Fast Solution-Phase and Liquid-Phase Peptide Syntheses (SolPSS and LPPS) Mediated by Biomimetic Cyclic Propylphosphonic Anhydride (T3P®)
Abstract
:1. Introduction
2. Results
- Solvent suitability
- Substrate scope
- SolPPS and LPPS of Leu-enkephalin with T3P®
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Methods
5.2. Analytical Methods
5.3. Synthetic Procedures
5.3.1. General Procedure of Coupling Step for the Solvent Screening and Substrate Scope
5.3.2. Full SolPPS of Leu-Enkephalin via Boc chemistry
Protocol with Intermediate Isolation
Continuous Protocol without Intermediate Isolation
5.3.3. General Procedure for the Synthesis of 2,5-Polycarbon Substituted Hydrophobic Benzyl Alcohols (HBA) Tag
5.3.4. Full LPPS of Leu-Enkephaline via Fmoc Chemistry
Loading of the First Amino Acid on the Tag: Synthesis of H2N-Leu-Tag
Elongation of the Peptide: Protocol with Precipitation after Each Step
Elongation of the Peptide: Protocol with One-Pot Coupling–Deprotection Steps
Peptide Cleavage from the Tag
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cabri, W.; Cantelmi, P.; Corbisiero, D.; Fantoni, T.; Ferrazzano, L.; Martelli, G.; Mattellone, A.; Tolomelli, A. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Front. Mol. Biosci. Sec. Mol. Recognit. 2021, 8, 697586. [Google Scholar] [CrossRef] [PubMed]
- Barman, P.; Joshi, S.; Sharma, S.; Preet, S.; Sharma, S.; Saini, A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int. J. Pept. Res. Ther. 2023, 29, 61. [Google Scholar] [CrossRef] [PubMed]
- Research and Markets. Available online: https://www.researchandmarkets.com/reports/4896465/global-peptide-therapeutics-market-and-clinical (accessed on 31 July 2023).
- Lamers, C. Overcoming the shortcomings of peptide-based therapeutics. Fut. Drug Disc. 2022, 4, FDD75. [Google Scholar] [CrossRef]
- Al Musaimi, O.; Lombardi, L.; Williams, D.R.; Albericio, F. Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals 2022, 15, 1283. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzano, L.; Catani, M.; Cavazzini, A.; Martelli, G.; Corbisiero, D.; Cantelmi, P.; Fantoni, T.; Mattellone, A.; De Luca, C.; Felletti, S.; et al. Sustainability in peptide chemistry: Current synthesis and purification technologies and future challenges. Green Chem. 2022, 24, 975–1020. [Google Scholar] [CrossRef]
- Martin, V.; Egelund, P.H.G.; Johansson, H.; Le Quement, S.T.; Wojcik, F.; Pedersen, D.S. Greening the synthesis of peptide therapeutics: An industrial perspective. RSC Adv. 2020, 10, 42457–42492. [Google Scholar] [CrossRef] [PubMed]
- Lawrenson, S.B.; Arav, R.; North, M. The greening of peptide synthesis. Green Chem. 2017, 19, 1685–1691. [Google Scholar] [CrossRef]
- Martelli, G.; Cantelmi, P.; Palladino, C.; Mattellone, A.; Corbisiero, D.; Fantoni, T.; Tolomelli, A.; Macis, M.; Ricci, A.; Cabri, W.; et al. Replacing piperidine in solid phase peptide synthesis: Effective Fmoc removal by alternative bases. Green Chem. 2021, 23, 8096–8107. [Google Scholar] [CrossRef]
- Ferrazzano, L.; Corbisiero, D.; Martelli, G.; Tolomelli, A.; Ricci, A.; Viola, A.; Cabri, W. Green Solvent Mixtures for Solid-Phase Peptide Synthesis: A Dimethylformamide-Free Highly Efficient Synthesis of Pharmaceutical-Grade Peptides. ACS Sustain. Chem. Eng. 2019, 15, 12867–12877. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, A.; de la Torre, B.; Albericio, F. Liquid-Phase Peptide Synthesis (LPPS): A Third Wave for the Preparation of Peptides. Chem. Rev. 2022, 122, 13516–13546. [Google Scholar] [CrossRef]
- Braun, M.G.; Diaz-Rodriguez, A.; Diorazio, L.; Fei, Z.; Fraunhoffer, K.; Hayler, J.; Hickey, M.; McLaws, M.; Richardson, P.; Roiban, G.D.; et al. Green Chemistry Articles of Interest to the Pharmaceutical Industry. Org. Process Res. Dev. 2019, 23, 1118–1133. [Google Scholar] [CrossRef]
- Albericio, F.; El-Faham, A. Choosing the Right Coupling Reagent for Peptides: A Twenty-Five-Year Journey. Org. Process Res. Dev. 2018, 22, 760–772. [Google Scholar] [CrossRef]
- Isidro-Llobet, A.; Kenworthy, M.N.; Mukherjee, S.; Kopach, M.E.; Wegner, K.; Gallou, F.; Smith, A.G.; Roschangar, F.G. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J. Org. Chem. 2019, 84, 4615–4628. [Google Scholar] [CrossRef] [PubMed]
- Carpino, L.A.; El-Faham, A. The diisopropylcarbodiimide/ 1-hydroxy-7-azabenzotriazole system: Segment coupling and stepwise peptide assembly. Tetrahedron 1999, 55, 6813–6830. [Google Scholar] [CrossRef]
- Sarantakis, D.; Teichman, J.; Lien, E.L.; Fenichel, R.L. A novel cyclic undecapeptide, Wy-40,770, with prolonged growth hormone release inhibiting activity. Biochem. Biophys. Res. Commun. 1976, 73, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Wehrstedt, K.D.; Wandrey, P.A.; Heitkamp, D.J. Explosive properties of 1-hydroxybenzotriazoles. Hazard. Mater. 2005, 126, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Subirós-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albericio, F. Oxyma: An Efficient Additive for Peptide Synthesis to Replace the Benzotriazole-Based HOBt and HOAt with a Lower Risk of Explosion. Chem.-Eur. J. 2009, 15, 9394–9403. [Google Scholar] [CrossRef] [PubMed]
- Erny, M.; Lundqvist, M.; Rasmussen, J.H.; Ludemann-Hombourger, O.; Bihel, F.; Pawlas, J. Minimizing HCN in DIC/Oxyma-Mediated Amide Bond-Forming Reactions. Org. Process Res. Dev. 2020, 24, 1341–1349. [Google Scholar] [CrossRef]
- Manne, S.R.; Luna, O.; Acosta, G.A.; Royo, M.; El-Faham, A.; Orosz, G.; de la Torre, B.G.; Albericio, F. Amide Formation: Choosing the Safer Carbodiimide in Combination with OxymaPure to Avoid HCN Release. Org. Lett. 2021, 23, 6900–6904. [Google Scholar] [CrossRef]
- Klose, J.; Bienert, M.; Mollenkopf, C.; Wehle, D.; Zhang, C.-W.; Carpino, L.A.; Henklein, P. 2-Propanephosphonic acid anhydride (T3P)-mediated segment coupling and head-to-tail cyclization of sterically hindered peptides. Chem. Commun. 1999, 18, 1847–1848. [Google Scholar] [CrossRef]
- Davison, E.K.; Cameron, A.J.; Harris, P.W.R.; Brimble, M.A. Synthesis of endolides A and B: Naturally occurring N-methylated cyclic tetrapeptides. ChemMedChem 2019, 10, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Goswami, A.; Van Lanen, S.G. Enzymatic Strategies and Biocatalysts for Amide Bond Formation: Tricks of the Trade Outside of the Ribosome. Mol. Biosyst. 2015, 11, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Sumita, A.; Otani, Y.; Ohwada, T. Chemoselective generation of acyl phosphates, acylium ion equivalents, from carboxylic acids and an organophosphate ester in the presence of a Brønsted acid. Chem. Commun. 2017, 53, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Vishwanatha, B.T.M.; Panguluri, N.R.; Sureshbabu, V.V. Propanephosphonic Acid Anhydride (T3P®)—A Benign Reagent for Diverse Applications Inclusive of Large-Scale Synthesis. Synthesis 2013, 45, 1569–1601. [Google Scholar] [CrossRef]
- Mattellone, A.; Corbisiero, D.; Ferrazzano, L.; Cantelmi, P.; Martelli, G.; Palladino, C.; Tolomelli, A.; Cabri, W. Speeding up sustainable solution-phase peptide synthesis using T3P® as a green coupling reagent: Methods and challenges. Green Chem. 2023, 25, 2563–2571. [Google Scholar] [CrossRef]
- Al Musaimi, O.; Wisdom, R.; Talbiersky, P.; De La Torre, B.G.; Albericio, F. Propylphosphonic Anhydride (T3P®) as Coupling Reagent for Solid-Phase Peptide Synthesis. ChemistrySelect 2021, 6, 2649–2657. [Google Scholar] [CrossRef]
- Horvath, A.L.; Getzen, F.W.; Maczynska, Z. Dichloromethane with water. In Halogenated Methanes with Water; IUPAC, Solubility Data Series; Lorimer, J.W., Ed.; Oxford University Press: Oxford, UK, 1995; Volume 60, pp. 151–176. [Google Scholar]
- Sivanandaiah, K.M.; Suresh Babu, V.V.; Renukeshwar, C. Fmoc-amino acid chlorides in solid phase synthesis of opioid peptides. Int. J. Pept. Prot. Res. 1992, 39, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Suzuki, H.; Nakae, T.; Fujita, S.; Abe, H.; Nagano, K.; Yamada, T.; Ebata, N.; Kim, S.; Chiba, K. Tag-Assisted Liquid-Phase Peptide Synthesis Using Hydrophobic Benzyl Alcohols as Supports. J. Org. Chem. 2013, 78, 320–327. [Google Scholar] [CrossRef]
- Chiba, K.; Kim, S.; Kono, Y. Carrier for Separation, Method for Separation of Compound, and Method for Synthesis of Peptide Using the Carrier. US Patent 8633298B2, 21 January 2014. [Google Scholar]
- Wakamatsu, H.; Okada, Y.; Sugai, M.; Hussaini, S.R.; Chiba, K. Photo-Triggered Fluorometric Hydrophobic Benzyl Alcohol for Soluble Tag-Assisted Liquid-Phase Peptide Synthesis. Asian J. Org. Chem. 2017, 6, 1584–1588. [Google Scholar] [CrossRef]
- Galanis, A.S.; Albericio, F.; Grøtli, M. Solid-Phase Peptide Synthesis in Water Using Microwave-Assisted Heating. Org. Lett. 2009, 11, 4488–4491. [Google Scholar] [CrossRef]
Entry | PG | Solvent | Product | Conversion b (%) |
---|---|---|---|---|
1 | Boc | DMF | 1a | 97 |
2 | Fmoc | DMF | 1b | >99 |
3 | Boc | DCM | 1a | >99 |
4 | Fmoc | DCM | 1b | >99 |
5 | Boc | Anisole | 1a | 98 |
6 | Fmoc | Anisole | 1b | >99 |
7 | Boc | CPME c | 1a | 82 |
8 | Fmoc | CPME | 1b | 99 |
9 | Boc | EtOAc | 1a | 97 |
10 | Fmoc | EtOAc | 1b | 99 |
11 | Boc | nPrOAc | 1a | 95 |
12 | Fmoc | nPrOAc | 1b | 99 |
13 | Boc | tBuOAc c | 1a | 85 |
14 | Fmoc | tBuOAc | 1b | >99 |
15 | Boc | DMC | 1a | 92 |
16 | Fmoc | DMC | 1b | >99 |
17 | Boc | THF | 1a | 96 |
18 | Fmoc | THF | 1b | >99 |
19 | Boc | ACN | 1a | 93 |
20 | Fmoc | ACN | 1b | >99 |
21 | Boc | NOP | 1a | 57 |
22 | Fmoc | NOP | 1b | 97 |
Entry | N-PG-Amino Acid | Amino Ester | Conversion b (%) |
---|---|---|---|
1 | N-Boc-Leu-OH | H-Leu-OMe | 98 |
2 | N-Boc-Phe-OH | H-Leu-OMe | 98 |
3 | N-Boc-Arg(Pbf)-OH | H-Leu-OMe | 99 |
4 | N-Boc-Asp(Bn)-OH | H-Leu-OMe | 96 |
5 | N-Boc-Ser-OH | H-Leu-OMe | >99 |
6 | N-Boc-Thr-OH | H-Leu-OMe | 99 |
7 | N-Boc-Trp-OH | H-Leu-OMe | 96 |
8 | N-Boc-Aib-OH | H-Leu-OMe | >99 |
9 | N-Fmoc-Leu-OH | H-Leu-OBn | >99 |
10 | N-Fmoc-Trp-OH | H-Leu-OBn | >99 |
11 | N-Fmoc-Arg(Pbf)-OH | H-Leu-OBn | >99 |
12 | N-Fmoc-Asp(tBu)-OH | H-Leu-OBn | >99 |
13 | N-Fmoc-Ser(tBu)-OH | H-Leu-OBn | >99 |
14 | N-Fmoc-Thr(tBu)-OH | H-Leu-OBn | >99 |
15 | N-Fmoc-Arg-OH | H-Leu-OBn | 98 |
16 | N-Fmoc-Aib-OH | H-Leu-OBn | 99 |
Solvent | DCM | DCM | Anisole | Anisole |
---|---|---|---|---|
Base (eq) | PIP (16) | PIP (16) | PIP (16) | PIP (16) |
Precipitation | Each step | After depr only | Each step | After depr only |
TM | >99 | >99 | 95.9 | 91.4 |
des-Phe | - | - | - | - |
des-Tyr | - | - | 4.1 | 8.6 |
des-Gly2 | - | - | - | - |
Leu-Enkephalin purity | >99 | >99 | 95.9 | 91.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattellone, A.; Corbisiero, D.; Cantelmi, P.; Martelli, G.; Palladino, C.; Tolomelli, A.; Cabri, W.; Ferrazzano, L. Fast Solution-Phase and Liquid-Phase Peptide Syntheses (SolPSS and LPPS) Mediated by Biomimetic Cyclic Propylphosphonic Anhydride (T3P®). Molecules 2023, 28, 7183. https://doi.org/10.3390/molecules28207183
Mattellone A, Corbisiero D, Cantelmi P, Martelli G, Palladino C, Tolomelli A, Cabri W, Ferrazzano L. Fast Solution-Phase and Liquid-Phase Peptide Syntheses (SolPSS and LPPS) Mediated by Biomimetic Cyclic Propylphosphonic Anhydride (T3P®). Molecules. 2023; 28(20):7183. https://doi.org/10.3390/molecules28207183
Chicago/Turabian StyleMattellone, Alexia, Dario Corbisiero, Paolo Cantelmi, Giulia Martelli, Chiara Palladino, Alessandra Tolomelli, Walter Cabri, and Lucia Ferrazzano. 2023. "Fast Solution-Phase and Liquid-Phase Peptide Syntheses (SolPSS and LPPS) Mediated by Biomimetic Cyclic Propylphosphonic Anhydride (T3P®)" Molecules 28, no. 20: 7183. https://doi.org/10.3390/molecules28207183
APA StyleMattellone, A., Corbisiero, D., Cantelmi, P., Martelli, G., Palladino, C., Tolomelli, A., Cabri, W., & Ferrazzano, L. (2023). Fast Solution-Phase and Liquid-Phase Peptide Syntheses (SolPSS and LPPS) Mediated by Biomimetic Cyclic Propylphosphonic Anhydride (T3P®). Molecules, 28(20), 7183. https://doi.org/10.3390/molecules28207183