Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in Camellia oleifera Petals with Different Color
Abstract
:1. Introduction
2. Results
2.1. Analysis of Metabolite Profiling in C. oleifera Petals with Different Color
2.2. PCA and OPLS-DA of the Three C. oleifera Petals with Different Colors
2.3. Differential Accumulation Metabolites of Volatile Organic Compounds Analysis of C. oleifera Petals
2.3.1. Differentially Accumulated Metabolites of Volatile Organic Compounds
2.3.2. Crucial Differential VOCs Related to C. oleifera Petals Aroma
2.4. Differential Flavonoid Compounds Analysis of C. oleifera Petals
2.4.1. Differentially Accumulated Metabolites of Flavonoid Compounds
2.4.2. Crucial Differential Compounds Related to C. oleifera Petals Color
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. UPLC-MS/MS Analysis
4.2.1. Petal Preparation and Extraction
4.2.2. UPLC–MS/MS Conditions
4.3. HS–SPME–GC–MS Analysis
4.3.1. Petal Sample Preparation and Treatment
4.3.2. GC–MS Conditions
4.4. Qualitative and Quantitative Analyses of Metabolites
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Xin, T.; de Riek, J.; Guo, H.; Jarvis, D.; Ma, L.; Long, C. Impact of traditional culture on Camellia reticulata in Yunnan, China. J. Ethnobiol. Ethnomed. 2015, 11, 74. [Google Scholar] [CrossRef]
- Yu, X.; Xiao, J.; Chen, S.; Yu, Y.; Ma, J.; Lin, Y.; Li, R.; Lin, J.; Fu, Z.; Zhou, Q.; et al. Metabolite signatures of diverse Camellia sinensis tea populations. Nat. Commun. 2020, 11, 5586. [Google Scholar] [CrossRef] [PubMed]
- Geng, F.; Nie, R.; Yang, N.; Cai, L.; Hu, Y.; Chen, S.; Cheng, X.; Wang, Z.; Chen, L. Integrated transcriptome and metabolome profiling of Camellia reticulata reveal mechanisms of flower color differentiation. Front. Genet. 2022, 13, 1059717. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Kan, Z.-P.; Wan, X.-C.; McGinley, J.-N.; Thompson, H.-J. Differences in chemical composition predictive of in vitro biological activity among commercially important cultivars of genus Camellia. Food Chem. 2019, 297, 124950. [Google Scholar] [CrossRef]
- Jun-ichiro, H.; Kazutoshi, S.; Tomoko, I.; Yurica, S.; Arisa, W.; Chie, T.; Fumina, O.; Tetsuya, S.; Jun, I.; Akihiko, K.; et al. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars. Planta 2016, 243, 959–972. [Google Scholar]
- Xiang, Z.-Y.; Xia, C.; Feng, S.-L.; Chen, T.; Zhou, L.-J.; Liu, L.; Kong, Q.-B.; Yang, H.-Y.; Ding, C.-B. Assessment of free and bound phenolics in the flowers and floral organs of two Camellia species flower and their antioxidant activities. Food Biosci. 2022, 49, 101905. [Google Scholar] [CrossRef]
- Fu, M.; Yang, X.; Zheng, J.; Wang, L.; Yang, X.; Tu, Y.; Ye, J.; Zhang, W.; Liao, Y.; Cheng, S.; et al. Unraveling the regulatory mechanism of color diversity in Camellia japonica petals by integrative transcriptome and metabolome analysis. Front. Plant Sci. 2021, 12, 685136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Tao, J. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.-T.; Zheng, T.; Li, Y.; Chen, Q.; Xue, Y.; Tang, Q.; Xu, H.; Chen, M.-J. Characterization variation of the differential coloring substances in rapeseed petals with different colors using UPLC-HESI-MS/MS. Molecules 2023, 28, 5670. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, Y.; Long, T.; Wang, S.; Yang, J. Regulation mechanism of plant pigments biosynthesis: Anthocyanins, carotenoids, and betalains. Metabolites 2022, 12, 871. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Huang, L.-J.; Yu, P.-Y.; Chen, J.-L.; Du, S.-X.; Qin, G.-N.; Zhang, L.; Li, N.; Yuan, D.-Y. Development of a protoplast isolation system for functional gene expression and characterization using petals of Camellia oleifera. Plant Physiol. Bioch. 2023, 201, 107885. [Google Scholar]
- Liu, W.; Yu, S.; Feng, Y.; Mo, R.; Wang, K.; Fan, M.; Fan, Z.; Yin, H.; Li, J.; Li, X. Comparative transcriptome and pigment analyses reveal changes in gene expression associated with flavonol metabolism in yellow Camellia. Forests 2022, 13, 1094. [Google Scholar] [CrossRef]
- Post, P.C.; Schlautman, M.-A. Measuring Camellia petal color using a portable color sensor. Horticulturae 2020, 6, 53. [Google Scholar] [CrossRef]
- Caser, M.; Scariot, V. The contribution of volatile organic compounds (VOCs) emitted by petals and pollen to the scent of garden roses. Horticulturae 2022, 8, 409. [Google Scholar] [CrossRef]
- Fan, Z.; Li, J.; Li, X.; Yin, H. Composition analysis of floral scent within genus Camellia uncovers substantial interspecific variations. Sci. Hortic. 2019, 250, 207–213. [Google Scholar] [CrossRef]
- Ibrahim, M.; Agarwal, M.; Hardy, G.-E.-S.-J.; Ren, Y. Optimized methods to analyze rose plant volatile organic compounds by HS-SPME-GC-FID/MSD. J. Biosci. Med. 2017, 5, 13–31. [Google Scholar] [CrossRef]
- Muhlemann, J.; Klempien, A.; Dudareva, N. Floral volatiles: From biosynthesis to function. Plant Cell Environ. 2014, 37, 1936–1949. [Google Scholar] [CrossRef]
- Gan, X.-H.; Liang, Z.-Y.; Wang, D.-P.; Wang, R. Analysis of aroma components in flowers of three kinds of Camellia by HS-SPME/GC-MS. Food Sci. 2013, 34, 204–207. [Google Scholar]
- Fang, Z.-M.; Hu, X.-H.; Liu, C.-Q.; Huang, S.-X. A new method for quantitative analysis of flower scent of Siraitia grosvenorii. Guihaia 2018, 38, 1505–1511. [Google Scholar]
- Robin, J.; Poona, M.; Ashu, G. Biochemical attributes of tea flowers (Camellia sinensis) at different developmental stages in the Kangra region of India. Sci. Hortic. 2011, 130, 266–274. [Google Scholar]
- Qiu, J.-S.; Zhang, Y.-X.; Chen, J.-Y.; Tian, M.-J.; Xie, Z.-H.; Chen, X.-M. Study on the volatile components in flowers of 12 Camellia species. Forest Res. 2015, 28, 358–364. [Google Scholar]
- Ma, Y.; Liu, M.; Tan, T.; Yan, A.; Guo, L.; Jiang, K.; Tan, C.-H.; Wan, Y. Deep eutectic solvents used as extraction solvent for the determination of flavonoids from Camellia oleifera flowers by high-performance liquid chromatography. Phytochem. Anal. 2018, 29, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Chen, D.; Pan, Q.; Li, F.; Zhao, Z.; Ge, X.; Li, Z. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. Plant Biotechnol. J. 2018, 16, 367–380. [Google Scholar] [CrossRef]
- Mekapogu, M.; Vasamsetti, B.-M.-K.; Kwon, O.-K.; Ahn, M.-S.; Lim, S.-H.; Jung, J.-A. Anthocyanins in floral colors: Biosynthesis and regulation in Chrysanthemum flowers. Int. J. Mol. Sci. 2020, 21, 6537. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, M.; Nakatsuka, T. Genetic engineering of novel flower colors in floricultural plants: Recent advances via transgenic approaches. Methods Mol. Biol. 2010, 589, 325–347. [Google Scholar] [PubMed]
- Li, S.; Li, X.; Wang, X.; Chang, T.; Peng, Z.; Guan, C.; Guan, M. Flavonoid synthesis-related genes determine the color of flower petals in Brassica napus L. Int. J. Mol. Sci. 2023, 24, 6472. [Google Scholar] [CrossRef]
- Horiuchi, R.; Nishizaki, Y.; Okawa, N.; Ogino, A.; Sasaki, N. Identification of the biosynthetic pathway for anthocyanin triglucoside, the precursor of polyacylated anthocyanin, in Red cabbage. J. Agric. Food Chem. 2020, 68, 9750–9758. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.-E.; Azlan, A.; Tang, S.-T.; Lim, S.-M. Anthocyanidins and anthocyanins: Colored pigmentsas food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Jin, J.; Yang, X.; Zhou, W. Research progress of flavonoids on Rosa rugosa Thunb. J. Anhui Agric. Sci. 2019, 47, 14–17. [Google Scholar]
- Gong, H.-L.; Xu, J.; Tian, Z.; Chen, Q.-Q.; Bao, J.-T.; Yuan, H.-J. Preliminary study on the extraction and stability of red pigmentfrom kushui rose. Storage Proc. 2019, 19, 112–118. [Google Scholar]
- Zhang, L.; Xu, Z.-D.; Tang, T.-F. Analysis of anthocyanins related compounds and their biosynthesis pathways in Rosa rugosa ‘Zi zhi’ at blooming stages. Sci. Agric. Sin. 2015, 48, 2600–2611. [Google Scholar]
- Zhou, L.; Wang, Y.; Peng, Z.-H. Advances in study on formation mechanism and genetic engineering of yellow flowers. Sci. Silv. Sin. 2009, 45, 111–119. [Google Scholar]
- Wei, L.Q.; Chong, P.-F.; Bao, X.-G.; He, H.-L.; Li, Q.-Q. Metabolomics analysis of flower color substances in three Rose rugosa cultivars. Guihaia 2023, 1–15. [Google Scholar]
- Li, X.-L.; Wang, J.-T.; Sun, Z.-Y. Anthocyanin components and their relationship with flower colors in petals of Camellia japonica ‘Chidan’ and its bud mutation cultivars. Sci. Silv. Sin. 2019, 55, 19–26. [Google Scholar]
- Yi, D.-B.; Zhang, H.-N.; Lai, B.; Liu, L.-Q.; Pan, X.-L.; Ma, Z.-L.; Wang, Y.-C.; Xie, J.-H.; Shi, S.-Y.; Wei, Y.-Z. Integrative analysis of the coloring mechanism of red longan pericarp through metabolome and transcriptome analyses. J. Agric. Food Chem. 2021, 69, 1806–1815. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; Luo, L.; Pan, H.; Cheng, T.; Zhang, Q. Multiomics analysis reveals the mechanisms underlying the different floral colors and fragrances of Rosa hybrida cultivars. Plant Physiol. Bioch. 2023, 195, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yan, M.; Zheng, X.; Chen, Z.; Li, H.; Mao, J.; Qin, H.; Zhu, C.; Du, H.; Abd El-Aty, A.-M. Exploring the aroma fingerprint of various chinese pear cultivars through qualitative and quantitative analysis of volatile compounds using HS-SPME and GC×GC-TOFMS. Molecules 2023, 28, 4794. [Google Scholar] [CrossRef] [PubMed]
- Goliáš, J.; Balík, J.; Létal, J. Identification of volatiles formed in Asian pear cultivars subjected to short-term storage using multinomial logistic regression. J. Food Compos. Anal. 2021, 97, 103793. [Google Scholar] [CrossRef]
- Ding, X.-W.; Wang, Z.-Z.; Wang, Q.-G.; Jiang, H.-Y.; Chen, M.; Li, S.-F. Analysis of floral volatile components of in Paeonia delavayi with differrent colors. Southern Hortic. 2022, 33, 25–30. [Google Scholar]
- Ohashi, T.; Miyazawa, Y.; Ishizaki, S.; Kurobayashi, Y.; Saito, T. Identification of odor-active trace compounds in blooming flower of damask rose (Rosa damascena). J. Agric. Food Chem. 2019, 67, 7410–7415. [Google Scholar] [CrossRef] [PubMed]
- Joichi, A.; Yomogida, K.; Awano, K.-I.; Ueda, Y. Volatile components of tea-scented modern roses and ancient Chinese roses. Flavour Frag. J. 2005, 20, 152–157. [Google Scholar] [CrossRef]
- Liu, J.-H.; Yan, H.-J.; Yang, J.-H.; Jian, H.-Y.; Zhang, H.; Chen, M.; Tang, K.-X. Analysis of Volatile components from Rosa odorata complex by SPME-GC/MS. Southwest China J. Agric. Sci. 2018, 31, 587–591. [Google Scholar]
- Liu, B.-F.; Gao, F.-Z.; Fang, Q.; Wang, L. Determination of red freesia flower volatiles with indirect headspace solid phase microextraction coupled to gas chromatography and mass spectrometry. Chinese J. Anal. Chem. 2015, 44, 444–450. [Google Scholar]
- Zhang, M.; Huang, Y.-L.; Song, F.; Chen, W.-J.; Zhao, S.-L.; Deng, F.-M. SPME-GC/MS combined analysis of aroma components of Areca catechu. J. Trop. Agric. Sci. 2014, 35, 1244–1249. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Chen, M.; Zheng, T.; Tang, Q.; Xu, H. Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in Camellia oleifera Petals with Different Color. Molecules 2023, 28, 7248. https://doi.org/10.3390/molecules28217248
Zeng H, Chen M, Zheng T, Tang Q, Xu H. Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in Camellia oleifera Petals with Different Color. Molecules. 2023; 28(21):7248. https://doi.org/10.3390/molecules28217248
Chicago/Turabian StyleZeng, Haitao, Mengjiao Chen, Tao Zheng, Qi Tang, and Hao Xu. 2023. "Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in Camellia oleifera Petals with Different Color" Molecules 28, no. 21: 7248. https://doi.org/10.3390/molecules28217248
APA StyleZeng, H., Chen, M., Zheng, T., Tang, Q., & Xu, H. (2023). Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in Camellia oleifera Petals with Different Color. Molecules, 28(21), 7248. https://doi.org/10.3390/molecules28217248