The Role of the Unbinding Cycle on the Coordination Abilities of the Bi-Cyclopeptides toward Cu(II) Ions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of the Peptides LNL, MCL2, and MCL3
3.2. Peptide Sequences
- Swelling in EtOAc/DMSO (4:1 v/v, 3 mL) for 30 min at room temperature.
- Fmoc removal for 1 min at 90 °C using 20% piperidine in DMF (2 mL).
- Washings with EtOAc/DMSO (4:1 v/v, 3 × 2 mL).
- Couplings: Fmoc-L-aa-OH, DIC, Oxyma Pure (5:5:5), 2 min at 90 °C in sustainable, eco-friendly, green binary solvent mixtures, such as DMSO/propyl acetate or DMSO/butyl acetate, vs. DMF.
- Washings with EtOAc/DMSO (4:1 v/v, 2 mL).
3.3. Potentiometric Measurements
3.4. Spectroscopic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Ercole, A.; Sabatino, G.; Pacini, L.; Impresari, E.; Capecchi, I.; Papini, A.M.; Rovero, P. On-resin microwave-assisted copper-catalyzed azide-alkyne cycloaddition of H1-relaxin B single chain ‘stapled’analogues. Peptide Sci. 2020, 112, e24159. [Google Scholar] [CrossRef]
- Bockus, A.T.; McEwen, C.M.; Lokey, R.S. Form and function in cyclic peptide natural products: A pharmacokinetic perspective. Curr. Top. Med. Chem. 2013, 13, 821–836. [Google Scholar] [CrossRef] [PubMed]
- Testa, C.; Papini, A.M.; Chorev, M.; Rovero, P. Copper-catalyzed azide-alkyne cycloaddition (CuAAC)-mediated macrocyclization of peptides: Impact on conformation and biological activity. Curr. Top. Med. Chem. 2018, 18, 591–610. [Google Scholar] [CrossRef] [PubMed]
- Brzeski, J.; Wyrzykowski, D.; Chylewska, A.; Makowski, M.; Papini, A.M.; Makowska, J. Metal-Ion Interactions with Dodecapeptide Fragments of Human Cationic Antimicrobial Protein LL-37 [hCAP(134–170)]. J. Phys. Chem. B 2022, 126, 6911–6921. [Google Scholar] [CrossRef] [PubMed]
- Bal, W.; Kozlowski, H.; Lammek, B.; Rolka, K.; Pettit, L.D. Potentiometric and spectroscopic studies of the Cu(II) complexes of Ala-Arg8-vasopressin and oxytocin: Two vasopressin-like peptides. J. Inorg. Biochem. 1992, 45, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Uber, D.; Wyrzykowski, D.; Tiberi, C.; Sabatino, G.; Żmudzińska, W.; Chmurzyński, L.; Papini, A.M.; Makowska, J. Conformation-dependent affinity of Cu(II) ions peptide complexes derived from the human Pin1 protein: ITC and DSC study. J. Therm. Anal. Calorim. 2017, 127, 1431–1443. [Google Scholar] [CrossRef]
- Gellini, C.; Sabatino, G.; Papini, A.M.; Muniz-Miranda, M. SERS study of a tetrapeptide based on histidine and glycine residues, adsorbed on copper/silver colloidal nanoparticles. J. Raman Spectrosc. 2014, 45, 418–423. [Google Scholar] [CrossRef]
- Żamojć, K.; Wyrzykowski, D.; Sabatino, G.; Papini, A.M.; Wieczorek, R.; Chmurzyński, L.; Makowska, J. Key role of histidine residues orientation in affinity binding of model pentapeptides with Ni2+ ions: A theoretical supported experimental study. J. Mol. Liq. 2021, 341, 117414. [Google Scholar] [CrossRef]
- Lammek, B.; Rekowski, P.; Kupryszewski, G.; Melin, P.; Ragnarsson, U. Synthesis of arginine-vasopressins, modified in positions 1 and 2, as antagonists of the vasopressor response to the parent hormone. J. Med. Chem. 1988, 31, 603–606. [Google Scholar] [CrossRef]
- Liu, D.; Seuthe, A.B.; Ehrler, O.T.; Zhang, X.; Wyttenbach, T.; Hsu, J.F.; Bowers, M.T. Oxytocin-receptor binding: Why divalent metals are essential. J. Am. Chem. Soc. 2005, 127, 2024–2025. [Google Scholar] [CrossRef]
- Pearlmutter, F.; Soloff, M.S. Characterization of the metal ion requirement for oxytocin-receptor interaction in rat mammary gland membranes. J. Biol. Chem. 1973, 254, 3899. [Google Scholar] [CrossRef]
- Sobell, H.M. Actinomycin and DNA transcription. Proc. Natl. Acad. Sci. USA 1985, 82, 5328–5331. [Google Scholar] [CrossRef]
- Karim, M.R.U.; Zhou, Y.; In, T.; Harunari, E.; Oku, N.; Igarashi, N.Y. Nyuzenamides A and B: Bicyclic Peptides with Antifungal and Cytotoxic Activity from a Marine-Derived Streptomyces sp. Org. Lett. 2021, 23, 2109–2113. [Google Scholar] [CrossRef]
- Joo, S.H. Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol. Ther. 2012, 20, 19–26. [Google Scholar] [CrossRef]
- Saijo, K.; Katoh, T.; Shimodaira, H.; Oda, A.; Takahashi, O.; Ishioka, C. Romidepsin (FK228) and its analogs directly inhibit phosphatidylinositol 3-kinase activity and potently induce apoptosis as histone deacetylase/phosphatidylinositol 3-kinase dual inhibitors. Cancer Sci. 2012, 103, 1994–2001. [Google Scholar] [CrossRef]
- Edler, M.C.; Fernandez, A.M.; Lassota, P.; Ireland, C.M.; Barrows, L.R. Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. Biochem. Pharmacol. 2002, 63, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Xiang, L.; Zhou, Q.; Carralot, J.P.; Prunotto, M.; Niederfellner, G.; Pastan, I. Actinomycin D enhances killing of cancer cells by immunotoxin RG7787 through activation of the extrinsic pathway of apoptosis. Proc. Natl. Acad. Sci. USA 2016, 113, 10666–10671. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Nielsen, A.L.; Heinis, C.H. Cyclic Peptides for Drug Development. Angew. Chem. Int. Ed. 2024, 63, e202308251. [Google Scholar] [CrossRef] [PubMed]
- Creative Peptides. Available online: https://www.pepdd.com/services/bicyclic-peptides.html (accessed on 2 May 2024).
- Ibraheem, D.; Elaissari, A.; Fessi, H. Administration strategies for proteins and peptides. Int. J. Pharm. 2014, 477, 578–589. [Google Scholar] [CrossRef]
- Quartararo, J.S.; Eshelman, M.R.; Peraro, L.; Yu, H.; Baleja, J.D.; Lin, Y.S.; Kritzer, J.A. A bicyclic peptide scaffold promotes phosphotyrosine mimicry and cellular uptake. Bioorg. Med. Chem. 2014, 22, 6387–6391. [Google Scholar] [CrossRef]
- Quagliata, M.; Stincarelli, M.A.; Papini, A.M.; Giannecchini, S.; Rovero, P. Antiviral Activity against SARS-CoV-2 of Conformationally Constrained Helical Peptides Derived from Angiotensin-Converting Enzyme 2. ACS Omega 2023, 8, 22665–22672. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, A.; Witak, W.; Pieniężna, A.; Brasun, J. The binding ability of a bicyclic somatostatin analogue towards Cu(II) ions. Chem. Biodivers. 2020, 17, e200030. [Google Scholar] [CrossRef]
- Marciniak, A.; Witak, W.; Sabatino, G.; Papini, A.M.; Brasuń, J. Detailed Insight into the Interaction of Bicyclic Somatostatin Analogue with Cu(II) Ions. Int. J. Mol. Sci. 2020, 21, 8794. [Google Scholar] [CrossRef]
- Marciniak, A.; Pacini, L.; Papini, A.M.; Brasuń, J. Bicyclopeptides: A new class of ligands for Cu(II) ions. Dalton Trans. 2022, 51, 13368–13375. [Google Scholar] [CrossRef] [PubMed]
- Kotynia, A.; Pap, J.S.; Brasuń, J. The binding abilities of homodetic cyclic His-peptides toward copper ions. Inorg. Chim. Acta 2018, 472, 3–11. [Google Scholar] [CrossRef]
- Avogadro: An Open-Source Molecular Builder and Visualization Tool. Application Version 1.2.0. Available online: http://avogadro.cc/ (accessed on 2 May 2024).
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 1–17. [Google Scholar] [CrossRef]
- Pacini, L.; Muthyala, M.; Aguiar, L.; Zitterbart, R.; Rovero, P.; Papini, A.M. Optimization of peptide synthesis time and sustainability using novel eco-friendly binary solvent systems with induction heating on an automated peptide synthesizer. J. Pept. Sci. 2024, e3605. [Google Scholar] [CrossRef]
- Selmi, C.; Papini, A.M.; Pugliese, P.; Alcaro, M.C.; Gershwin, M.E. Environmental pathways to autoimmune diseases: The cases of primary biliary cirrhosis and multiple sclerosis. Arch. Med. Sci. 2011, 7, 368–380. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. SUPERQUAD: An improved general program for computation of formation constants from potentiometric data. J. Chem. Soc. Dalt. Trans. 1985, 6, 1195–1200. [Google Scholar] [CrossRef]
Species | BCL [22] | MCL1 | LNL | |||
logβ | logK | logβ | logK | logβ | logK | |
AH | 10.78 | 10.78 | 10.93 ± 0.10 | 10.93 | 10.22 ± 0.15 | 10.22 |
AH2 | 21.23 | 10.45 | 21.26 ± 0.06 | 10.33 | 20.31 ± 0.09 | 10.09 |
AH3 | 31.47 | 10.24 | 31.42 ± 0.09 | 10.16 | 30.49 ± 0.08 | 10.18 |
AH4 | 41.33 | 9.86 | 41.07 ± 0.05 | 9.65 | 39.71 ± 0.04 | 9.22 |
AH5 | 50.59 | 9.26 | 50.07 ± 0.06 | 9.00 | 49.02 ± 0.05 | 9.31 |
AH6 | 57.11 | 6.52 | 56.74 ± 0.07 | 6.67 | 55.72 ± 0.05 | 6.70 |
AH7 | 62.78 | 5.67 | 62.17 ± 0.07 | 5.43 | 61.32 ± 0.05 | 5.60 |
Cu(II) complexes | ||||||
BCL [22] | MCL1 | LNL | ||||
logβ | logK | logβ | logK | logβ | logK | |
60.91 | 4.64 | - | - | - | - | |
56.27 | 6.89 | 54.59 ± 0.02 | 13.97 | 53.10 ± 0.06 | 6.09 | |
49.38 | 8.03 | - | - | 47.01 ± 0.05 | 65.6 | |
41.35 | - | 40.62 ± 0.06 | 18.47 | - | - | |
- | - | 22.15 ± 0.09 | 20.32 | - | - | |
- | - | 1.83 ± 0.09 | 21.31 | - | - | |
- | - | −19.48 ± 0.05 | - | −18.59 ± 0.06 | - | |
52.59 | 13.06 | - | - | - | - | |
39.53 | 7.29 | 38.48 ± 0.03 | 7.80 | 38.03 ± 0.04 | 7.54 | |
32.14 | 9.35 | 30.68 ± 0.04 | 8.61 | 30.49 ± 0.05 | 8.72 | |
22.79 | 9.09 | 22.07 ± 0.04 | 9.70 | 21.77 ± 0.07 | 8.77 | |
13.70 | 20.27 | 12.37 ± 0.07 | 9.52 | 13.00 ± 0.05 | 19.08 | |
- | - | 2.85 ± 0.04 | 20.81 | - | - | |
−6.57 | 21.76 | - | - | −6.08 ± 0.05 | 31.26 | |
- | - | −17.96 ± 0.04 | 22.60 | - | - | |
−28.33 | - | - | - | - | - | |
- | - | −40.56 ± 0.05 | - | −37.34 ± 0.05 | - |
Species | MCL2 | MCL3 | ||
logβ | logK | logβ | logK | |
AH | 10.32 ± 0.13 | 10.32 | 10.63 ± 0.13 | 10.63 |
AH2 | 20.99 ± 0.02 | 10.67 | 20.62 ± 0.12 | 9.99 |
AH3 | 30.71 ± 0.08 | 9.72 | 30.79 ± 0.11 | 10.17 |
AH4 | 40.58 ± 0.03 | 9.87 | 40.53 ± 0.05 | 9.74 |
AH5 | 49.40 ± 0.04 | 8.82 | 49.38 ± 0.07 | 8.85 |
AH6 | 55.13 ± 0.04 | 5.73 | 55.13 ± 0.07 | 5.75 |
Cu(II) complexes | ||||
MCL2 | MCL3 | |||
logβ | logK | logβ | logK | |
45.85 ± 0.14 | 6.25 | 46.69 ± 0.04 | 7.04 | |
39.60 ± 0.04 | 8.76 | 39.65 ± 0.05 | 9.39 | |
30.84 ± 0.07 | 9.30 | 30.26 ± 0.12 | 8.82 | |
21.54 ± 0.06 | 20.20 | 21.44 ± 0.06 | 19.84 | |
1.34 ± 0.06 | 22.08 | 1.60 ± 0.07 | 21.36 | |
−20.74 ± 0.08 | −19.76 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisowska, A.; Świątek, P.; Dębicki, F.; Lewińska, A.; Marciniak, A.; Pacini, L.; Papini, A.M.; Brasuń, J. The Role of the Unbinding Cycle on the Coordination Abilities of the Bi-Cyclopeptides toward Cu(II) Ions. Molecules 2024, 29, 2197. https://doi.org/10.3390/molecules29102197
Lisowska A, Świątek P, Dębicki F, Lewińska A, Marciniak A, Pacini L, Papini AM, Brasuń J. The Role of the Unbinding Cycle on the Coordination Abilities of the Bi-Cyclopeptides toward Cu(II) Ions. Molecules. 2024; 29(10):2197. https://doi.org/10.3390/molecules29102197
Chicago/Turabian StyleLisowska, Alicja, Paulina Świątek, Filip Dębicki, Agnieszka Lewińska, Aleksandra Marciniak, Lorenzo Pacini, Anna Maria Papini, and Justyna Brasuń. 2024. "The Role of the Unbinding Cycle on the Coordination Abilities of the Bi-Cyclopeptides toward Cu(II) Ions" Molecules 29, no. 10: 2197. https://doi.org/10.3390/molecules29102197
APA StyleLisowska, A., Świątek, P., Dębicki, F., Lewińska, A., Marciniak, A., Pacini, L., Papini, A. M., & Brasuń, J. (2024). The Role of the Unbinding Cycle on the Coordination Abilities of the Bi-Cyclopeptides toward Cu(II) Ions. Molecules, 29(10), 2197. https://doi.org/10.3390/molecules29102197