Two Birds with One Stone: A Novel Dithiomaleimide-Based GalNAc-siRNA Conjugate Enabling Good siRNA Delivery and Traceability
Abstract
:1. Introduction
2. Results and Discussion
2.1. DTM GalNAc Ligand Synthesis
2.2. DTM-GalNAc-siRNA Conjugate Synthesis
2.3. Cell Uptake of DTM-GalNAc-siRNA Conjugate
3. Materials and Methods
3.1. General Information
3.2. Synthesis of DTS Containing GalNAc Conjugate
3.2.1. Synthesis of the DTS Containing GalNAc Scaffold
- Synthesis of compound 2: In an oven dried round-bottom flask, compound 1 (197 mg, 0.51 mmol), 2-bromoethanol (0.11 mL, 1.54 mmol) and Sc(OTf)3 (37 mg, 0.075 mmol as catalyst) were disolved in dry DCM (3 mL). After 27 h, TLC indicated the reaction was complete. The reaction mixture concentrated and directly purified by column chromatography (1:2 PE/EtOAc) to give compound 2 (153 mg, 67 %) as white crystals [38]. 1H NMR (300 MHz, CDCl3) δ 5.95 (d, J = 8.6 Hz, 1H), 5.52–5.12 (m, 2H), 4.77 (d, J = 8.4 Hz, 1H), 4.21–4.06 (m, 3H), 4.00–3.89 (m, 2H), 3.86–3.75 (m, 1H), 3.46 (dd, J = 9.1, 3.7 Hz, 2H), 2.12 (s, 3H), 2.02 (s, 3H), 1.97 (s, 3H), 1.96 (s, 3H).
- Synthesis of compound 3: In a 10 mL round-bottom flask with a condenser, compound 2 (454.3 mg, 1.0 mmol) was dissolved in 5.0 mL dry acetone. Then, K2CO3 (196.5 mg 1.72 mmol) was added. The mixture was heated to 45 °C for 24 h. After cooling to 25 °C, the mixture was filtered. The filter cake was washed with 3 × 10 mL acetone and the combined filtrate was concentrated. The residue was re-dissolved in 15 mL CHCl3, and this solution was washed with 3 × 10 mL water. The organic phase was dried with anhydrous Na2SO4, and concentrated under a vacuum to afford the crude product as a deep yellow oil, which was purified by flash column on neutral alumina. Eluting with a mixed solvent of PE/EA (v/v = 4/1 to 1/1) to afford compound 3 (359.6 mg, yield 84%) as a colorless solid [39]. 1H NMR (300 MHz, CDCl3) δ 5.71 (d, J = 8.6 Hz, 1H), 5.47–5.18 (m, 2H), 4.73 (d, J = 8.4 Hz, 1H), 4.22–4.08 (m, 2H), 3.97 (dq, J = 9.2, 6.4 Hz, 3H), 3.65 (dt, J = 10.5, 6.7 Hz, 1H), 3.10 (ddd, J = 20.7, 13.8, 7.4 Hz, 2H), 2.35 (s, 3H), 2.15 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H).
- Synthesis of compound 4: NaOMe (324.1 mg, 6.0 mmol) was added to a solution of compound 3 (449.5 mg, 1.0 mmol) in CH3OH (10 mL) and stirred at RT for 3 h under a nitrogen atmosphere. The mixture was then neutralized using Dowex resin and filtered through a pad of Celite. The collected filtrate was concentrated under reduced pressure and compound 4 (230.7 mg, yield 82 %) was obtained as a foaming oil, which was used without further purification and stored under −20 °C in a nitrogen atmosphere.
- Synthesis of compound 6: 2,3-dibromomaleimide (5) (254.9 mg, 1.0 mmol) and propargyl bromide (297.4 mg, 2.5 mmol,) were dissolved in acetone (15 mL), followed by the addition of potassium carbonate (552.8 mg, 4.0 mmol). The mixture was stirred at 25 °C for 48 h. The precipitate was filtrated off and the filtrate was concentrated to afford the crude product, which was purified by the silica gel column chromatography using hexane/ethyl acetate (1/1, v/v) as the eluent to obtain the desire product (158.2 mg, yield 54.0%) [34]. 1H NMR (300 MHz, CDCl3) δ 4.38 (d, J = 2.5 Hz, 2H), 2.27 (s, 1H).
- Synthesis of compound 7: In a 25 mL round-bottom flask under argon, compound 6 (290.9 mg, 1.0 mmol) was dissolved in MeOH (4.0 mL). Then, NaOAc (172.3 mg, 2.1 mmol) was added to the mixture. Then, a solution of compound 4 (618.9 mg, 2.2 mmol) in MeOH (2 mL) under argon was added dropwise over 5 min, to give an orange solution. After that, the mixture was stirred at 20 °C for 3 h. Then, quenched with 10 mL H2O and extracted with EtOAc (2 × 20 mL). The combined organic layer was dried (MgSO4), filtered and concentrated under a vacuum to yield a yellow solid which was used without any purification [40].
3.2.2. Synthesis of DTS Containing GalNAc Conjugated and Unconjugated siRNAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bumcrot, D.; Manoharan, M.; Koteliansky, V.; Sah, D.W.Y. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2006, 2, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Deleavey, G.F.; Damha, M.J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 2012, 19, 937–954. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.Y.; Ayyar, V.S.; Mitra, A. Pharmacokinetic and Pharmacodynamic Modeling of siRNA Therapeutics—A Minireview. Pharm. Res. 2022, 39, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zhao, J.; Shah, M.; Migliorati, J.M.; Tawfik, S.M.; Bahal, R.; Rasmussen, T.P.; Manautou, J.E.; Zhong, X.B. Nedosiran, a Candidate siRNA Drug for the Treatment of Primary Hyperoxaluria: Design, Development, and Clinical Studies. ACS Pharmacol. Transl. Sci. 2022, 5, 1007–1016. [Google Scholar] [CrossRef]
- Narasipura, E.A.; VanKeulen-Miller, R.; Ma, Y.; Fenton, O.S. Ongoing Clinical Trials of Nonviral siRNA Therapeutics. Bioconjugate Chem. 2023, 34, 1177–1197. [Google Scholar] [CrossRef]
- Ahn, I.; Kang, C.S.; Han, J. Where should siRNAs go: Applicable organs for siRNA drugs. Exp. Mol. Med. 2023, 55, 1283–1292. [Google Scholar] [CrossRef]
- Ranjbar, S.; Zhong, X.B.; Manautou, J.; Lu, X. A holistic analysis of the intrinsic and delivery-mediated toxicity of siRNA therapeutics. Adv. Drug. Deliv. Rev. 2023, 201, 115052. [Google Scholar] [CrossRef]
- Maier, M.A.; Jayaraman, M.; Matsuda, S.; Liu, J.; Barros, S.; Querbes, W.; Tam, Y.K.; Ansell, S.M.; Kumar, V.; Qin, J.; et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 2013, 21, 1570–1578. [Google Scholar] [CrossRef]
- Coelho, T.; Adams, D.; Silva, A.; Lozeron, P.; Hawkins, P.N.; Mant, T.; Perez, J.; Chiesa, J.; Warrington, S.; Tranter, E.; et al. Safety and Efficacy of RNAi Therapy for Transthyretin Amyloidosis. N. Engl. J. Med. 2013, 369, 819–829. [Google Scholar] [CrossRef]
- Davis, M.E.; Zuckerman, J.E.; Choi, C.-H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067–1070. [Google Scholar] [CrossRef]
- Spiess, M. The asialoglycoprotein receptor: A model for endocytic transport receptors. Biochemistry 1990, 29, 10009–10018. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.L.; Rup, D.; Lodish, H.F. Difficulties in the quantification of asialoglycoprotein receptors on the rat hepatocyte. J. Biol. Chem. 1980, 255, 9033–9036. [Google Scholar] [CrossRef] [PubMed]
- Stockert, R.J. The asialoglycoprotein receptor: Relationships between structure, function, and expression. Physiol. Rev. 1995, 75, 591–609. [Google Scholar] [CrossRef] [PubMed]
- Zlatev, I.; Castoreno, A.; Brown, C.R.; Qin, J.; Waldron, S.; Schlegel, M.K.; Degaonkar, R.; Shulga-Morskaya, S.; Xu, H.; Gupta, S.; et al. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotech. 2018, 36, 509–511. [Google Scholar] [CrossRef]
- Nair, J.K.; Willoughby, J.L.; Chan, A.; Charisse, K.; Alam, M.R.; Wang, Q.; Hoekstra, M.; Kandasamy, P.; Kel’in, A.V.; Milstein, S.; et al. Multivalent N-Acetylgalactosamine-Conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing. J. Am. Chem. Soc. 2014, 136, 16958–16961. [Google Scholar] [CrossRef]
- Parmar, R.; Willoughby, J.L.; Liu, J.; Foster, D.J.; Brigham, B.; Theile, C.S.; Charisse, K.; Akinc, A.; Guidry, E.; Pei, Y.; et al. 5′-(E)-Vinylphosphonate: A Stable Phosphate Mimic Can Improve the RNAi Activity of siRNA–GalNAc Conjugates. Chembiochem 2016, 17, 985–989. [Google Scholar] [CrossRef]
- Willoughby, J.L.; Chan, A.; Sehgal, A.; Butler, J.S.; Nair, J.K.; Racie, T.; Shulga-Morskaya, S.; Nguyen, T.; Qian, K.; Yucius, K.; et al. Evaluation of GalNAc-siRNA Conjugate Activity in Pre-clinical Animal Models with Reduced Asialoglycoprotein Receptor Expression. Mol. Therapy 2018, 26, 105–114. [Google Scholar] [CrossRef]
- Zimmermann, T.S.; Karsten, V.; Chan, A.; Chiesa, J.; Boyce, M.; Bettencourt, B.R.; Hutabarat, R.; Nochur, S.; Vaishnaw, A.; Gollob, J. Clinical Proof of Concept for a Novel Hepatocyte-Targeting GalNAc-siRNA Conjugate. Mol. Therapy 2017, 25, 71–78. [Google Scholar] [CrossRef]
- Matsuda, S.; Keiser, K.; Nair, J.K.; Charisse, K.; Manoharan, R.M.; Kretschmer, P.; Peng, C.G.; VKel’in, A.; Kandasamy, P.; Willoughby, J.L.; et al. siRNA Conjugates Carrying Sequentially Assembled Trivalent N-Acetylgalactosamine Linked Through Nucleosides Elicit Robust Gene Silencing In Vivo in Hepatocytes. ACS Chem. Bio 2015, 10, 1181–1187. [Google Scholar] [CrossRef]
- Schlegel, M.K.; Foster, D.J.; Kel’in, A.V.; Zlatev, I.; Bisbe, A.; Jayaraman, M.; Lackey, J.G.; Rajeev, K.G.; Charissé, K.; Harp, J.; et al. Chirality Dependent Potency Enhancement and Structural Impact of Glycol Nucleic Acid Modification on siRNA. J. Am. Chem. Soc. 2017, 139, 8537–8546. [Google Scholar] [CrossRef]
- Janas, M.M.; Schlegel, M.K.; Harbison, C.E.; Yilmaz, V.O.; Jiang, Y.; Parmar, R.; Zlatev, I.; Castoreno, A.; Xu, H.; Shulga-Morskaya, S.; et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun. 2018, 9, 723. [Google Scholar] [CrossRef]
- Holland, R.J.; Lam, K.; Ye, X.; Martin, A.D.; Wood, M.C.; Palmer, L.; Fraser, D.; McClintock, K.; Majeski, S.; Jarosz, A.; et al. Ligand conjugate SAR and enhanced delivery in NHP. Mol. Therapy 2021, 29, 2910–2919. [Google Scholar] [CrossRef]
- Kumar, P.; Degaonkar, R.; Guenther, D.C.; Abramov, M.; Schepers, G.; Capobianco, M.; Jiang, Y.; Harp, J.; Kaittanis, C.; Janas, M.M.; et al. Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: Altritol-nucleotide (ANA) containing GalNAc–siRNA conjugates: In vitro and in vivo RNAi activity and resistance to 5′-exonuclease. Nucleic Acids Res. 2020, 48, 4028–4040. [Google Scholar] [CrossRef] [PubMed]
- Anthony, O.; Zana, R. Interactions between Water-Soluble Polymers and Surfactants: Effect of the Polymer Hydrophobicity. 1. Hydrophilic Polyelectrolytes. Langmuir 1996, 12, 1967–1975. [Google Scholar] [CrossRef]
- Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545–2561. [Google Scholar] [CrossRef] [PubMed]
- Robin, M.P.; Jones, M.W.; Haddleton, D.M.; O’Reilly, R.K. Dibromomaleimide End Functional Polymers by RAFT Polymerization Without the Need of Protecting Groups. ACS Macro Lett. 2012, 1, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, F.F.; Nobles, M.; Ryan, C.P.; Smith, M.E.; Tinker, A.; Caddick, S.; Baker, J.R. In Situ Maleimide Bridging of Disulfides and a New Approach to Protein PEGylation. Bioconjugate Chem. 2011, 22, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.E.; Chudasama, V.; Moody, P.; Smith, M.E.; Caddick, S. A novel synthetic chemistry approach to linkage-specific ubiquitin conjugation. Org. Biomol. Chem. 2015, 13, 4165–4168. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, W.; Liu, X.; Wang, G.; Wang, Y.; Li, D.; Xie, L.; Gao, Y.; Deng, H.; Gao, W. Site-selective in situ growth of fluorescent polymer–antibody conjugates with enhanced antigen detection by signal amplification. Biomaterials 2015, 64, 2–9. [Google Scholar] [CrossRef]
- Li, Z.L.; Sun, L.; Ma, J.; Zeng, Z.; Jiang, H. Synthesis and post-polymerization modification of polynorbornene bearing dibromomaleimide side groups. Polymer 2016, 84, 336–342. [Google Scholar] [CrossRef]
- Robin, M.P.; Wilson, P.; Mabire, A.B.; Kiviaho, J.K.; Raymond, J.E.; Haddleton, D.M.; O’Reilly, R.K. Conjugation-Induced Fluorescent Labeling of Proteins and Polymers Using Dithiomaleimides. J. Am. Chem. Soc. 2013, 135, 2875–2878. [Google Scholar] [CrossRef] [PubMed]
- Robin, M.P.; Mabire, A.B.; Damborsky, J.C.; Thom, E.S.; Winzer-Serhan, U.H.; Raymond, J.E.; O’Reilly, R.K. New Functional Handle for Use as a Self-Reporting Contrast and Delivery Agent in Nanomedicine. J. Am. Chem. Soc. 2013, 135, 9518–9524. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wilson, P.; Kempe, K.; Chen, H.; Haddleton, D.M. Reversible Regulation of Thermoresponsive Property of Dithiomaleimide-Containing Copolymers via Sequential Thiol Exchange Reactions. ACS Macro Lett. 2016, 5, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, M.; Xiong, M.; Cheng, J. Reduction-responsive dithiomaleimide-based nanomedicine with high drug loading and FRET-indicated drug release. Chem. Commun. 2015, 51, 4807–4810. [Google Scholar] [CrossRef] [PubMed]
- Sikder, A.; Xie, Y.; Thomas, M.; Derry, M.J.; O’Reilly, R.K. Precise control over supramolecular nanostructures via manipulation of H-bonding in π-amphiphiles. Nanoscale 2021, 13, 20111–20118. [Google Scholar] [CrossRef]
- Tan, M.; Wang, X.; Xie, T.; Zhang, Z.; Shi, Y.; Li, Y.; Chen, Y. Fluorogenic Mechanophore Based on Dithiomaleimide with Dual Responsiveness. Macromolecules 2022, 55, 6860–6865. [Google Scholar] [CrossRef]
- Ware, B.R.; Brown, G.E.; Soldatow, V.Y.; LeCluyse, E.L.; Khetani, S.R. Long-Term Engineered Cultures of Primary Mouse Hepatocytes for Strain and Species Comparison Studies During Drug Development. J. Liver Res. 2019, 19, 199–214. [Google Scholar] [CrossRef]
- Christensen, H.; Christiansen, M.S.; Petersen, J.; Jensen, H.H. Direct formation of beta-glycosides of N-acetyl glycosamines mediated by rare earth metal triflates. Org. Biomol. Chem. 2008, 6, 3276–3283. [Google Scholar] [CrossRef]
- Gorityala, B.K.; Lu, Z.; Leow, M.L.; Ma, J.; Liu, X.W. Design of a “turn-off/turn-on” biosensor: Understanding carbohydrate-lectin interactions for use in noncovalent drug delivery. J. Am. Chem. Soc. 2012, 134, 15229–15232. [Google Scholar] [CrossRef]
- Schumacher, F.F.; Nunes, J.P.; Maruani, A.; Chudasama, V.; Smith, M.E.; Chester, K.A.; Baker, J.R.; Caddick, S. Next generation maleimides enable the controlled assembly of antibody-drug conjugates via native disulfide bond bridging. Org. Biomol. Chem. 2014, 12, 7261–7269. [Google Scholar] [CrossRef]
siRNA | S/AS a (Sequence 5′-3′) b | Target c |
---|---|---|
1 | CmsAmsGmUmGfUmUfCfUfUmGmCmUmCmUmAmUmAmAm/ UmsUfsAmUmAmGfAmGmCmAmmGmAmAfCmAfmUmGmsUmsUm | mTTR |
2 | CmsAmsGmUmGfUmUfCfUfUmGmCmUmCmUmAmUmAmAm/ UmsUfsAmUmAmGfAmGmCmAmmGmAmAfCmAfmUmGmsUmsUm (FAM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, S.; Gao, X.; Wang, Q.; Lin, J.; Qiu, L.; Xie, M. Two Birds with One Stone: A Novel Dithiomaleimide-Based GalNAc-siRNA Conjugate Enabling Good siRNA Delivery and Traceability. Molecules 2023, 28, 7184. https://doi.org/10.3390/molecules28207184
Kong S, Gao X, Wang Q, Lin J, Qiu L, Xie M. Two Birds with One Stone: A Novel Dithiomaleimide-Based GalNAc-siRNA Conjugate Enabling Good siRNA Delivery and Traceability. Molecules. 2023; 28(20):7184. https://doi.org/10.3390/molecules28207184
Chicago/Turabian StyleKong, Sudong, Xiaoqing Gao, Qianhui Wang, Jianguo Lin, Ling Qiu, and Minhao Xie. 2023. "Two Birds with One Stone: A Novel Dithiomaleimide-Based GalNAc-siRNA Conjugate Enabling Good siRNA Delivery and Traceability" Molecules 28, no. 20: 7184. https://doi.org/10.3390/molecules28207184
APA StyleKong, S., Gao, X., Wang, Q., Lin, J., Qiu, L., & Xie, M. (2023). Two Birds with One Stone: A Novel Dithiomaleimide-Based GalNAc-siRNA Conjugate Enabling Good siRNA Delivery and Traceability. Molecules, 28(20), 7184. https://doi.org/10.3390/molecules28207184