The Advancement of Nanomaterials for the Detection of Hepatitis B Virus and Hepatitis C Virus
Abstract
:1. Introduction
2. Nanomaterials-Based Detection of HBV and HCV
2.1. Zero-Dimensional Nanomaterials
2.1.1. Nanoparticles Based Assays
2.1.2. Quantum-Dot-Based Assays
2.2. One-Dimensional Nanomaterials
2.2.1. Silicon Nanowire-Based Sensors
2.2.2. DNA Nanowires-Based Sensors
2.2.3. Carbon-Nanotube-Based Sensors
2.3. Two-Dimensional Nanomaterials
2.4. Combination of Different Nanomaterials
2.5. Application of Smart Phones and Machine Learning in HBV and HCV Detection
3. Other New Detection Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- World Health Organization. Global Hepatitis Report; World Health Organization: Geneva, Switzerland, 2017.
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Hepatitis B. Fact. Sheet 204, 2017. Available online: https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccine-standardization/hep-b (accessed on 1 April 2017).
- World Health Organization. Global Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections. 2021. Available online: https://apps.who.int/iris/bitstream/handle/10665/341412/9789240027077-eng.pdf (accessed on 15 July 2021).
- Nguyen, M.H.; Wong, G.; Gane, E.; Kao, J.H.; Dusheiko, G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef]
- McMahon, B.J. The natural history of chronic hepatitis B virus infection. Hepatology 2009, 49, S45–S55. [Google Scholar] [CrossRef]
- Yim, H.J.; Lok, A.S. Natural history of chronic hepatitis B virus infection: What we knew in 1981 and what we know in 2005. Hepatology 2006, 43, S173–S181. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef] [PubMed]
- Gupta, E.; Khodare, A.; Rani, N.; Singh, G.; Aggarwal, K.; Sharma, M. Performance evaluation of Xpert HBV viral load (VL) assay: Point-of-care molecular test to strengthen and decentralize management of chronic hepatitis B (CHB) infection. J. Virol. Methods 2021, 290, 114063. [Google Scholar] [CrossRef]
- Hassanpour, S.; Baradaran, B.; de la Guardia, M.; Baghbanzadeh, A.; Mosafer, J.; Hejazi, M.; Mokhtarzadeh, A.; Hasanzadeh, M. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: A review on recent advancements. Microchim. Acta 2018, 185, 568. [Google Scholar] [CrossRef]
- Shevtsov, M.; Zhao, L.; Protzer, U.; van de Klundert, M.A.A. Applicability of Metal Nanoparticles in the Detection and Monitoring of Hepatitis B Virus Infection. Viruses 2017, 9, 193. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, W.; Peng, W.; Zhao, Q.; Piao, J.; Zhang, B.; Wu, X.; Wang, H.; Gong, X.; Chang, J. Enhanced Fluorescence ELISA Based on HAT Triggering Fluorescence “Turn-on” with Enzyme-Antibody Dual Labeled AuNP Probes for Ultrasensitive Detection of AFP and HBsAg. ACS Appl. Mater. Interfaces 2017, 9, 9369–9377. [Google Scholar] [CrossRef]
- Chen, R.; Hu, Y.; Chen, M.; An, J.; Lyu, Y.; Liu, Y.; Li, D. Naked-Eye Detection of Hepatitis B Surface Antigen Using Gold Nanoparticles Aggregation and Catalase-Functionalized Polystyrene Nanospheres. ACS Omega 2021, 6, 9828–9833. [Google Scholar] [CrossRef]
- Mohammed, A.S.; Balapure, A.; Khaja, M.N.; Ganesan, R.; Dutta, J.R. Naked-eye colorimetric detection of HCV RNA mediated by a 5’ UTR-targeted antisense oligonucleotide and plasmonic gold nanoparticles. Analyst 2021, 146, 1569–1578. [Google Scholar] [CrossRef]
- Mohammed, A.S.; Balapure, A.; Khan, A.A.; Khaja, M.N.; Ganesan, R.; Dutta, J.R. Genotyping simplified: Rationally designed antisense oligonucleotide-mediated PCR amplification-free colorimetric sensing of viral RNA in HCV genotypes 1 and 3. Analyst 2021, 146, 4767–4774. [Google Scholar] [CrossRef] [PubMed]
- Shawky, S.M.; Guirgis, B.S.; Azzazy, H.M. Detection of unamplified HCV RNA in serum using a novel two metallic nanoparticle platform. Clin. Chem. Lab. Med. 2014, 52, 565–572. [Google Scholar] [CrossRef]
- Chen, C.C.; Lai, Z.L.; Wang, G.J.; Wu, C.Y. Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor. Biosens. Bioelectron. 2016, 77, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; He, X.; Ju, L.; Liu, X.; Li, F.; Cui, H. A label-free method for the detection of specific DNA sequences using gold nanoparticles bifunctionalized with a chemiluminescent reagent and a catalyst as signal reporters. Anal. Bioanal. Chem. 2016, 408, 8747–8754. [Google Scholar] [CrossRef]
- Xi, Z.; Gong, Q.; Wang, C.; Zheng, B. Highly sensitive chemiluminescent aptasensor for detecting HBV infection based on rapid magnetic separation and double-functionalized gold nanoparticles. Sci. Rep. 2018, 8, 9444. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Yang, H.; Gong, Y.; Liu, Z.; Li, X.; Wen, T.; Qu, Z.; Zhang, S.; Mei, Q.; Xu, F. Improved Analytical Sensitivity of Lateral Flow Assay using Sponge for HBV Nucleic Acid Detection. Sci. Rep. 2017, 7, 1360. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Cao, S.; Ma, G.; Ding, T.; Mu, J.; Han, W.; Sun, D.; Chen, C. Recombinant streptavidin fusion proteins as signal reporters in rapid test of human hepatitis C virus infection. J. Clin. Lab. Anal. 2019, 33, e22701. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.Q.; Ji, C.F.; Yang, X.Q.; Wang, R.; Yang, S.; Zhang, H.Q.; Zhang, J.G. An improved gold nanoparticle probe-based assay for HCV core antigen ultrasensitive detection. J. Virol. Methods 2017, 243, 142–145. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wang, H.; Fu, Q.; Peng, J.; Wang, Y.; Du, J.; Zhou, Y.; Zhan, L. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens. Bioelectron. 2010, 26, 404–410. [Google Scholar] [CrossRef]
- Lu, X.; Dong, X.; Zhang, K.; Han, X.; Fang, X.; Zhang, Y. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst 2013, 138, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, J.; Xu, G. Fast Synthesis of Cu2O Hollow Microspheres and Their Application in DNA Biosensor of Hepatitis B Virus. Cryst. Growth Des. 2009, 9, 633–638. [Google Scholar] [CrossRef]
- Delshadi, S.; Fratzl, M.; Ramel, O.; Bigotte, P.; Kauffmann, P.; Kirk, D.; Masse, V.; Brenier-Pinchart, M.P.; Fricker-Hidalgo, H.; Pelloux, H.; et al. Magnetically localized and wash-free fluorescence immunoassay (MLFIA): Proof of concept and clinical applications. Lab Chip 2023, 23, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Maroju, P.A.; Ganesan, R.; Dutta, J.R. Fluorescence-based simultaneous dual oligo sensing of HCV genotypes 1 and 3 using magnetite nanoparticles. J. Photochem. Photobiology. B Biol. 2022, 232, 112463. [Google Scholar] [CrossRef] [PubMed]
- Cha, B.H.; Lee, S.-M.; Park, J.C.; Hwang, K.S.; Kim, S.K.; Lee, Y.-S.; Ju, B.-K.; Kim, T.S. Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens. Bioelectron. 2009, 25, 130–135. [Google Scholar] [CrossRef]
- Ding, L.; Xiang, C.; Zhou, G. Silica nanoparticles coated by poly(acrylic acid) brushes via host-guest interactions for detecting DNA sequence of Hepatitis B virus. Talanta 2018, 181, 65–72. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, H.; Chen, J.; Han, H.; Ma, W. Simple and sensitive detection of HBsAg by using a quantum dots nanobeads based dot-blot immunoassay. Theranostics 2014, 4, 307–315. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, L.; Xiong, Y.; Leng, Y.; Wang, H.; Xiong, Y. Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B. Talanta 2018, 181, 258–264. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Liang, X.; Zhang, G.; Ma, H.; Nie, L.; Wang, Y. Detection of Hepatitis B Virus M204I Mutation by Quantum Dot-Labeled DNA Probe. Sensors 2017, 17, 961. [Google Scholar] [CrossRef]
- Huang, S.; Qiu, H.; Xiao, Q.; Huang, C.; Su, W.; Hu, B. A simple QD-FRET bioprobe for sensitive and specific detection of hepatitis B virus DNA. J. Fluoresc. 2013, 23, 1089–1098. [Google Scholar] [CrossRef]
- Xiang, Q.; Huang, J.; Huang, H.; Mao, W.; Ye, Z. A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv. 2018, 8, 1820–1825. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.K.; Shen, S.K.; Chiang, C.W.; Weng, Y.Y.; Lu, M.P.; Yang, Y.S. Silicon Nanowire Field-Effect Transistor as Label-Free Detection of Hepatitis B Virus Proteins with Opposite Net Charges. Biosensors 2021, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, A.A.; Lo Faro, M.J.; Petralia, S.; Fazio, B.; Musumeci, P.; Conoci, S.; Irrera, A.; Priolo, F. Ultrasensitive Label- and PCR-Free Genome Detection Based on Cooperative Hybridization of Silicon Nanowires Optical Biosensors. ACS Sens. 2018, 3, 1690–1697. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Dong, Z.; Yu, Y.; Zhou, A.; Zhao, X.; Zhang, J. Ultrasensitive electrochemical detection of hepatitis C virus core antigen using terminal deoxynucleotidyl transferase amplification coupled with DNA nanowires. Mikrochim. Acta 2021, 188, 285. [Google Scholar] [CrossRef]
- Cabral, D.G.; Lima, E.C.; Moura, P.; Dutra, R.F. A label-free electrochemical immunosensor for hepatitis B based on hyaluronic acid-carbon nanotube hybrid film. Talanta 2016, 148, 209–215. [Google Scholar] [CrossRef]
- Trindade, E.K.G.; Dutra, R.F. A label-free and reagentless immunoelectrode for antibodies against hepatitis B core antigen (anti-HBc) detection. Colloids Surf. B Biointerfaces 2018, 172, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Yaralı, E.; Erdem, A. Cobalt Phthalocyanine-Ionic Liquid Composite Modified Electrodes for the Voltammetric Detection of DNA Hybridization Related to Hepatitis B Virus. Micromachines 2021, 12, 753. [Google Scholar] [CrossRef]
- Chen, L.; Song, L.; Zhang, Y.; Wang, P.; Xiao, Z.; Guo, Y.; Cao, F. Nitrogen and Sulfur Codoped Reduced Graphene Oxide as a General Platform for Rapid and Sensitive Fluorescent Detection of Biological Species. ACS Appl. Mater. Interfaces 2016, 8, 11255–11261. [Google Scholar] [CrossRef]
- Ko, C.N.; Cheng, S.; Leung, C.H.; Ma, D.L. A Long-Lived Phosphorescence Amplification System Integrated with Graphene Oxide and a Stable Split G-Quadruplex Protector as an Isothermal “Off-On” Biosensor for the HBV Gene. ACS Appl. Bio. Mater. 2020, 3, 4556–4565. [Google Scholar] [CrossRef]
- Fan, J.; Yuan, L.; Liu, Q.; Tong, C.; Wang, W.; Xiao, F.; Liu, B.; Liu, X. An ultrasensitive and simple assay for the Hepatitis C virus using a reduced graphene oxide-assisted hybridization chain reaction. Analyst 2019, 144, 3972–3979. [Google Scholar] [CrossRef]
- Pusomjit, P.; Teengam, P.; Chuaypen, N.; Tangkijvanich, P.; Thepsuparungsikul, N.; Chailapakul, O. Electrochemical immunoassay for detection of hepatitis C virus core antigen using electrode modified with Pt-decorated single-walled carbon nanotubes. Mikrochim. Acta 2022, 189, 339. [Google Scholar] [CrossRef] [PubMed]
- Ghafary, Z.; Hallaj, R.; Salimi, A.; Mafakheri, S. Ultrasensitive fluorescence immunosensor based on mesoporous silica and magnetic nanoparticles: Capture and release strategy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 257, 119749. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, N.; Hallaj, R.; Salimi, A. A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification. Biosens. Bioelectron. 2017, 94, 184–192. [Google Scholar] [CrossRef]
- Abd Muain, M.F.; Cheo, K.H.; Omar, M.N.; Amir Hamzah, A.S.; Lim, H.N.; Salleh, A.B.; Tan, W.S.; Ahmad Tajudin, A. Gold nanoparticle-decorated reduced-graphene oxide targeting anti hepatitis B virus core antigen. Bioelectrochemistry 2018, 122, 199–205. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, C.; Cui, M.; Zhang, X.; Yang, D.P.; Wang, X.; Cui, D. Graphene oxide wrapped with gold nanorods as a tag in a SERS based immunoassay for the hepatitis B surface antigen. Mikrochim. Acta 2018, 185, 458. [Google Scholar] [CrossRef]
- Wei, S.; Xiao, H.; Cao, L.; Chen, Z. A Label-Free Immunosensor Based on Graphene Oxide/Fe3O4/Prussian Blue Nanocomposites for the Electrochemical Determination of HBsAg. Biosensors 2020, 10, 24. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Cao, Y.; Jiang, P.; Tang, Y.; Chen, Z.; Han, K. A visual method for determination of hepatitis C virus RNAs based on a 3D nanocomposite prepared from graphene quantum dots. Anal. Chim. Acta 2022, 1203, 339693. [Google Scholar] [CrossRef]
- Valipour, A.; Roushani, M. Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe. Biosens. Bioelectron. 2017, 89, 946–951. [Google Scholar] [CrossRef]
- Ma, C.; Liang, M.; Wang, L.; Xiang, H.; Jiang, Y.; Li, Y.; Xie, G. MultisHRP-DNA-coated CMWNTs as signal labels for an ultrasensitive hepatitis C virus core antigen electrochemical immunosensor. Biosens. Bioelectron. 2013, 47, 467–474. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-Sheikh, S.M.; Osman, D.I.; Salem, A.M.; Ali, O.I.; Harraz, F.A.; Shousha, W.G.; Shoeib, M.A.; Shawky, S.M.; Dionysiou, D.D. A novel HCV electrochemical biosensor based on a polyaniline@Ni-MOF nanocomposite. Dalton Trans. 2020, 49, 8918–8926. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, Y.; Xu, Z.; Li, X.; Li, Y.; Liu, Q.; Wang, P.; Dong, Y. Simultaneous electrochemical determination of two hepatitis B antigens using graphene-SnO2 hybridized with sea urchin-like bimetallic nanoparticles. Mikrochim. Acta 2021, 188, 109. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, P.; Ma, E.; Yu, H.; Zhou, K.; Tang, C.; Ren, J.; Li, Y.; Liu, Q.; Dong, Y. A sandwich-type electrochemical immunosensor based on Au@Pd nanodendrite functionalized MoO2 nanosheet for highly sensitive detection of HBsAg. Bioelectrochemistry 2021, 138, 107713. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, Y.; Lu, X.; Xiao, D.; Zhou, C. Multifunctionalized flower-like gold nanoparticles with high chemiluminescence for label-free sensing of the hepatitis C virus core protein. J. Mater. Chem. B 2023, 11, 2200–2206. [Google Scholar] [CrossRef]
- Ferrari, E. Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors 2023, 13, 411. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kim, Y.T.; Hong, S.B.; Kim, J.; Huh, N.S.; Lee, M.K.; Lee, S.J.; Kim, B.I.; Kim, I.S.; Huh, Y.S.; et al. Development of Lateral Flow Assay Based on Size-Controlled Gold Nanoparticles for Detection of Hepatitis B Surface Antigen. Sensors 2016, 16, 2154. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Hersam, M.C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517–528. [Google Scholar] [CrossRef]
- Jiao, T.; Liu, Y.; Wu, Y.; Zhang, Q.; Yan, X.; Gao, F.; Bauer, A.J.; Liu, J.; Zeng, T.; Li, B. Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes. Sci. Rep. 2015, 5, 12451. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-Sheikh, S.M.; Abd-Elzaher, M.M. Simple synthesis of novel copper metal-organic framework nanoparticles: Biosensing and biological applications. Dalton Trans. 2018, 47, 4847–4855. [Google Scholar] [CrossRef]
- Bera, K.; Ghosh, T.; Basak, S. Synthesis of Chiral, Crystalline Au-Nanoflower Catalyst Assisting Conversion of Rhodamine-B to Rhodamine-110 and a Single-Step, One-Pot, Eco-Friendly Reduction of Nitroarenes. J. Phys. Chem. C 2015, 119, 1800–1808. [Google Scholar] [CrossRef]
- Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 2012, 3, 684. [Google Scholar] [CrossRef]
- Teengam, P.; Siangproh, W.; Tontisirin, S.; Jiraseree-amornkun, A.; Chuaypen, N.; Tangkijvanich, P.; Henry, C.S.; Ngamrojanavanich, N.; Chailapakul, O. NFC-enabling smartphone-based portable amperometric immunosensor for hepatitis B virus detection. Sens. Actuators B Chem. 2021, 326, 128825. [Google Scholar] [CrossRef]
- Ali, S.; Hassan, M.; Saleem, M.; Tahir, S.F. Deep transfer learning based hepatitis B virus diagnosis using spectroscopic images. Int. J. Imaging Syst. Technol. 2021, 31, 94–105. [Google Scholar] [CrossRef]
- Das, G.; Gentile, F.; Coluccio, M.L.; Perri, A.M.; Nicastri, A.; Mecarini, F.; Cojoc, G.; Candeloro, P.; Liberale, C.; De Angelis, F.; et al. Principal component analysis based methodology to distinguish protein SERS spectra. J. Mol. Struct. 2011, 993, 500–505. [Google Scholar] [CrossRef]
- Wang, Z.; Zong, S.; Wang, Z.; Wu, L.; Chen, P.; Yun, B.; Cui, Y. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques. Nanotechnology 2017, 28, 105501. [Google Scholar] [CrossRef] [PubMed]
- El-Said, W.A.; Choi, J.W. High selective spectroelectrochemical biosensor for HCV-RNA detection based on a specific peptide nucleic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 217, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.T.; Wang, H.N.; Fales, A.M.; Nicholson, B.P.; Woods, C.W.; Vo-Dinh, T. DNA bioassay-on-chip using SERS detection for dengue diagnosis. Analyst 2014, 139, 5655–5659. [Google Scholar] [CrossRef]
- Nasir, S.; Majeed, M.I.; Nawaz, H.; Rashid, N.; Ali, S.; Farooq, S.; Kashif, M.; Rafiq, S.; Bano, S.; Ashraf, M.N.; et al. Surface enhanced Raman spectroscopy of RNA samples extracted from blood of hepatitis C patients for quantification of viral loads. Photodiagnosis Photodyn. Ther. 2021, 33, 102152. [Google Scholar] [CrossRef] [PubMed]
- Kashif, M.; Majeed, M.I.; Hanif, M.A.; Rehman, A.u. Surface Enhanced Raman Spectroscopy of the serum samples for the diagnosis of Hepatitis C and prediction of the viral loads. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118729. [Google Scholar] [CrossRef]
- Rafiq, S.; Majeed, M.I.; Nawaz, H.; Rashid, N.; Yaqoob, U.; Batool, F.; Bashir, S.; Akbar, S.; Abubakar, M.; Ahmad, S.; et al. Surface-enhanced Raman spectroscopy for analysis of PCR products of viral RNA of hepatitis C patients. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 259, 119908. [Google Scholar] [CrossRef]
- Maxmen, A. Faster, better, cheaper: The rise of CRISPR in disease detection. Nature 2019, 566, 437. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Xu, L.; Fan, Z.; Cao, Y.; Ma, Y.; Li, H.; Ren, F. CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection. Hepatol. Int. 2022, 16, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Fan, Z.; Xu, L.; Cao, Y.; Chen, S.; Pan, Z.; Gao, Y.; Li, H.; Zheng, S.; Ma, Y.; et al. CRISPR/Cas13a-assisted rapid and portable HBV DNA detection for low-level viremia patients. Emerg. Microbes Infect. 2023, 12, e2177088. [Google Scholar] [CrossRef] [PubMed]
Structure | Nanomaterial Use | Target | Detection Method | Lower Limit of Detection | Linear Range | Ref. |
---|---|---|---|---|---|---|
Anti-HBs and HAT-coated AuNPs | HBsAg | Fluorescence ELISA | 5 × 10−4 IU/mL | N.A. | [12] | |
Bifunctional PSs and AuNPs | HBsAg | Color change of solution due to SPR | 0.1 ng/mL (naked eye) 0.01 ng/mL (instrumentation) | 0.01–10 ng/mL | [13] | |
AuNPs | HCV RNA | Colorimetric, UV-visible spectrophotometer | 100 IU/mL | N.A. | [14] | |
HCV genotyping | 100 IU mL | N.A. | [15] | |||
AuNPs and MNPs | HCV RNA | Colorimetric | 15 IU/ml | N.A. | [16] | |
AuNPs | HBV DNA | EIS | 111 copies/mL | 102–105.1 copies/mL | [17] | |
Bifunctionalized AuNPs | HBV DNA | Chemiluminescence detection | 5.9 × 10−12 M | N.A. | [18] | |
Nanoparticle | Au@Fe3O4@SiO2NPs | HBsAg | Chemiluminescent aptasensor | 0.05 ng/mL | 1–225 ng/mL | [19] |
AuNPs | HBV DNA | Lateral flow assay | 103 copies/mL | N.A. | [20] | |
AuNPs with streptavidin fusion proteins | HCV antibodies | Lateral flow assay | 0.048 ng/mL | N.A. | [21] | |
AuNPs | HCVcAg | Fluorescence PCR | 1 fg/ml | N.A. | [22] | |
AuNRs | HBsAg | Direct detection of SPR peak | 0.1 IU/mL | 0.01–1 IU/mL | [23] | |
AuNRs | HBV DNA | FRET | 15 pmol/L | 0.045–6.0 nmol/L | [24] | |
Cu2O nanoparticles | HBV DNA | Electrochemical | 1.0 × 10−10 mol/L | 1 × 10−10–1 × 10−6 mol/L | [25] | |
MNPs | HBsAg | Magnetically localized fluorescence immunoassay | 5 IU/mL | N.A. | [26] | |
Aldehyde-derivatized MNPs | HCV genotypes 1 and 3 | Fluorescence spectroscopic measurements | 10–15 nM | 1–100 nM | [27] | |
Silica NPs | HBV DNA | Resonant frequency shifts | 2.3 × 10−15 M | 23.1 fM–2.3 nM | [28] | |
Silica NPs | HBV DNA | Electrochemical | 3 fM | 10–100 fM | [29] | |
QDs nanobeads | HBsAg | Fluorescent immunoassay | 0.078 ng | N.A. | [30] | |
Mercaptopropionic acid-modified cadmium telluride QDs | HBsAg | Fluorescence quenching | 1.16 pg/mL | 47–380 pg/mL and 0.75–12.12 ng/mL | [31] | |
QDs | QDs | HBV mutants | Fluorescence microscopy | 103 IU/mL | N.A. | [32] |
QDs | HBV DNA | FRET | 1.5 nmol/L | 2.5–30 nmol/L | [33] | |
Graphene QD | HBV DNA | DPV | 1 nM | 10–500 nM | [34] | |
One-dimensional materials | SiNW | HBsAg and HBx | Electrochemical | 100 fg/mL | N.A. | [35] |
SiNW | HBV DNA | Quenching | 20 copies/reaction | N.A. | [36] | |
Methylene blue-loaded DNA nanowires | HCVcAg | DPV and EIS | 32 fg/mL | 0.1–312.5 pg/mL | [37] | |
Amino CNTs | HBcAb | SWV | 0.03 ng/mL | 0.03–6 ng/mL | [38] | |
Polytyramine and CNTs | HBcAb | SWV | 0.89 ng/mL | 1.0–5.0 ng/mL | [39] | |
Two-dimensional materials | Pencil graphite electrodes | HBV DNA | EIS and CV | 2.48 µg/mL | 5–30 μg/mL | [40] |
N,S-rGO | HBV DNA | Fluorescence quenching | 2.4 nmol/L | 5–100 nmol/L | [41] | |
G-quadruplex-GO system | HBV DNA | Split phosphorescence amplification assay | 0.1 μM | 2–300 nM | [42] | |
rGO nanosheets | HCV RNA | Fluorescence quenching | 10 fM | 10 fM–100 pM | [43] | |
Pt single-walled CNT-modified graphene electrode | HCVcAg | DPV | 0.015 pg/mL | 0.05–1000 pg/mL | [44] | |
Fe3O4 MNP and Rhodamine B-mesoporous silica nanoparticle | HBsAg | Fluorescence of solutions | 5.7 ag/mL | 6.1 ag/mL–0.012 ng/mL | [45] | |
Fe3O4 MNP and AuNPs | HBsAg | SWV | 0.19 ng/μL | 0.3–1000 ng/μL | [46] | |
rGO-en-AuNPs | HBcAg | EIS | 0.19 pg/mL | 3.91–125.00 ng/mL | [47] | |
Nanocomposite | GO-GNRs | HBsAg | Surface-enhanced Raman spectroscopy | 0.05 pg/mL | 1–1000 pg/mL | [48] |
GO/Fe3O4/ Prussian blue | HBsAg | Electrochemical (CV, DPV, and EIS) | 0.166 pg/mL | 0.5–200 ng/mL | [49] | |
GQD-silver nanocomposites | HCV RNA | Colorimetric | 24.84 pM | 25–500 pM | [50] | |
AgNPs/Thio-GQDs | HCVcAg | DPV | 3 fg/mL | 0.05 pg/mL–60 ng/mL | [51] | |
Graphitized mesoporous carbon-methylene blue carboxyl multi-wall carbon nanotubes | HCVcAg | SWV | 0.01 pg/mL | 0.25–300 pg/mL | [52] | |
polyaniline@nickel metal–organic framework | HCV nucleic acid | Electrochemical (CV and EIS) | 0.75 fM | 1 fM–100 nM | [53] | |
Graphene sheets -SnO2- bimetallic MNPs | HBsAg | SWV | 4.67 pg/mL | 0.01–100 ng/mL | [54] | |
HBeAg | SWV | 4.68 pg/mL | 0.01–100 ng/mL | |||
Au@Pd nanodendrites /NH2-MoO2 nanosheets | HBsAg | Electrochemical (CV and EIS) | 3.3 fg/mL | 10–100 ng/mL | [55] | |
Co2+/Chitosan/Luminol/AuNFs | HCVcAg | Electrochemical | 0.16 ng/mL | 0.50 ng/mL–1.00 μg/mL | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Li, K.; Zhang, Y. The Advancement of Nanomaterials for the Detection of Hepatitis B Virus and Hepatitis C Virus. Molecules 2023, 28, 7201. https://doi.org/10.3390/molecules28207201
Shi W, Li K, Zhang Y. The Advancement of Nanomaterials for the Detection of Hepatitis B Virus and Hepatitis C Virus. Molecules. 2023; 28(20):7201. https://doi.org/10.3390/molecules28207201
Chicago/Turabian StyleShi, Wanting, Kang Li, and Yonghong Zhang. 2023. "The Advancement of Nanomaterials for the Detection of Hepatitis B Virus and Hepatitis C Virus" Molecules 28, no. 20: 7201. https://doi.org/10.3390/molecules28207201
APA StyleShi, W., Li, K., & Zhang, Y. (2023). The Advancement of Nanomaterials for the Detection of Hepatitis B Virus and Hepatitis C Virus. Molecules, 28(20), 7201. https://doi.org/10.3390/molecules28207201