect of Accumulation Time
2.4.4. Effect of pH
2.5. Kinetics Studies
2.6. Detection of CBZ at MXene@Co/NC/GCE
2.7. Interferences, Reproducibility, Repeatability, and Long-Term Stability of MXene@Co/NC/GCE
2.8. Real Sample Analysis
3. Materials and Methods
3.1. Reagents
3.2. Apparatuses
3.3. Preparation of the Co/NC
3.4. Preparation of the MXene@Co/NC Composite
3.5. Fabrication of Modified Electrodes
3.6. Electrochemical Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kokulnathan, T.; Wang, T.J.; Ahmed, F.; Arshi, N. Fabrication of flower-like nickel cobalt-layered double hydroxide for electrochemical detection of carbendazim. Surf. Interfaces 2023, 36, 102570. [Google Scholar] [CrossRef]
- Yang, Y.; Huo, D.; Wu, H.; Wang, X.; Yang, J.; Bian, M.; Ma, Y.; Hou, C.N. P-doped carbon quantum dots as a fluorescent sensing platform for carbendazim detection based on fluorescence resonance energy transfer. Sens. Actuators B Chem. 2018, 274, 296–303. [Google Scholar] [CrossRef]
- Krishnapandi, A.; Babulal, S.M.; Chen, S.M.; Palanisamy, S.; Kim, S.C.; Chiesa, M. Surface etched carbon nanofiber companied ytterbium oxide for pinch level detection of fungicides carbendazim. J. Environ. Chem. Eng. 2023, 11, 109059. [Google Scholar] [CrossRef]
- Wei, X.; Song, W.; Fan, Y.; Sun, Y.; Li, Z.; Chen, S.; Xu, X. A SERS aptasensor based on a flexible substrate for interference-free detection of carbendazim in apple. Food Chem. 2023, 431, 137120. [Google Scholar] [CrossRef]
- Luong, H.N.; Nguyen, N.M.; Tran, C.K.; Nguyen, T.T.; Nguyen, N.P.; Huynh, T.M.H.; Dang, V.Q. Detection of carbendazim by utilizing multi-shaped Ag NPs decorated ZnO NRs on patterned stretchable substrate through surface-enhanced Raman scattering effect. Sens. Actuators A 2022, 346, 113816. [Google Scholar] [CrossRef]
- Zheng, D.; Hu, X.; Fu, X.; Xia, Z.; Zhou, Y.; Peng, L.; Peng, X. Flowerlike Ni–NiO composite as magnetic solid-phase extraction sorbent for analysis of carbendazim and thiabendazole in edible vegetable oils by liquid chromatography-mass spectrometry. Food Chem. 2022, 374, 131761. [Google Scholar] [CrossRef]
- İlktaç, R.; Aksuner, N.; Henden, E. Selective and sensitive fluorimetric determination of carbendazim in apple and orange after preconcentration with magnetite-molecularly imprinted polymer. Spectrochim. Acta Part A 2017, 174, 86–93. [Google Scholar] [CrossRef]
- Priya, T.S.; Nataraj, N.; Chen, T.W.; Chen, S.M.; Kokulnathan, T. Synergistic formation of samarium oxide/graphene nanocomposite: A functional electrocatalyst for carbendazim detection. Chemosphere 2022, 307, 135711. [Google Scholar] [CrossRef]
- Mariyappan, V.; Sundaresan, R.; Chen, S.M.; Ramachandran, R. Ultrasensitive electrochemical sensor for the detection of carbamazepine based on gadolinium vanadate nanostructure decorated functionalized carbon nanofiber nanocomposite. Chemosphere 2022, 307, 135803. [Google Scholar] [CrossRef]
- Cui, R.; Xu, D.; Xie, X.; Yi, Y.; Quan, Y.; Zhou, M.; Zhang, G. Phosphorus-doped helical carbon nanofibers as enhanced sensing platform for electrochemical detection of carbendazim. Food Chem. 2017, 221, 457–463. [Google Scholar] [CrossRef]
- Sundaresan, P.; Fu, C.C.; Liu, S.H.; Juang, R.S. Facile synthesis of chitosan-carbon nanofiber composite supported copper nanoparticles for electrochemical sensing of carbendazim. Colloids Surf. A 2021, 625, 126934. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Li, B.; Wang, M.; Zhao, H.; Zhao, F. Electrochemical Sensor Based on Laser-Induced Graphene for Carbendazim Detection in Water. Foods 2023, 12, 2277. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, S.; Bai, X.; Shan, J. Bimetallic CoCu nanoparticles anchored on COF/SWCNT for electrochemical detection of carbendazim. Sci. Total Environ. 2023, 902, 166530. [Google Scholar] [CrossRef] [PubMed]
- Rhouati, A.; Berkani, M.; Vasseghian, Y.; Golzadeh, N. MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review. Chemosphere 2022, 291, 132921. [Google Scholar] [CrossRef]
- Sinha, A.; Zhao, H.; Huang, Y.; Lu, X.; Chen, J.; Jain, R. MXene: An emerging material for sensing and biosensing. TrAC Trends Anal. Chem. 2018, 105, 424–435. [Google Scholar] [CrossRef]
- Shankar, S.S.; Shereema, R.M.; Rakhi, R.B. Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes. ACS Appl. Mater. Interfaces 2018, 10, 43343–43351. [Google Scholar] [CrossRef]
- Lei, L.; Li, C.; Huang, W.; Wu, K. Simultaneous detection of 4-chlorophenol and 4-nitrophenol using a Ti3C2Tx MXene based electrochemical sensor. Analyst 2021, 146, 7593–7600. [Google Scholar] [CrossRef]
- Rajendran, J.; Kannan, T.S.; Dhanasekaran, L.S.; Murugan, P.; Atchudan, R.; ALOthman, Z.A.; Ouladsmane, M.; Sundramoorthy, A.K. Preparation of 2D Graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products. Chemosphere 2022, 287, 132106. [Google Scholar] [CrossRef]
- Feng, X.; Han, G.; Cai, J.; Wang, X. Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite. J. Colloid Interface Sci. 2022, 607, 1313–1322. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Dhanjai, S.A.; Li, Y.; Shen, Y.; Huang, Y. An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim. Acta 2020, 187, 402. [Google Scholar] [CrossRef]
- Hu, W.; Wang, S.; Jiang, C.; Zheng, M.; Bai, Z.; Srivastava, D.; Liu, J. Recent advances of sonodynamic therapy by MOFs-based platforms for biomedical applications. Dye. Pigm. 2023, 219, 111596. [Google Scholar] [CrossRef]
- Zhong, Y.; Peng, Z.; Peng, Y.; Li, B.; Pan, Y.; Ouyang, Q.; Liu, J. Construction of Fe-doped ZIF-8/DOX nanocomposites for ferroptosis strategy in the treatment of breast cancer. J. Mater. Chem. B 2023, 11, 6335–6345. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, M.; Lin, M.; Lu, C.; Kumar, A.; Pan, Y.; Peng, Y. Current and promising applications of Hf (IV)-based MOFs in clinical cancer therapy. J. Mater. Chem. B 2023, 11, 5693–5714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, C.; Chen, Y.; Li, S.; Li, F.; Wu, X.; Wang, Y. MIL-101 (Cr) molecular cage anchored on 2D Ti3C2TX MXene nanosheets as high-performance electrochemical sensing platform for detection of xanthine. Microchim. Acta 2023, 190, 267. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Wu, M.; Ma, G.; Motlak, M.; Mahdi, A. Novel electrochemical strategy for determination of anticancer drug flutamide based on MXene/MOF composite. Inorg. Chem. Commun. 2023, 155, 111061. [Google Scholar] [CrossRef]
- Liu, D.; Gu, W.; Zhou, L.; Wang, L.; Zhang, J.; Liu, Y.; Lei, J. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem. Eng. J. 2022, 427, 131503. [Google Scholar] [CrossRef]
- Hira, S.A.; Nagappan, S.; Yusuf, M.; Chen, A.; Lee, J.M.; Park, K.H. L-Cysteine anchored Co-MOF derived cobalt-nitrogen-carbon hierarchical architecture as an efficient sensor for the electrochemical detection of catecholamine. Microchem. J. 2023, 190, 108748. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, X.; Zhao, P.; Zheng, J.; Yang, M.; Huo, D.; Hou, C. ZIF-67 MOF-derived Co nanoparticles supported on N-doped carbon skeletons for the amperometric determination of hydrogen peroxide. Microchim. Acta. 2021, 188, 383. [Google Scholar] [CrossRef]
- Wang, K.; Wu, C.; Wang, F.; Jiang, G. MOF-derived CoP X nanoparticles embedded in nitrogen-doped porous carbon polyhedrons for nanomolar sensing of p-nitrophenol. ACS Appl. Nano Mater. 2018, 1, 5843–5853. [Google Scholar] [CrossRef]
- Liu, H.; Qin, J.; Mu, J.; Liu, B. In situ interface engineered Co/NC derived from ZIF-67 as an efficient electrocatalyst for nitrate reduction to ammonia. J. Colloid Interface Sci. 2023, 636, 134–140. [Google Scholar] [CrossRef]
- Ma, D.; Li, Z.; Zhu, J.; Zhou, Y.; Chen, L.; Mai, X.; Li, Y. Inverse and highly selective separation of CO2/C2H2 on a thulium–organic framework. J. Mater. Chem. A 2020, 8, 11933–11937. [Google Scholar] [CrossRef]
- Sun, T.; Zang, W.; Yan, H.; Li, J.; Zhang, Z.; Bu, Y.; Su, C. Engineering the coordination environment of single cobalt atoms for efficient oxygen reduction and hydrogen evolution reactions. ACS Catal. 2021, 11, 4498–4509. [Google Scholar] [CrossRef]
- Yao, C.; Xu, C.Q.; Park, I.H.; Zhao, M.; Zhu, Z.; Li, J.; Lu, J. Giant Emission Enhancement of Solid-State Gold Nanoclusters by Surface Engineering. Angew. Chem. Int. Ed. 2020, 59, 8270–8276. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Mak, C.H.; Zhang, J.; Jia, G.; Cheng, K.C.; Song, H.; Hsu, H.Y. Unravelling the Interfacial Dynamics of Bandgap Funneling in Bismuth-Based Halide Perovskites. Adv. Mater. 2023, 35, 2207835. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E.J.; Wain, A.J. The Butler-Volmer equation in electrochemical theory: Origins, value, and practical application. J. Electroanal. Chem. 2020, 872, 114145. [Google Scholar] [CrossRef]
- Committee, A.M. Committee, Recommendations for the definition, estimation and use of the detection limit. Analyst 1987, 112, 199–204. [Google Scholar] [CrossRef]
- Armbruster, D.A.; Tillman, M.D.; Hubbs, L.M. Limit of detection (LQD)/limit of quantitation (LOQ): Comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clin. Chem. 1994, 40, 1233–1238. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Y.P.; Wang, A.J.; Weng, X.; Feng, J.J. Simple pyrolysis of graphene-wrapped PtNi nanoparticles supported on hierarchically N-doped porous carbon for sensitive detection of carbendazim. Microchim. Acta 2023, 190, 211. [Google Scholar] [CrossRef]
- Liao, X.; Luo, X.; Li, Y.; Zhou, Y.; Liang, Q.; Feng, K.; Xiong, J. An antifouling electrochemical sensor based on multiwalled carbon nanotubes functionalized black phosphorus for highly sensitive detection of carbendazim and corresponding response mechanisms analyses. Microchem. J. 2023, 190, 108671. [Google Scholar] [CrossRef]
- Lai, H.; Ming, P.; Liu, Y.; Wang, S.; Zhou, Q.; Zhai, H. MWCNTs and ZnO-based Ce-MOF nanocomposites as enhanced sensing platform for electrochemical detection of carbendazim in Chinese traditional herbs samples. Microchim. Acta 2023, 190, 281. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Gao, X.; Lin, J.; Zhao, F.; Zeng, B. Sensitive dual-mode detection of carbendazim by molecularly imprinted electrochemical sensor based on biomass-derived carbon-loaded gold nanoparticles. Microchim. Acta 2023, 190, 236. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Li, B.; Chen, X.; Gao, Y.; Kuang, X. Electrochemical Determination of Carbendazim Based on In2S3 nanotubes. ChemNanoMat 2023, 9, e202200522. [Google Scholar] [CrossRef]
Modified Electrodes | Liner Range (μM) | LOD (nM) | Methods | Reference |
---|---|---|---|---|
LIG/Pt | 1–40 | 670 | DPV | [12] |
G-PtNi/3D-NPC | 0.5–30 | 0.04 | DPV | [38] |
MWCNTs-COOH/BP | 0.009–1 | 4.0 | DPV | [39] |
Ce-MOFs@MWCNTs@ ZnO/GCE | 0.05–10 and 10–50 | 13.2 | DPV | [40] |
AuNPs/BC/GCE | 0.01–900 | 4.4 | DPV | [41] |
In2S3/GCE | 5–80 | 670 | DPV | [42] |
MXene@Co/NC/GCE | 0.01–45 | 3.3 | DPV | This work |
Samples | Added (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 0.000 | - | - | - |
2 | 1.000 | 0.980 ± 0.026 | 97.95 | 2.17 |
3 | 5.000 | 5.083 ± 0.138 | 101.60 | 2.22 |
4 | 20.000 | 19.840 ± 0.539 | 99.20 | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zou, J.; Pan, X.; Zeng, S.; Liu, Y.; Ye, J.; Lu, L.; Yang, S.; Zhan, G. ZIF-67-Derived Co/N-Doped Carbon-Functionalized MXene for Enhanced Electrochemical Sensing of Carbendazim. Molecules 2023, 28, 7347. https://doi.org/10.3390/molecules28217347
Chen S, Zou J, Pan X, Zeng S, Liu Y, Ye J, Lu L, Yang S, Zhan G. ZIF-67-Derived Co/N-Doped Carbon-Functionalized MXene for Enhanced Electrochemical Sensing of Carbendazim. Molecules. 2023; 28(21):7347. https://doi.org/10.3390/molecules28217347
Chicago/Turabian StyleChen, Shuxian, Jiamin Zou, Xiaowei Pan, Shaodong Zeng, Yuanjing Liu, Jianzhi Ye, Limin Lu, Shu Yang, and Guoyan Zhan. 2023. "ZIF-67-Derived Co/N-Doped Carbon-Functionalized MXene for Enhanced Electrochemical Sensing of Carbendazim" Molecules 28, no. 21: 7347. https://doi.org/10.3390/molecules28217347
APA StyleChen, S., Zou, J., Pan, X., Zeng, S., Liu, Y., Ye, J., Lu, L., Yang, S., & Zhan, G. (2023). ZIF-67-Derived Co/N-Doped Carbon-Functionalized MXene for Enhanced Electrochemical Sensing of Carbendazim. Molecules, 28(21), 7347. https://doi.org/10.3390/molecules28217347