Preparation of Carbon-Based Solid Acid Catalyst from High-Sulfur Petroleum Coke with Nitric Acid and Ball Milling, and a Computational Evaluation of Inherent Sulfur Conversion Pathways
Abstract
:1. Introduction
2. Results and Discussion
2.1. Impact of Treatment Time and Temperature
2.2. Effect of Ball Milling Pretreatment
2.3. Esterification Reaction
2.4. Exploration of Sulfonic Group Formation Mechanisms
3. Materials and Methods
3.1. Materials
3.2. Preparation of Acid-Functionalized Samples
3.3. Characterization
3.4. Esterification Reaction
3.5. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hill, J.M.; Karimi, A.; Malekshahian, M. Characterization, gasification, activation, and potential uses for the millions of tonnes of petroleum coke produced in Canada each year. Can. J. Chem. Eng. 2014, 92, 1618–1626. [Google Scholar] [CrossRef]
- Manzano, C.A.; Marvin, C.; Muir, D.; Harner, T.; Martin, J.; Zhang, Y. Heterocyclic Aromatics in Petroleum Coke, Snow, Lake Sediments, and Air Samples from the Athabasca Oil Sands Region. Environ. Sci. Technol. 2017, 51, 5445–5453. [Google Scholar] [CrossRef] [PubMed]
- Nesbitt, J.A.; Lindsay, M.B.J. Vanadium Geochemistry of Oil Sands Fluid Petroleum Coke. Environ. Sci. Technol. 2017, 51, 3102–3109. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Huang, X.; Liang, X.; Ning, X.; Li, R. Co-gasification of petroleum coke-biomass blended char with steam at temperatures of 1173–1373K. Appl. Therm. Eng. 2018, 137, 678–688. [Google Scholar] [CrossRef]
- Wei, J.; Guo, Q.; Ding, L.; Yoshikawa, K.; Yu, G. Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification. Appl. Energy 2017, 206, 1354–1363. [Google Scholar] [CrossRef]
- He, Q.; Yu, J.; Song, X.; Ding, L.; Wei, J.; Yu, G. Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components. Energy 2020, 192, 116642. [Google Scholar] [CrossRef]
- Jacobs, J.H.; Wynnyk, K.G.; Lalani, R.; Sui, R.; Wu, J.; Montes, V.; Hill, J.M.; Marriott, R.A. Removal of Sulfur Compounds from Industrial Emission Using Activated Carbon Derived from Petroleum Coke. Ind. Eng. Chem. Res. 2019, 58, 18896–18900. [Google Scholar] [CrossRef]
- Jang, E.; Choi, S.W.; Hong, S.-M.; Shin, S.; Lee, K.B. Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation. Appl. Surf. Sci. 2018, 429, 62–71. [Google Scholar] [CrossRef]
- Mochizuki, T.; Kubota, M.; Matsuda, H.; D’Elia Camacho, L.F. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation. Fuel Process. Technol. 2016, 144, 164–169. [Google Scholar] [CrossRef]
- Bai, R.; Yang, M.; Hu, G.; Xu, L.; Hu, X.; Li, Z.; Wang, S.; Dai, W.; Fan, M. A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke. Carbon 2015, 81, 465–473. [Google Scholar] [CrossRef]
- Jang, E.; Choi, S.W.; Lee, K.B. Effect of carbonization temperature on the physical properties and CO2 adsorption behavior of petroleum coke-derived porous carbon. Fuel 2019, 248, 85–92. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Y.; Wang, D.; Tan, M.; Li, P.; Wu, W.; Tsubaki, N. SO3H-modified petroleum coke derived porous carbon as an efficient solid acid catalyst for esterification of oleic acid. J. Porous Mater. 2016, 23, 263–271. [Google Scholar] [CrossRef]
- Xiao, Y.; Hill, J.M. Solid acid catalysts produced by sulfonation of petroleum coke: Dominant role of aromatic hydrogen. Chemosphere 2020, 248, 125981. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Neumann, P.; Kim, C.S.; Smith, K.J. Esterification over Acid-Treated Mesoporous Carbon Derived from Petroleum Coke. ACS Omega 2019, 4, 6050–6058. [Google Scholar] [CrossRef]
- Espinoza, E.; Isernia, L. Role of the lattice-energy from chemical agents in the activation of highly-condensed carbons. J. Serb. Chem. Soc. 2021, 86, 983–995. [Google Scholar] [CrossRef]
- Huang, Q.; Schafranski, A.S.; Hazlett, M.J.; Xiao, Y.; Hill, J.M. Nitric Acid Functionalization of Petroleum Coke to Access Inherent Sulfur. Catalysts 2020, 10, 259. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Y.; Wu, W.; Hu, C.; Wang, X.; Zheng, J.; Li, Z.; Jiang, B.; Qiu, J. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 2014, 78, 480–489. [Google Scholar] [CrossRef]
- Yan, W.; Hoekman, S.K.; Broch, A.; Coronella, C.J. Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets. Environ. Prog. Sustain. Energy 2014, 33, 676–680. [Google Scholar] [CrossRef]
- Bureros, G.M.A.; Tanjay, A.A.; Cuizon, D.E.S.; Go, A.W.; Cabatingan, L.K.; Agapay, R.C.; Ju, Y.-H. Cacao shell-derived solid acid catalyst for esterification of oleic acid with methanol. Renew. Energy 2019, 138, 489–501. [Google Scholar] [CrossRef]
- Ngaosuwan, K.; Goodwin, J.G.; Prasertdham, P. A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renew. Energy 2016, 86, 262–269. [Google Scholar] [CrossRef]
- Tang, Z.-E.; Lim, S.; Pang, Y.-L.; Shuit, S.-H.; Ong, H.-C. Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production. Renew. Energy 2020, 158, 91–102. [Google Scholar] [CrossRef]
- Niu, S.; Ning, Y.; Lu, C.; Han, K.; Yu, H.; Zhou, Y. Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Convers. Manag. 2018, 163, 59–65. [Google Scholar] [CrossRef]
- Mateo, W.; Lei, H.; Villota, E.; Qian, M.; Zhao, Y.; Huo, E.; Zhang, Q.; Lin, X.; Wang, C.; Huang, Z. Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresour. Technol. 2020, 297, 122411. [Google Scholar] [CrossRef]
- Konwar, L.J.; Mäki-Arvela, P.; Mikkola, J.-P. SO3H-Containing Functional Carbon Materials: Synthesis, Structure, and Acid Catalysis. Chem. Rev. 2019, 119, 11576–11630. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Montes, V.; Virla, L.D.; Hill, J.M. Impacts of amount of chemical agent and addition of steam for activation of petroleum coke with KOH or NaOH. Fuel Process. Technol. 2018, 181, 53–60. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.-W.; Jung, W.-G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Ren, W.; Saito, R.; Gao, L.; Zheng, F.; Wu, Z.; Liu, B.; Furukawa, M.; Zhao, J.; Chen, Z.; Cheng, H.-M. Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy. Phys. Rev. B 2010, 81, 035412. [Google Scholar] [CrossRef]
- Rajender, G.; Giri, P.K. Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy. J. Mater. Chem. C Mater. 2016, 4, 10852–10865. [Google Scholar] [CrossRef]
- Rebelo, S.L.H.; Guedes, A.; Szefczyk, M.E.; Pereira, A.M.; Araújo, J.P.; Freire, C. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: Unraveling disorder in graphitic materials. Phys. Chem. Chem. Phys. 2016, 18, 12784–12796. [Google Scholar] [CrossRef]
- Ayiania, M.; Weiss-Hortala, E.; Smith, M.; McEwen, J.-S.; Garcia-Perez, M. Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. Carbon 2020, 167, 559–574. [Google Scholar] [CrossRef]
- Wei, X.; Jiang, X.; Wei, J.; Gao, S. Functional Groups and Pore Size Distribution Do Matter to Hierarchically Porous Carbons as High-Rate-Performance Supercapacitors. Chem. Mater. 2016, 28, 445–458. [Google Scholar] [CrossRef]
- Georgakis, M.; Stavropoulos, G.; Sakellaropoulos, G.P. Molecular dynamics study of hydrogen adsorption in carbonaceous microporous materials and the effect of oxygen functional groups. Int. J. Hydrog. Energy 2007, 32, 1999–2004. [Google Scholar] [CrossRef]
- Takagi, H.; Hatori, H.; Yamada, Y.; Matsuo, S.; Shiraishi, M. Hydrogen adsorption properties of activated carbons with modified surfaces. J. Alloys Compd. 2004, 385, 257–263. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Tan, M.; Jiang, B.; Zheng, J.; Tsubaki, N.; Wu, M. Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid. ACS Appl. Mater. Interfaces 2015, 7, 26767–26775. [Google Scholar] [CrossRef]
- Zawadzki, J. IR spectroscopy investigations of acidic character of carbonaceous films oxidized with HNO3 solution. Carbon 1981, 19, 19–25. [Google Scholar] [CrossRef]
- Momodu, D.; Madito, M.J.; Singh, A.; Sharif, F.; Karan, K.; Trifkovic, M.; Bryant, S.; Roberts, E.P. Mixed-acid intercalation for synthesis of a high conductivity electrochemically exfoliated graphene. Carbon 2021, 171, 130–141. [Google Scholar] [CrossRef]
- Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K. Efficient Synthesis of Heteroatom (N or S)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions. Adv. Funct. Mater. 2012, 22, 3634–3640. [Google Scholar] [CrossRef]
- Thushari, I.; Babel, S. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresour. Technol. 2018, 248, 199–203. [Google Scholar] [CrossRef]
- Sun, K.; Jin, J.; Keiluweit, M.; Kleber, M.; Wang, Z.; Pan, Z.; Xing, B. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresour. Technol. 2012, 118, 120–127. [Google Scholar] [CrossRef]
- Özer, E.T.; Güçer, Ş. Determination of some phthalate acid esters in artificial saliva by gas chromatography–mass spectrometry after activated carbon enrichment. Talanta 2011, 84, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Castanheiro, J. Chitosan with Sulfonic Groups: A Catalyst for the Esterification of Caprylic Acid with Methanol. Polymers 2021, 13, 3924. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Song, C.; Liu, Y.; Lin, H.; Ye, W.; Huang, H.; Lu, R.; Zhang, S. Enhancement of catalytic esterification by tuning molecular diffusion in sulfonated carbon. Microporous Mesoporous Mater. 2021, 318, 111024. [Google Scholar] [CrossRef]
- Agapay, R.C.; Liu, H.-C.; Ju, Y.-H.; Go, A.W.; Angkawijaya, A.E.; Nguyen, P.L.T.; Truong, C.T.; Quijote, K.L. Synthesis and Initial Evaluation of Solid Acid Catalyst Derived from Spent Coffee Grounds for the Esterification of Oleic Acid and Methanol. Waste Biomass Valorization 2021, 12, 4387–4397. [Google Scholar] [CrossRef]
- d’Alessandro, N.; Tonucci, L.; Bonetti, M.; Di Deo, M.; Bressan, M.; Morvillo, A. Oxidation of dibenzothiophene by hydrogen peroxide or monopersulfate and metal–sulfophthalocyanine catalysts: An easy access to biphenylsultone or 2-(2′-hydroxybiphenyl)sulfonate under mild conditions. New J. Chem. 2003, 27, 989–993. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Du, L.; Zhou, J.; Markó, I.E. Post-functionalization of dibenzothiophene to functionalized biphenyls via a photoinduced thia-Baeyer-Villiger oxidation. Nat. Commun. 2020, 11, 914. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Kopylovich, M.N.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans. 2017, 46, 10121–10138. [Google Scholar] [CrossRef]
- Vogel, L.; Wonner, P.; Huber, S.M. Chalcogen Bonding: An Overview. Angew. Chem. 2019, 131, 1896–1907. [Google Scholar] [CrossRef]
- Lewis, T.; Winter, B.; Stern, A.C.; Baer, M.D.; Mundy, C.J.; Tobias, D.J.; Hemminger, J.C. Dissociation of Strong Acid Revisited: X-ray Photoelectron Spectroscopy and Molecular Dynamics Simulations of HNO3 in Water. J. Phys. Chem. B 2011, 115, 9445–9451. [Google Scholar] [CrossRef]
- Bagherzadeh, M.; Zare, M. Oxidation of sulfides with urea–hydrogen peroxide catalyzed by iron–salen complexes. J. Sulfur Chem. 2011, 32, 335–343. [Google Scholar] [CrossRef]
- Shi, X.; Ren, X.; Ren, Z.; Li, J.; Wang, Y.; Yang, S.; Gu, J.; Gao, Q.; Huang, G. Iron(III)-Catalyzed Aerobic Oxidation and Cleavage/Formation of a C-S Bond. Eur. J. Org. Chem. 2014, 2014, 5083–5088. [Google Scholar] [CrossRef]
- Radovic, L.R.; Mora-Vilches, C.V.; Salgado-Casanova, A.J.A.; Buljan, A. Graphene functionalization: Mechanism of carboxyl group formation. Carbon 2018, 130, 340–349. [Google Scholar] [CrossRef]
- Oliveira, J.F.G.; Lucena, I.L.; Saboya, R.M.A.; Rodrigues, M.L.; Torres, A.E.B.; Fernandes, F.A.N.; Cavalcante, C.L.; Parente, E.J.S. Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption. Renew. Energy 2010, 35, 2581–2584. [Google Scholar] [CrossRef]
- Zhang, L.-W.; Fu, H.-B.; Zhu, Y.-F. Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon. Adv. Funct. Mater. 2008, 18, 2180–2189. [Google Scholar] [CrossRef]
- Vieira, F.; Cisneros, I.; Rosa, N.G.; Trindade, G.M.; Mohallem, N.D.S. Influence of the natural flake graphite particle size on the textural characteristic of exfoliated graphite used for heavy oil sorption. Carbon 2006, 44, 2590–2592. [Google Scholar] [CrossRef]
- Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565. [Google Scholar] [CrossRef]
- Cortright, R.D.; Dumesic, J.A. Kinetics of heterogeneous catalytic reactions: Analysis of reaction schemes. Adv. Catal. 2001, 46, 161–264. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Yang, T.; Yue, C.; Pu, Q.; Zhang, Y. Facile synthesis of polyoxometalates tethered to post Fe-BTC frameworks for esterification of free fatty acids to biodiesel. RSC Adv. 2019, 9, 8113–8120. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.K.N.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 09 Revision A.1; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Iversen, K.J.; Wilson, D.J.D.; Dutton, J.L. Comparison of the Mechanism of Borane, Silane, and Beryllium Hydride Ring Insertion into N-Heterocyclic Carbene C–N Bonds: A Computational Study. Organometallics 2013, 32, 6209–6217. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2008, 4, 1849–1868. [Google Scholar] [CrossRef]
- Wood, G.P.F.; Sreedhara, A.; Moore, J.M.; Trout, B.L. Reactions of Benzene and 3-Methylpyrrole with the • OH and • OOH Radicals: An Assessment of Contemporary Density Functional Theory Methods. J. Phys. Chem. A 2014, 118, 2667–2682. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem. 1996, 17, 49–56. [Google Scholar] [CrossRef]
- Ternero-Hidalgo, J.J.; Rosas, J.M.; Palomo, J.; Valero-Romero, M.J.; Rodríguez-Mirasol, J.; Cordero, T. Functionalization of activated carbons by HNO3 treatment: Influence of phosphorus surface groups. Carbon 2016, 101, 409–419. [Google Scholar] [CrossRef]
- Mendes, P.; Belloni, M.; Ashworth, M.; Hardy, C.; Nikitin, K.; Fitzmaurice, D.; Critchley, K.; Evans, S.; Preece, J. A Novel Example of X-ray-Radiation-Induced Chemical Reduction of an Aromatic Nitro-Group-Containing Thin Film on SiO2 to an Aromatic Amine Film. Chem. Phys. Chem. 2003, 4, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Rezende, M.J.C.; Pinto, A.C. Esterification of fatty acids using acid-activated Brazilian smectite natural clay as a catalyst. Renew. Energy 2016, 92, 171–177. [Google Scholar] [CrossRef]
1 (nm) | Lc 2 (nm) | La 3 (nm) | ID/IG | ID2/IG | ID3/IG | ID4/IG | ID’/IG | Surface Area 4 (m2/g) | Pore Volume 4 (cm3/g) | |
---|---|---|---|---|---|---|---|---|---|---|
Petcoke | 0.352 | 2.14 | 5.39 | 0.92 | 0.32 | 0.49 | 0.48 | 0.77 | 84 | 0.021 |
P-N-3/80 | 0.364 | 1.13 | 5.11 | 0.97 | 0.49 | 0.71 | 0.68 | 0.81 | 231 | 0.063 |
P-N-3/120 | 0.376 | 1.06 | 4.64 | 1.07 | 0.43 | 0.63 | 0.76 | 0.77 | 217 | 0.061 |
P-N-24/120 | 0.388 | 0.95 | 4.24 | 1.17 | 0.39 | 0.65 | 0.72 | 0.78 | 151 | 0.045 |
BP | 0.351 | 1.47 | 4.59 | 1.08 | 0.43 | 0.52 | 0.62 | 0.78 | 172 | 0.056 |
BP-N-3/120 | 0.379 | 0.97 | 4.47 | 1.11 | 0.35 | 0.56 | 0.63 | 0.80 | 200 | 0.054 |
Sample | Elemental Analysis (at%) 1 | Acidity (mmol/g) | Aromatic Hydrogen (mmol/g) 3 | Esterification Results | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | O | N | S | O/C | S/C | −SO3H 1 | Total 2 | Ester Yield 4 (%) | TOF (h−1) | ||
Petcoke | 74.5 | 18.0 | 1.1 | 2.2 | 0.24 | 0.030 | nd 5 | 0.34 (0.01) | 1.5 (0.1) | 2.5 | - 7 |
P-N-3/80 | 73.6 | 19.4 | 5.3 | 1.7 | 0.26 | 0.023 | 0.08 | 3.60 (0.09) | 1.1 (0.1) | 19.7 | 114 |
P-N-3/120 | 72.5 | 21.4 | 4.4 | 1.7 | 0.30 | 0.023 | 0.07 | 4.67 (0.16) | 1.1 (0.1) | 16.1 | 105 |
P-N-24/120 | 68.5 | 26.2 | 3.9 | 1.4 | 0.38 | 0.020 | 0.10 | 5.25 (0.23) | 0.9 (0.1) | 13.9 | 64 |
BP | 73.9 | 20.8 | 0.9 | 2.3 | 0.28 | 0.030 | nd | 0.55 (0.03) | 2.1 (0.2) | 1.1 | - 7 |
BP-N-3/120 | 69.7 | 23.5 | 5.3 | 1.5 | 0.34 | 0.024 | 0.12 | 5.18 (0.28) | 2.0 (0.2) | 26.0 | 114 |
BP-N-8/90 | 64.2 | 29.1 | 5.4 | 1.3 | 0.45 | 0.020 | 0.12 | 5.01 (0.08) | 1.7 (0.2) | 36.2/42.8 6 | 143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Cabral, N.M.; Tong, X.; Schafranski, A.S.; Kennepohl, P.; Hill, J.M. Preparation of Carbon-Based Solid Acid Catalyst from High-Sulfur Petroleum Coke with Nitric Acid and Ball Milling, and a Computational Evaluation of Inherent Sulfur Conversion Pathways. Molecules 2023, 28, 7051. https://doi.org/10.3390/molecules28207051
Huang Q, Cabral NM, Tong X, Schafranski AS, Kennepohl P, Hill JM. Preparation of Carbon-Based Solid Acid Catalyst from High-Sulfur Petroleum Coke with Nitric Acid and Ball Milling, and a Computational Evaluation of Inherent Sulfur Conversion Pathways. Molecules. 2023; 28(20):7051. https://doi.org/10.3390/molecules28207051
Chicago/Turabian StyleHuang, Qing, Natalia M. Cabral, Xing Tong, Annelisa S. Schafranski, Pierre Kennepohl, and Josephine M. Hill. 2023. "Preparation of Carbon-Based Solid Acid Catalyst from High-Sulfur Petroleum Coke with Nitric Acid and Ball Milling, and a Computational Evaluation of Inherent Sulfur Conversion Pathways" Molecules 28, no. 20: 7051. https://doi.org/10.3390/molecules28207051
APA StyleHuang, Q., Cabral, N. M., Tong, X., Schafranski, A. S., Kennepohl, P., & Hill, J. M. (2023). Preparation of Carbon-Based Solid Acid Catalyst from High-Sulfur Petroleum Coke with Nitric Acid and Ball Milling, and a Computational Evaluation of Inherent Sulfur Conversion Pathways. Molecules, 28(20), 7051. https://doi.org/10.3390/molecules28207051