Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics
Abstract
:1. Introduction
2. Techniques and Methods Used for Protein Analysis
2.1. Separative Techniques
2.1.1. Electrophoresis
2.1.2. Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis or SDS-PAGE
2.2. Dimensional Electrophoresis (SDS-PAGE/Isoelectric Focusing)
2.2.1. Dimensional Electrophoresis (16-BAC/SDS-PAGE)
2.2.2. Blue Native PAGE
2.2.3. Capillary Electrophoresis
2.2.4. Free Flow Electrophoresis
2.3. Techniques for Characterization and Structural Analysis
2.3.1. X-ray Crystallography
2.3.2. Cryogenic Electron Microscopy
2.3.3. Nuclear Magnetic Resonance Spectroscopy
- Solution NMR is a technique that is important to study proteins in solution. It’s used to study membrane protein folding, interactions, conformational changes, and internal mobility, in addition to ligand-substrate interactions [124]. One of its main limitations is size, as it is particularly useful for studying small to medium-sized proteins. In the past decades, it went form only detecting 10 kDa proteins in the 1980s to around 25–35 kDa in the mid-1990s [117]. Recent advancements in high-field magnets and cryogenic probes, together with new sample preparation protocols and transverse relaxation-optimized methods, have pushed solution NMR protein size limitations to reach almost 100 kDa in some rare instances [117]. For instance, researchers were able to detect conformational changes in the CLC membrane transporter (100 kDa) by using a monomeric ClC-ec1 variant (50 kDa) [125]. Solution NMR has also contributed to the characterization of many integral membrane proteins [126]. These include Human voltage-dependent anion channel (VDAC-1) [127], Bacterial outer membrane protein G [128] and mitochondrial uncoupling protein 2 [129]
- Solid state NMR on the other hand, uses quick sample spinning or alignment to produce excellent resolution in membrane proteins [130]. One of the main areas where solid state NMR exceeds solution NMR is that ssNMR have no limitation on the size of the protein [131]. For instance, ssNMR has allowed the study of the structure and dynamic of BAM complex (200 kDa) in lipid bilayer [132].
2.4. Biophysical Techniques
2.4.1. Nanodiscs
2.4.2. Patch Clamp
2.4.3. Atomic Force Microscopy
2.4.4. Neutron Scattering
2.5. Computational Methods
3. Artificial Intelligence at the Service of Protein Structure
3.1. Application of AI
3.2. AI Methods in Biology
3.2.1. Alphafold2
3.2.2. RoseTTAFold
3.2.3. ESMFold
3.2.4. Improvements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollock, N.L.; Lee, S.C.; Patel, J.H.; Gulamhussein, A.A.; Rothnie, A.J. Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer. Biochim. Biophys. Acta Biomembr. 2018, 1860, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Harb, F.; Giudici-Orticoni, M.T.; Guiral, M.; Tinland, B. Electrophoretic mobility of a monotopic membrane protein inserted into the top of supported lipid bilayers. Eur. Phys. J. E 2016, 39, 127. [Google Scholar] [CrossRef]
- Zhou, C.; Zheng, Y.; Zhou, Y. Structure prediction of membrane proteins. Genom. Proteom. Bioinform. 2004, 2, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.H.; Lithgow, T.; Martin, L. Reconstitution of membrane proteins into model membranes: Seeking better ways to retain protein activities. Int. J. Mol. Sci. 2013, 14, 1589–1607. [Google Scholar] [CrossRef] [PubMed]
- Vinothkumar, K.R.; Henderson, R. Structures of membrane proteins. Q. Rev. Biophys. 2010, 43, 65–158. [Google Scholar] [CrossRef] [PubMed]
- Leanza, L.; Managò, A.; Zoratti, M.; Gulbins, E.; Szabo, I. Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. Biochim. Biophys. Acta 2016, 1863, 1385–1397. [Google Scholar] [CrossRef]
- Guan, L. Structure and mechanism of membrane transporters. Sci. Rep. 2022, 12, 13248. [Google Scholar] [CrossRef] [PubMed]
- Askari, A. The sodium pump and digitalis drugs: Dogmas and fallacies. Pharmacol. Res. Perspect. 2019, 7, e00505. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Yue, X.; Zhang, M.; Liu, P.; Li, G. Colorimetric in situ assay of membrane-bound enzyme based on lipid bilayer inhibition of ion transport. Theranostics 2018, 8, 3275–3283. [Google Scholar] [CrossRef]
- Syrovatkina, V.; Alegre, K.O.; Dey, R.; Huang, X.Y. Regulation, Signaling, and Physiological Functions of G-Proteins. J. Mol. Biol. 2016, 428, 3850–3868. [Google Scholar] [CrossRef]
- Lolodi, O.; Wang, Y.M.; Wright, W.C.; Chen, T. Differential Regulation of CYP3A4 and CYP3A5 and its Implication in Drug Discovery. Curr. Drug Metab. 2017, 18, 1095–1105. [Google Scholar] [CrossRef]
- Harb, F.F.; Tinland, B. Toward Electrophoretic Separation of Membrane Proteins in Supported n-Bilayers. ACS Omega 2020, 5, 27741–27748. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Ding, Y.; Tian, Y.; Opella, S.J.; Marassi, F.M. Membrane protein structure determination: Back to the membrane. Methods Mol. Biol. 2013, 1063, 145–158. [Google Scholar] [CrossRef]
- Trivedi, R.; Nagarajaram, H.A. Intrinsically Disordered Proteins: An Overview. Int. J. Mol. Sci. 2022, 23, 14050. [Google Scholar] [CrossRef] [PubMed]
- Jaakola, V.P.; Scalise, M. Membrane Proteins: New Approaches to Probes, Technologies, and Drug Design, Part II. SLAS Discov. 2019, 24, 941–942. [Google Scholar] [CrossRef]
- Das, B.B.; Park, S.H.; Opella, S.J. Membrane protein structure from rotational diffusion. Biochim. Biophys. Acta 2015, 1848, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Yeagle, P.L.; Lee, D.A. Membrane protein structure. Biochim. Biophys. Acta 2002, 1565, 143. [Google Scholar] [CrossRef] [PubMed]
- Escribá, P.V.; González-Ros, J.M.; Goñi, F.M.; Kinnunen, P.K.; Vigh, L.; Sánchez-Magraner, L.; Fernández, A.M.; Busquets, X.; Horváth, I.; Barceló-Coblijn, G. Membranes: A meeting point for lipids, proteins and therapies. J. Cell Mol. Med. 2008, 12, 829–875. [Google Scholar] [CrossRef] [PubMed]
- Moraes, I.; Evans, G.; Sanchez-Weatherby, J.; Newstead, S.; Stewart, P.D. Membrane protein structure determination—The next generation. Biochim. Biophys. Acta 2014, 1838, 78–87. [Google Scholar] [CrossRef]
- Shinde Dipa, V.; Surati, J. Review on: Electrophoresis: Method for Protein Separation. Pharma Sci. Monit. 2016, 7, 192–203. [Google Scholar]
- Ferrara, S.D.; Cecchetto, G.; Cecchi, R.; Favretto, D.; Grabherr, S.; Ishikawa, T.; Kondo, T.; Montisci, M.; Pfeiffer, H.; Bonati, M.R. Back to the Future-Part 2. Post-mortem assessment and evolutionary role of the bio-medicolegal sciences. Int. J. Leg. Med. 2017, 131, 1085–1101. [Google Scholar] [CrossRef] [PubMed]
- Boonham, N.; Glover, R.; Tomlinson, J.; Mumford, R. Exploiting generic platform technologies for the detection and identification of plant pathogens. In Sustainable Disease Management in a European Context; Springer: Dordrecht, The Netherlands, 2008; pp. 355–363. [Google Scholar]
- Burnham-Curtis, M.K.; Straughan, D.J.; Hamlin, B.C.; Draheim, H.M.; Gray Partin, T.K.; Wostenberg, D.J. Wildlife Forensic Genetics and Biodiversity Conservation: The Intersection of Science, Species Management, and the Law. In Wildlife Biodiversity Conservation: Multidisciplinary and Forensic Approaches; Springer: Cham, Switzerland, 2021; pp. 163–191. [Google Scholar]
- Basim, E.; BASIM, H. Pulsed-field gel electrophoresis (PFGE) technique and its use in molecular biology. Turk. J. Biol. 2001, 25, 405–418. [Google Scholar]
- Melillo, A. Applications of serum protein electrophoresis in exotic pet medicine. Vet. Clin. Exot. Anim. Pract. 2013, 16, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Woolfork, A.G.; Suh, K.; Ovbude, S.; Bi, C.; Elzoeiry, M.; Hage, D.S. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review. J. Pharm. Biomed. Anal. 2020, 177, 112882. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Haniu, H.; Komori, N. Determination of Protein Molecular Weights on SDS-PAGE. Methods Mol. Biol. 2019, 1855, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Brunelle, J.L.; Green, R. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzym. 2014, 541, 151–159. [Google Scholar] [CrossRef]
- Di Girolamo, F.; Ponzi, M.; Crescenzi, M.; Alessandroni, J.; Guadagni, F. A simple and effective method to analyze membrane proteins by SDS-PAGE and MALDI mass spectrometry. Anticancer Res. 2010, 30, 1121–1129. [Google Scholar] [PubMed]
- Wang, Z.; Mim, C. Optimizing purification of the peripheral membrane protein FAM92A1 fused to a modified spidroin tag. Protein Expr. Purif. 2022, 189, 105992. [Google Scholar] [CrossRef]
- Kotani, N.; Nakano, T.; Kuwahara, R. Host cell membrane proteins located near SARS-CoV-2 spike protein attachment sites are identified using proximity labeling and proteomic analysis. J. Biol. Chem. 2022, 298, 102500. [Google Scholar] [CrossRef]
- Fan, F.; Wang, J.; Chen, H.; Wei, L.; Zhang, Z. Isolation and protein MdtQ analysis of outer membrane vesicles released by carbapenem-resistant Klebsiella pneumoniae. Microb. Pathog. 2023, 183, 106325. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, J.; Manabe, T.; Tan, W. Comparison of the performance of 1D SDS-PAGE with nondenaturing 2DE on the analysis of proteins from human bronchial smooth muscle cells using quantitative LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1105, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Braun, R.J.; Kinkl, N.; Beer, M.; Ueffing, M. Two-dimensional electrophoresis of membrane proteins. Anal. Bioanal. Chem. 2007, 389, 1033–1045. [Google Scholar] [CrossRef]
- Meleady, P. Two-Dimensional Gel Electrophoresis and 2D-DIGE. Methods Mol. Biol. 2018, 1664, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Capdeville, P.; Martin, L.; Cholet, S.; Damont, A.; Audran, M.; Ericsson, M.; Fenaille, F.; Marchand, A. Evaluation of erythropoietin biosimilars Epotin™, Hemax® and Jimaixin™ by electrophoretic methods used for doping control analysis and specific N-glycan analysis revealed structural differences from original epoetin alfa drug Eprex®. J. Pharm. Biomed. Anal. 2021, 194, 113750. [Google Scholar] [CrossRef]
- Molloy, M.P.; Herbert, B.R.; Slade, M.B.; Rabilloud, T.; Nouwens, A.S.; Williams, K.L.; Gooley, A.A. Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem. 2000, 267, 2871–2881. [Google Scholar] [CrossRef] [PubMed]
- Hamid, N.; Jain, S. Characterization of an outer membrane protein of Salmonella enterica serovar Typhimurium that confers protection against typhoid. Clin. Vaccine Immunol. 2008, 15, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Liu, Y.; Ohnishi, K.; Oshima, S.-i. A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate. Vaccine 2004, 22, 3411–3418. [Google Scholar] [CrossRef]
- Peng, X.; Ye, X.; Wang, S. Identification of novel immunogenic proteins of Shigella flexneri 2a by proteomic methodologies. Vaccine 2004, 22, 2750–2756. [Google Scholar] [CrossRef]
- Cullen, P.A.; Cordwell, S.J.; Bulach, D.M.; Haake, D.A.; Adler, B. Global analysis of outer membrane proteins from Leptospira interrogans serovar Lai. Infect. Immun. 2002, 70, 2311–2318. [Google Scholar] [CrossRef]
- Hu, Q.; Ding, C.; Tu, J.; Wang, X.; Han, X.; Duan, Y.; Yu, S. Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer. Vet. Microbiol. 2012, 157, 428–438. [Google Scholar] [CrossRef]
- Zhang, M.J.; Gu, Y.X.; Di, X.; Zhao, F.; You, Y.H.; Meng, F.L.; Zhang, J.Z. In Vitro Protein Expression Profile of Campylobacter jejuni Strain NCTC11168 by Two-dimensional Gel Electrophoresis and Mass Spectrometry. Biomed. Environ. Sci. 2013, 26, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Bednarz-Misa, I.; Serek, P.; Dudek, B.; Pawlak, A.; Bugla-Płoskońska, G.; Gamian, A. Application of zwitterionic detergent to the solubilization of Klebsiella pneumoniae outer membrane proteins for two-dimensional gel electrophoresis. J. Microbiol. Methods 2014, 107, 74–79. [Google Scholar] [CrossRef]
- Smejkal, G.; Kakumanu, S. Two-Dimensional 16-BAC/SDS Polyacrylamide Gel Electrophoresis of Mitochondrial Membrane Proteins. Methods Mol. Biol. 2019, 1871, 55–68. [Google Scholar] [CrossRef]
- Philipp, S.; Jakoby, T.; Tholey, A.; Janssen, O.; Leippe, M.; Gelhaus, C. Cationic detergents enable the separation of membrane proteins of Plasmodium falciparum-infected erythrocytes by 2D gel electrophoresis. Electrophoresis 2012, 33, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Wittig, I.; Braun, H.P.; Schägger, H. Blue native PAGE. Nat. Protoc. 2006, 1, 418–428. [Google Scholar] [CrossRef]
- Nickel, C.; Brylok, T.; Schwenkert, S. In Vivo Radiolabeling of Arabidopsis Chloroplast Proteins and Separation of Thylakoid Membrane Complexes by Blue Native PAGE. Methods Mol. Biol. 2016, 1450, 233–245. [Google Scholar] [CrossRef]
- Moreno-Loshuertos, R.; Marco-Brualla, J.; Meade, P.; Soler-Agesta, R.; Enriquez, J.A.; Fernández-Silva, P. How hot can mitochondria be? Incubation at temperatures above 43 °C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria. Mitochondrion 2023, 69, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Gibb, A.A.; Xu, H.; Liu, S.; Hill, B.G. The metabolic state of the heart regulates mitochondrial supercomplex abundance in mice. Redox Biol. 2023, 63, 102740. [Google Scholar] [CrossRef]
- Shallan, A.; Guijt, R.; Breadmore, M. Capillary Electrophoresis: Basic Principles; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Kustos, T.; Kustos, I.; Gonda, E.; Kocsis, B.; Szabó, G.; Kilár, F. Capillary electrophoresis study of outer membrane proteins of Pseudomonas strains upon antibiotic treatment. J. Chromatogr. A 2002, 979, 277–284. [Google Scholar] [CrossRef]
- Danish, A.; Lee, S.Y.; Müller, C.E. Quantification of green fluorescent protein-(GFP-) tagged membrane proteins by capillary gel electrophoresis. Analyst 2017, 142, 3648–3655. [Google Scholar] [CrossRef]
- Tani, Y.; Kaneta, T. Indirect capillary electrophoresis immunoassay of membrane protein in extracellular vesicles. J. Chromatogr. A 2020, 1629, 461513. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Liu, L.; Yim, W.C.; Cushman, J.C.; Barkla, B.J. Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in Mesembryanthemum crystallinum. Int. J. Mol. Sci. 2021, 22, 5020. [Google Scholar] [CrossRef] [PubMed]
- Eubel, H.; Lee, C.P.; Kuo, J.; Meyer, E.H.; Taylor, N.L.; Millar, A.H. Free-flow electrophoresis for purification of plant mitochondria by surface charge. Plant J. 2007, 52, 583–594. [Google Scholar] [CrossRef] [PubMed]
- De Michele, R.; McFarlane, H.E.; Parsons, H.T.; Meents, M.J.; Lao, J.; González Fernández-Niño, S.M.; Petzold, C.J.; Frommer, W.B.; Samuels, A.L.; Heazlewood, J.L. Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings. J. Proteome Res. 2016, 15, 900–913. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Yang, Y.; Xia, C.; Lee, T.-C.; Pu, Q.; Lan, Y.; Zhang, Y. Diffusional microfluidics for protein analysis. TrAC Trends Anal. Chem. 2022, 146, 116508. [Google Scholar] [CrossRef]
- Fe, C.d.l.; Assunção, P.; Rosales, R.S.; Antunes, T.; Poveda, J.B. Characterisation of protein and antigen variability among Mycoplasma mycoides subsp. mycoides (LC) and Mycoplasma agalactiae field strains by SDS-PAGE and immunoblotting. Vet. J. 2006, 171, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Pujol-Pina, R.; Vilaprinyó-Pascual, S.; Mazzucato, R.; Arcella, A.; Vilaseca, M.; Orozco, M.; Carulla, N. SDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer’s disease: Appealing for ESI-IM-MS. Sci. Rep. 2015, 5, 14809. [Google Scholar] [CrossRef]
- Nowakowski, A.B.; Wobig, W.J.; Petering, D.H. Native SDS-PAGE: High resolution electrophoretic separation of proteins with retention of native properties including bound metal ions. Metallomics 2014, 6, 1068–1078. [Google Scholar] [CrossRef]
- Rabilloud, T.; Chevallet, M.; Luche, S.; Lelong, C. Two-dimensional gel electrophoresis in proteomics: Past, present and future. J. Proteom. 2010, 73, 2064–2077. [Google Scholar] [CrossRef]
- Joshi, K.; Patil, D. Chapter 9—Proteomics. In Innovative Approaches in Drug Discovery; Patwardhan, B., Chaguturu, R., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 273–294. [Google Scholar] [CrossRef]
- Macfarlane, D.E. Use of benzyldimethyl-n-hexadecylammonium chloride (“16-BAC”), a cationic detergent, in an acidic polyacrylamide gel electrophoresis system to detect base labile protein methylation in intact cells. Anal. Biochem. 1983, 132, 231–235. [Google Scholar] [CrossRef]
- Hartinger, J.; Stenius, K.; Högemann, D.; Jahn, R. 16-BAC/SDS-PAGE: A two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal. Biochem. 1996, 240, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, V.; Eichacker, L.A. Analysis of membrane protein complexes by blue native PAGE. Proteomics 2006, 6 (Suppl. 2), 6–15. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xia, D. The use of blue native PAGE in the evaluation of membrane protein aggregation states for crystallization. J. Appl. Crystallogr. 2008, 41, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, V.; Eichacker, L.A. Solubilization of membrane protein complexes for blue native PAGE. J. Proteom. 2008, 71, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Weiland, F.; Zammit, C.M.; Reith, F.; Hoffmann, P. High resolution two-dimensional electrophoresis of native proteins. Electrophoresis 2014, 35, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, F.; Liu, Y. Recent Advances in Enhancing the Sensitivity and Resolution of Capillary Electrophoresis. J. Chromatogr. Sci. 2013, 51, 666–683. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; McCool, E.N.; Yang, Z.; Shen, X.; Lubeckyj, R.A.; Xu, T.; Wang, Q.; Sun, L. Recent advances (2019–2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. Mass Spectrom. Rev. 2023, 42, 617–642. [Google Scholar] [CrossRef]
- Fonslow, B.R.; Yates, J.R., 3rd. Capillary electrophoresis applied to proteomic analysis. J. Sep. Sci. 2009, 32, 1175–1188. [Google Scholar] [CrossRef]
- Masár, M.; Hradski, J.; Schmid, M.G.; Szucs, R. Advantages and Pitfalls of Capillary Electrophoresis of Pharmaceutical Compounds and Their Enantiomers in Complex Samples: Comparison of Hydrodynamically Opened and Closed Systems. Int. J. Mol. Sci. 2020, 21, 6852. [Google Scholar] [CrossRef]
- Rabilloud, T.; Vaezzadeh, A.R.; Potier, N.; Lelong, C.; Leize-Wagner, E.; Chevallet, M. Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom. Rev. 2009, 28, 816–843. [Google Scholar] [CrossRef]
- Eichacker, L.A.; Weber, G.; Sukop-Köppel, U.; Wildgruber, R. Free flow electrophoresis for separation of native membrane protein complexes. Methods Mol. Biol. 2015, 1295, 415–425. [Google Scholar] [CrossRef]
- Novo, P.; Jender, M.; Dell’Aica, M.; Zahedi, R.P.; Janasek, D. Free Flow Electrophoresis Separation of Proteins and DNA Using Microfluidics and Polycarbonate Membranes. Procedia Eng. 2016, 168, 1382–1385. [Google Scholar] [CrossRef]
- Turgeon, R.T.; Bowser, M.T. Micro free-flow electrophoresis: Theory and applications. Anal. Bioanal. Chem. 2009, 394, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Handing, K.B.; Zimmerman, M.D.; Shabalin, I.G.; Almo, S.C.; Minor, W. X-ray crystallography over the past decade for novel drug discovery—Where are we heading next? Expert Opin. Drug Discov. 2015, 10, 975–989. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, W.B.; Bodenheimer, A.M.; Meilleur, F. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch. Biochem. Biophys. 2016, 602, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Nannenga, B.L.; Iadanza, M.G.; Gonen, T. Three-dimensional electron crystallography of protein microcrystals. Elife 2013, 2, e01345. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Nagai, T.; Srivastava, A.; Miyashita, O.; Tama, F. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Int. J. Mol. Sci. 2018, 19, 3401. [Google Scholar] [CrossRef] [PubMed]
- Smyth, M.S.; Martin, J.H. X ray crystallography. Mol. Pathol. 2000, 53, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kermani, A.A. A guide to membrane protein X-ray crystallography. FEBS J. 2021, 288, 5788–5804. [Google Scholar] [CrossRef]
- Kwan, T.O.C.; Axford, D.; Moraes, I. Membrane protein crystallography in the era of modern structural biology. Biochem. Soc. Trans. 2020, 48, 2505–2524. [Google Scholar] [CrossRef]
- Li, D.; Caffrey, M. Structure and Functional Characterization of Membrane Integral Proteins in the Lipid Cubic Phase. J. Mol. Biol. 2020, 432, 5104–5123. [Google Scholar] [CrossRef] [PubMed]
- Landau, E.M.; Rosenbusch, J.P. Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 14532–14535. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.E.; Zhang, F.; Yizhar, O.; Ramakrishnan, C.; Nishizawa, T.; Hirata, K.; Ito, J.; Aita, Y.; Tsukazaki, T.; Hayashi, S.; et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 2012, 482, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Garman, E.F.; Weik, M. Radiation Damage in Macromolecular Crystallography. Methods Mol. Biol. 2017, 1607, 467–489. [Google Scholar] [CrossRef] [PubMed]
- Nass, K. Radiation damage in protein crystallography at X-ray free-electron lasers. Acta Crystallogr. D Struct. Biol. 2019, 75, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Nass Kovacs, G. Potential of X-ray free-electron lasers for challenging targets in structure-based drug discovery. Drug Discov. Today Technol. 2021, 39, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Nango, E.; Iwata, S. Recent progress in membrane protein dynamics revealed by X-ray free electron lasers: Molecular movies of microbial rhodopsins. Curr. Opin. Struct. Biol. 2023, 81, 102629. [Google Scholar] [CrossRef] [PubMed]
- Maveyraud, L.; Mourey, L. Protein X-ray Crystallography and Drug Discovery. Molecules 2020, 25, 1030. [Google Scholar] [CrossRef]
- Schroder, G.C.; Meilleur, F. Metalloprotein catalysis: Structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr. D Struct. Biol. 2021, 77, 1251–1269. [Google Scholar] [CrossRef]
- Gajdos, L.; Blakeley, M.P.; Haertlein, M.; Forsyth, V.T.; Devos, J.M.; Imberty, A. Neutron crystallography reveals mechanisms used by Pseudomonas aeruginosa for host-cell binding. Nat. Commun. 2022, 13, 194. [Google Scholar] [CrossRef]
- Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 2019, 294, 5181–5197. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Wolf, M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Yip, K.M.; Fischer, N.; Paknia, E.; Chari, A.; Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 2020, 587, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.M.; Li, X.; Lai, M.; Terwilliger, T.C.; Beck, J.R.; Wohlschlegel, J.; Goldberg, D.E.; Fitzpatrick, A.W.P.; Zhou, Z.H. Bottom-up structural proteomics: CryoEM of protein complexes enriched from the cellular milieu. Nat. Methods 2020, 17, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.D.; Hao, J.; Shen, C.H.; Deng, X.M.; Yun, C.H. Atomic resolution Cryo-EM structure of human proteasome activator PA28gamma. Int. J. Biol. Macromol. 2022, 219, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Nakane, T.; Kotecha, A.; Sente, A.; McMullan, G.; Masiulis, S.; Brown, P.; Grigoras, I.T.; Malinauskaite, L.; Malinauskas, T.; Miehling, J.; et al. Single-particle cryo-EM at atomic resolution. Nature 2020, 587, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Earl, L.A.; Falconieri, V.; Milne, J.L.; Subramaniam, S. Cryo-EM: Beyond the microscope. Curr. Opin. Struct. Biol. 2017, 46, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Quade, N.; Boehringer, D.; Leibundgut, M.; van den Heuvel, J.; Ban, N. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-A resolution. Nat. Commun. 2015, 6, 7646. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.H.; Tan, Y.Z.; Carragher, B.; Potter, C.S.; Lyumkis, D.; Williamson, J.R. Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell 2016, 167, 1610–1622.e1615. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.P.; Chari, A.; Ciferri, C.; Liu, W.T.; Remigy, H.W.; Stark, H.; Wiesmann, C. Cryo-EM in drug discovery: Achievements, limitations and prospects. Nat. Rev. Drug Discov. 2018, 17, 471–492. [Google Scholar] [CrossRef]
- Cai, K.; Zhang, X.; Bai, X.C. Cryo-electron Microscopic Analysis of Single-Pass Transmembrane Receptors. Chem. Rev. 2022, 122, 13952–13988. [Google Scholar] [CrossRef] [PubMed]
- Wentinck, K.; Gogou, C.; Meijer, D.H. Putting on molecular weight: Enabling cryo-EM structure determination of sub-100-kDa proteins. Curr. Res. Struct. Biol. 2022, 4, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Safdari, H.A.; Pandey, S.; Shukla, A.K.; Dutta, S. Illuminating GPCR Signaling by Cryo-EM. Trends Cell Biol. 2018, 28, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Defaus, S.; Andreu, D. Disrupting GPCR Complexes with Smart Drug-like Peptides. Pharmaceutics 2022, 14, 161. [Google Scholar] [CrossRef] [PubMed]
- Klenotic, P.A.; Morgan, C.E.; Yu, E.W. Cryo-EM as a tool to study bacterial efflux systems and the membrane proteome. Fac. Rev. 2021, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lizer, N.; Wu, Z.; Morgan, C.E.; Yan, Y.; Zhang, Q.; Yu, E.W. Cryo-Electron Microscopy Structures of a Campylobacter Multidrug Efflux Pump Reveal a Novel Mechanism of Drug Recognition and Resistance. Microbiol. Spectr. 2023, 11, e0119723. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Draczkowski, P.; Wang, Y.S.; Chang, C.Y.; Chien, Y.C.; Cheng, Y.H.; Wu, Y.M.; Wang, C.H.; Chang, Y.C.; Chang, Y.C.; et al. In situ structure and dynamics of an alphacoronavirus spike protein by cryo-ET and cryo-EM. Nat. Commun. 2022, 13, 4877. [Google Scholar] [CrossRef] [PubMed]
- Dunstone, M.A.; de Marco, A. Cryo-electron tomography: An ideal method to study membrane-associated proteins. Philos. Trans. R Soc. Lond B Biol. Sci. 2017, 372, 20160210. [Google Scholar] [CrossRef]
- Opella, S.J. Solid-state NMR and membrane proteins. J. Magn. Reson. 2015, 253, 129–137. [Google Scholar] [CrossRef]
- Speyer, C.B.; Baleja, J.D. Use of nuclear magnetic resonance spectroscopy in diagnosis of inborn errors of metabolism. Emerg. Top. Life Sci. 2021, 5, 39–48. [Google Scholar] [CrossRef]
- Patching, S.G. Solid-state NMR structures of integral membrane proteins. Mol. Membr. Biol. 2015, 32, 156–178. [Google Scholar] [CrossRef] [PubMed]
- Thoma, J.; Burmann, B.M. High-Resolution In Situ NMR Spectroscopy of Bacterial Envelope Proteins in Outer Membrane Vesicles. Biochemistry 2020, 59, 1656–1660. [Google Scholar] [CrossRef] [PubMed]
- Puthenveetil, R.; Vinogradova, O. Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments. J. Biol. Chem. 2019, 294, 15914–15931. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Bohme, J.; Scheidt, H.A.; Grunder, W.; Rammelt, S.; Hacker, M.; Schulz-Siegmund, M.; Huster, D. 31P and 13C solid-state NMR spectroscopy to study collagen synthesis and biomineralization in polymer-based bone implants. NMR Biomed. 2012, 25, 464–475. [Google Scholar] [CrossRef]
- Henry, G.D.; Sykes, B.D. Structure and dynamics of detergent-solubilized M13 coat protein (an integral membrane protein) determined by 13C and 15N nuclear magnetic resonance spectroscopy. Biochem. Cell Biol. 1990, 68, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Rose-Sperling, D.; Tran, M.A.; Lauth, L.M.; Goretzki, B.; Hellmich, U.A. 19F NMR as a versatile tool to study membrane protein structure and dynamics. Biol. Chem. 2019, 400, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.C.; Maduke, M. Expanding the membrane-protein NMR toolkit. Nat. Chem. Biol. 2020, 16, 937–938. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Forman-Kay, J.D. NMR insights into dynamic, multivalent interactions of intrinsically disordered regions: From discrete complexes to condensates. Essays Biochem. 2022, 66, 863–873. [Google Scholar] [CrossRef]
- Palmer, A.G., 3rd. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 2004, 104, 3623–3640. [Google Scholar] [CrossRef]
- Chill, J.H.; Naider, F. A solution NMR view of protein dynamics in the biological membrane. Curr. Opin. Struct. Biol. 2011, 21, 627–633. [Google Scholar] [CrossRef]
- Abraham, S.J.; Cheng, R.C.; Chew, T.A.; Khantwal, C.M.; Liu, C.W.; Gong, S.; Nakamoto, R.K.; Maduke, M. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. J. Biomol. NMR 2015, 61, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Danmaliki, G.I.; Hwang, P.M. Solution NMR spectroscopy of membrane proteins. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183356. [Google Scholar] [CrossRef] [PubMed]
- Hiller, S.; Garces, R.G.; Malia, T.J.; Orekhov, V.Y.; Colombini, M.; Wagner, G. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 2008, 321, 1206–1210. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Tamm, L.K. Structure of outer membrane protein G by solution NMR spectroscopy. Proc. Natl. Acad. Sci. USA 2007, 104, 16140–16145. [Google Scholar] [CrossRef] [PubMed]
- Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 2011, 476, 109–113. [Google Scholar] [CrossRef]
- Yeh, V.; Goode, A.; Bonev, B.B. Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR. Biology 2020, 9, 396. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Han, Y.; Paramasivam, S.; Yan, S.; Siglin, A.E.; Williams, J.C.; Byeon, I.J.; Ahn, J.; Gronenborn, A.M.; Polenova, T. Solid-state NMR spectroscopy of protein complexes. Methods Mol. Biol. 2012, 831, 303–331. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Pinto, C.; Baldus, M. Divide and Conquer: A Tailored Solid-state NMR Approach to Study Large Membrane Protein Complexes. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203319. [Google Scholar] [CrossRef]
- Gopinath, T.; Weber, D.; Wang, S.; Larsen, E.; Veglia, G. Solid-State NMR of Membrane Proteins in Lipid Bilayers: To Spin or Not To Spin? Acc. Chem. Res. 2021, 54, 1430–1439. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Hou, G.; Agarwal, V.; Su, Y.; Ramamoorthy, A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem. Rev. 2023, 123, 918–988. [Google Scholar] [CrossRef]
- Chandler, B.; Todd, L.; Smith, S.O. Magic angle spinning NMR of G protein-coupled receptors. Prog. Nucl. Magn. Reson. Spectrosc. 2022, 128, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Bucker, R.; Hogan-Lamarre, P.; Mehrabi, P.; Schulz, E.C.; Bultema, L.A.; Gevorkov, Y.; Brehm, W.; Yefanov, O.; Oberthur, D.; Kassier, G.H.; et al. Serial protein crystallography in an electron microscope. Nat. Commun. 2020, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- Nogales, E. The development of cryo-EM into a mainstream structural biology technique. Nat. Methods 2016, 13, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.T.; Rainey, J.K. On-cell nuclear magnetic resonance spectroscopy to probe cell surface interactions. Biochem. Cell Biol. 2021, 99, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Majdinasab, E.J.; Fiori, M.C.; Liang, H.; Altenberg, G.A. Polymer-Encased Nanodiscs and Polymer Nanodiscs: New Platforms for Membrane Protein Research and Applications. Front. Bioeng. Biotechnol. 2020, 8, 598450. [Google Scholar] [CrossRef] [PubMed]
- Padmanabha Das, K.M.; Shih, W.M.; Wagner, G.; Nasr, M.L. Large Nanodiscs: A Potential Game Changer in Structural Biology of Membrane Protein Complexes and Virus Entry. Front. Bioeng. Biotechnol. 2020, 8, 539. [Google Scholar] [CrossRef]
- Sligar, S.G.; Denisov, I.G. Nanodiscs: A toolkit for membrane protein science. Protein Sci. 2021, 30, 297–315. [Google Scholar] [CrossRef]
- Bell, D.C.; Fermini, B. Use of automated patch clamp in cardiac safety assessment: Past, present & future perspectives. J. Pharmacol. Toxicol. Methods 2021, 111, 107114. [Google Scholar] [CrossRef]
- Leech, C.A.; Holz, G.G.t. Application of patch clamp methods to the study of calcium currents and calcium channels. Methods Cell Biol. 1994, 40, 135–151. [Google Scholar] [CrossRef]
- Bell, D.C.; Dallas, M.L. Using automated patch clamp electrophysiology platforms in pain-related ion channel research: Insights from industry and academia. Br. J. Pharmacol. 2018, 175, 2312–2321. [Google Scholar] [CrossRef]
- Ruggeri, F.S.; Sneideris, T.; Vendruscolo, M.; Knowles, T.P.J. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch. Biochem. Biophys. 2019, 664, 134–148. [Google Scholar] [CrossRef]
- Pleshakova, T.O.; Bukharina, N.S.; Archakov, A.I.; Ivanov, Y.D. Atomic Force Microscopy for Protein Detection and Their Physicosmall es, Cyrillichemical Characterization. Int. J. Mol. Sci. 2018, 19, 1142. [Google Scholar] [CrossRef] [PubMed]
- Fotiadis, D. Atomic force microscopy for the study of membrane proteins. Curr. Opin. Biotechnol. 2012, 23, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Sanganna Gari, R.R.; Montalvo-Acosta, J.J.; Heath, G.R.; Jiang, Y.; Gao, X.; Nimigean, C.M.; Chipot, C.; Scheuring, S. Correlation of membrane protein conformational and functional dynamics. Nat. Commun. 2021, 12, 4363. [Google Scholar] [CrossRef]
- Scholl, Z.N.; Marszalek, P.E. AFM-Based Single-Molecule Force Spectroscopy of Proteins. Methods Mol. Biol. 2018, 1814, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Medalsy, I.D.; Müller, D.J. Nanomechanical Properties of Proteins and Membranes Depend on Loading Rate and Electrostatic Interactions. ACS Nano 2013, 7, 2642–2650. [Google Scholar] [CrossRef]
- Nakagawa, H.; Saio, T.; Nagao, M.; Inoue, R.; Sugiyama, M.; Ajito, S.; Tominaga, T.; Kawakita, Y. Conformational dynamics of a multidomain protein by neutron scattering and computational analysis. Biophys. J. 2021, 120, 3341–3354. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, J.; Du, X.; Feng, G.; Dai, T.; Li, X.; Liu, D. How neutron scattering techniques benefit investigating structures and dynamics of monoclonal antibody. Biochim. Biophys. Acta Gen. Subj. 2022, 1866, 130206. [Google Scholar] [CrossRef]
- Stingaciu, L.R. Study of Protein Dynamics via Neutron Spin Echo Spectroscopy. J. Vis. Exp. 2022, e61862. [Google Scholar] [CrossRef]
- Gołek, F.; Mazur, P.; Ryszka, Z.; Zuber, S. AFM image artifacts. Appl. Surf. Sci. 2014, 304, 11–19. [Google Scholar] [CrossRef]
- An, Y.; Manuguri, S.S.; Malmström, J. Atomic Force Microscopy of Proteins. Methods Mol. Biol. 2020, 2073, 247–285. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, A.; Tennant, D.A.; Ye, F.; Zhang, Q.; Grigera, S.A. Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure. Commun. Mater. 2022, 3, 84. [Google Scholar] [CrossRef]
- Hosseini, M.; Arif, M.; Keshavarz, A.; Iglauer, S. Neutron scattering: A subsurface application review. Earth-Sci. Rev. 2021, 221, 103755. [Google Scholar] [CrossRef]
- Neumann, D.A. Neutron scattering and hydrogenous materials. Mater. Today 2006, 9, 34–41. [Google Scholar] [CrossRef]
- Seffernick, J.T.; Lindert, S. Hybrid methods for combined experimental and computational determination of protein structure. J. Chem. Phys. 2020, 153, 240901. [Google Scholar] [CrossRef] [PubMed]
- Tieleman, D.P.; Sejdiu, B.I.; Cino, E.A.; Smith, P.; Barreto-Ojeda, E.; Khan, H.M.; Corradi, V. Insights into lipid-protein interactions from computer simulations. Biophys. Rev. 2021, 13, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Szwabowski, G.L.; Baker, D.L.; Parrill, A.L. Application of computational methods for class A GPCR Ligand discovery. J. Mol. Graph. Model. 2023, 121, 108434. [Google Scholar] [CrossRef] [PubMed]
- Townsend-Nicholson, A.; Altwaijry, N.; Potterton, A.; Morao, I.; Heifetz, A. Computational prediction of GPCR oligomerization. Curr. Opin. Struct. Biol. 2019, 55, 178–184. [Google Scholar] [CrossRef]
- Logan, D.T. Interactive model building in neutron macromolecular crystallography. Methods Enzym. 2020, 634, 201–224. [Google Scholar] [CrossRef]
- Riley, B.T.; Wankowicz, S.A.; de Oliveira, S.H.P.; van Zundert, G.C.P.; Hogan, D.W.; Fraser, J.S.; Keedy, D.A.; van den Bedem, H. qFit 3: Protein and ligand multiconformer modeling for X-ray crystallographic and single-particle cryo-EM density maps. Protein Sci. 2021, 30, 270–285. [Google Scholar] [CrossRef]
- Yu, J.; Li, S.; Chen, D.; Liu, D.; Guo, H.; Yang, C.; Zhang, W.; Zhang, L.; Zhao, G.; Tu, X.; et al. Crystal Structure of Human CD47 in Complex with Engineered SIRPα.D1(N80A). Molecules 2022, 27, 5574. [Google Scholar] [CrossRef] [PubMed]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkóczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2016. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Crandall, J.W.; Oudah, M.; Chenlinangjia, T.; Ishowo-Oloko, F.; Abdallah, S.; Bonnefon, J.F.; Cebrian, M.; Shariff, A.F.; Goodrich, M.A.; Rahwan, I. Cooperating with machines. Nat. Commun. 2017, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Feijóo, C.; Kwon, Y.; Bauer, J.M.; Bohlin, E.; Howell, B.; Jain, R.; Potgieter, P.; Vu, K.; Whalley, J.; Xia, J. Harnessing artificial intelligence (AI) to increase wellbeing for all: The case for a new technology diplomacy. Telecomm. Policy 2020, 44, 101988. [Google Scholar] [CrossRef]
- Biggi, G.; Stilgoe, J. Artificial Intelligence in Self-Driving Cars Research and Innovation: A Scientometric and Bibliometric Analysis. Soc. Sci. Res. Netw. 2021, 28. [Google Scholar] [CrossRef]
- Rawlings, C.J.; Fox, J.P. Artificial intelligence in molecular biology: A review and assessment. Philos. Trans. R Soc. Lond. B Biol. Sci. 1994, 344, 353–362; discussion 362–353. [Google Scholar] [CrossRef]
- Kolluri, S.; Lin, J.; Liu, R.; Zhang, Y.; Zhang, W. Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: A Review. AAPS J. 2022, 24, 19. [Google Scholar] [CrossRef]
- Dias, R.; Torkamani, A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019, 11, 70. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef]
- Lee, C.; Su, B.H.; Tseng, Y.J. Comparative studies of AlphaFold, RoseTTAFold and Modeller: A case study involving the use of G-protein-coupled receptors. Brief. Bioinform. 2022, 23, bbac308. [Google Scholar] [CrossRef]
- AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 2019, 35, 4862–4865. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Elofsson, A. Progress at protein structure prediction, as seen in CASP15. Curr. Opin. Struct. Biol. 2023, 80, 102594. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2022, preprint. [Google Scholar] [CrossRef]
- Bryant, P.; Pozzati, G.; Zhu, W.; Shenoy, A.; Kundrotas, P.; Elofsson, A. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat. Commun. 2022, 13, 6028. [Google Scholar] [CrossRef] [PubMed]
- Azzaz, F.; Yahi, N.; Chahinian, H.; Fantini, J. The Epigenetic Dimension of Protein Structure Is an Intrinsic Weakness of the AlphaFold Program. Biomolecules 2022, 12, 1527. [Google Scholar] [CrossRef] [PubMed]
- Laurents, D.V. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Front. Mol. Biosci. 2022, 9, 906437. [Google Scholar] [CrossRef]
Separation and Analysis | ||||
---|---|---|---|---|
Technique | Description | Advantages | Limitations | References |
SDS-PAGE Sodium dodecyl-sulfate gel electrophoresis | Separation method allowing protein separation by mass |
|
| [27,28,29,59,60,61] |
2-Dimensional Electrophoresis (SDS-PAGE/IEF) | Technique combining SDS-PAGE and Isoelectric focusing for the separation based on pI and mass. |
|
| [34,35,62,63] |
2-Dimensional Electrophoresis (16-BAC/SDS-PAGE) | This combines SDS-PAGE and the use of the 16-BAC cationic detergent with a separation based on charge and hydrophobicity |
|
| [34,45,64,65] |
Blue Native PAGE (BN-PAGE) | While preserving proteins’ native state, this protocol is used to study and isolate membrane proteins. |
|
| [47,48,66,67,68,69] |
Capillary Electrophoresis | An analytical method separating charged proteins based on their electrical mobility. |
|
| [70,71,72,73,74] |
Free Flow Electrophoresis | This technique analyses a continuous stream of proteins on a channel with an electric field perpendicular to the flow. |
|
| [55,75,76,77] |
Characterization and Conformation | ||||
---|---|---|---|---|
Technique | Description | Advantages | Limitations | References |
Crystallography | Determines the structure of protein crystals using the diffraction patterns collected by X-rays, electrons, or neutrons. |
|
| [78,81,83,84,93,136] |
Cryogenic electron microscopy (Cryo-EM) | Visualizes high-resolution protein structures by imaging frozen samples with an electron microscope. |
|
| [96,101,103,104,137] |
Nuclear Magnetic Resonance (NMR) | Studies the nuclei in the atoms of protein to determine molecular structure, dynamics, and interactions. |
|
| [113,115,121,122,123,138] |
Biophysical Innovation | ||||
---|---|---|---|---|
Nanodiscs | Solubilizes membrane proteins in aqueous media while keeping them in a native-like environment. |
|
| [139,140,141] |
Patch clamp | Studies ion channels by studying the flow of ions through it. |
|
| [142,143,144] |
Atomic Force Microscopy (AFM) | Gives images and characterizes the surfaces of membrane proteins at the nanoscale by scanning a probe tip and measuring forces between the tip and sample. |
|
| [145,146,147,149,150,154,155] |
Neutron Scattering | Uses a beam of neutrons to determine the atomic structure, composition, dynamics, and magnetic properties of membrane proteins. |
|
| [151,156,157,158] |
Artificial Intelligence | ||||
---|---|---|---|---|
Technique | Description | Advantages | Limitations | References |
RoseTTAFold | “three-track” neural network developed by Baker lab, to predict the 3D structure of proteins from their amino acid sequences |
|
| [180] |
AlphaFold2 | Deep learning-based AI system developed by DeepMind that accurately predicts the 3D structure of proteins from their amino acid sequences |
|
| [178,184] |
AlphaFold-Multimer | An Alphafold model trained to predict protein-protein complexes |
|
| [181] |
ESMFold2 | AI system developed by meta that predicts protein structures using a large language model trained on a massive dataset of protein sequences. |
|
| [175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulos, I.; Jabbour, J.; Khoury, S.; Mikhael, N.; Tishkova, V.; Candoni, N.; Ghadieh, H.E.; Veesler, S.; Bassim, Y.; Azar, S.; et al. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules 2023, 28, 7176. https://doi.org/10.3390/molecules28207176
Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N, Ghadieh HE, Veesler S, Bassim Y, Azar S, et al. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules. 2023; 28(20):7176. https://doi.org/10.3390/molecules28207176
Chicago/Turabian StyleBoulos, Imad, Joy Jabbour, Serena Khoury, Nehme Mikhael, Victoria Tishkova, Nadine Candoni, Hilda E. Ghadieh, Stéphane Veesler, Youssef Bassim, Sami Azar, and et al. 2023. "Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics" Molecules 28, no. 20: 7176. https://doi.org/10.3390/molecules28207176