The Fabrication of Halogen-Doped FeWO4 Heterostructure Anchored over Graphene Oxide Nanosheets for the Sunlight-Driven Photocatalytic Degradation of Methylene Blue Dye
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR Analysis
2.2. XRD Analysis
2.3. SEM-EDX
2.4. Optical Study of FeWO4/GO and I-FeWO4/GO
3. Operating Parameters
3.1. pH Effect
3.2. Influence of Catalyst Concentration on Photodegradation
3.3. Oxidant Dose
3.4. Irradiation Time
3.5. Reaction Kinetics
3.6. Degradation Using UV Irradiation
3.7. Reusability
3.8. Radical Scavenging Experiments and the Proposed Mechanism
The Proposed Mechanism of Degradation
3.9. The Optimization of Interacting Parameters Using Response Surface Methodology (RSM)
Optimization through Response Surface Methodology for Iodine-Doped Iron Tungstate/Graphene Oxide (I-FeWO4/GO)
4. Experimental Procedures
4.1. Materials and Reagents
4.2. Synthesis of Graphene Oxide (GO) and FeWO4
4.3. Synthesis of Iron Tungstate/Graphene Oxide (FeWO4/GO)
4.4. Synthesis of Iodine-Doped Iron Tungstate (I-FeWO4)
4.5. Synthesis of Iodine-Doped Iron Tungstate/Graphene Oxide (I-FeWO4/GO)
4.6. Characterization and Equipment Details
4.7. Photocatalytic Degradation Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mitra, M.; Ghosh, A.; Mondal, A.; Kargupta, K.; Ganguly, S.; Banerjee, D. Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants. Appl. Surf. Sci. 2017, 402, 418–428. [Google Scholar] [CrossRef]
- Singh, P.; Sonu; Raizada, P.; Sudhaik, A.; Shandilya, P.; Thakur, P.; Agarwal, S.; Gupta, V.K. Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for phenol degradation under visible light. J. Saudi Chem. Soc. 2019, 23, 586–599. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Singh, P.; Sudhaik, A.; Raizada, P.; Shandilya, P.; Sharma, R. Hosseini-Bandegharaei, Photocatalytic performance and quick recovery of BiOI/Fe3O4@ graphene oxide ternary photocatalyst for photodegradation of 2, 4-dintirophenol under visible light. Mater. Today Chem. 2019, 12, 85–95. [Google Scholar] [CrossRef]
- Sonu; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Gupta, V.K.; Singh, P. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc. 2019, 23, 1119–1136. [Google Scholar] [CrossRef]
- Raizada, P.; Sudhaik, A.; Singh, P.; Hosseini-Bandegharaei, A.; Thakur, P. Converting type II AgBr/VO into ternary Z scheme photocatalyst via coupling with phosphorus doped g-C3N4 for enhanced photocatalytic activity. Sep. Purif. Technol. 2019, 227, 115692. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, H.; Yan, Z.; Gu, Y.; Sun, W.; Zewde, A.A. Sonophotocatalytic inactivation of E. coli using ZnO nanofluids and its mechanism. Ultrason. Sonochem. 2017, 34, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.; Sharma, K.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, V.K.; Singh, P. Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. Arab. J. Chem. 2020, 13, 4324–4340. [Google Scholar] [CrossRef]
- Hasija, V.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A. Carbon quantum dots supported AgI/ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol. J. Environ. Chem. Eng. 2019, 7, 103272. [Google Scholar] [CrossRef]
- Raizada, P.; Sudhaik, A.; Singh, P.; Shandilya, P.; Saini, A.K.; Gupta, V.K.; Lim, J.-H.; Jung, H.; Hosseini-Bandegharaei, A. Fabrication of Ag3VO4 decorated phosphorus and sulphur co-doped graphitic carbon nitride as a high-dispersed photocatalyst for phenol mineralization and E. coli disinfection. Sep. Purif. Technol. 2019, 212, 887–900. [Google Scholar] [CrossRef]
- Sharma, K.; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, P.; Singh, P. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review. J. Ind. Eng. Chem. 2019, 78, 1–20. [Google Scholar] [CrossRef]
- Iervolino, G.; Zammit, I.; Vaiano, V.; Rizzo, L. Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Heterog. Photocatal. 2020, 26, 225–264. [Google Scholar] [CrossRef]
- Lyu, L.; Yan, D.; Yu, G.; Cao, W.; Hu, O. Efficient destruction of pollutants in water by a dual-reaction-center fenton-like process over carbon nitride compounds-complexed Cu (II)-CuAlO2. Environ. Sci. Technol. 2018, 52, 4294–4304. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Lyu, L.; Yu, G.; Zhang, L.; Hu, C. Dual-reaction-center Fenton-like process on–C(II) N–Cu linkage between copper oxides and defect-containing g-C3N4 for efficient removal of organic pollutants. J. Mater. Chem. 2018, 36, 17819–17828. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B Environ. 2019, 255, 117739. [Google Scholar] [CrossRef]
- Diao, Y.; Yan, Z.; Guo, M.; Wang, X. Magnetic multi-metal co-doped magnesium ferrite nanoparticles: An efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore. J. Hazard. Mater. 2018, 344, 829–838. [Google Scholar] [CrossRef]
- Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Rahmani-Sani, A.; Hosseini-Bandegharaei, A. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 2020, 13, 3498–3520. [Google Scholar] [CrossRef]
- Li, B.; Lai, C.; Zeng, G.; Qin, L.; Yi, H.; Huang, D.; Zhou, C.; Liu, X.; Cheng, M.; Xu, P. Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces 2018, 10, 18824–18836. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I. Inexpensive and quick photocatalytic activity of rare earth (Er, Yb) co-doped ZnO nanoparticles for degradation of methyl orange dye. Sep. Purif. Technol. 2019, 227, 115726. [Google Scholar] [CrossRef]
- Zhou, Y.-X.; Yao, H.-B.; Zhang, Q.; Gong, J.-Y.; Liu, S.-J.; Yu, S.-H. Hierarchical FeWO4 Microcrystals: Solvothermal Synthesis and Their Photocatalytic and Magnetic Properties. Inorg. Chem. 2009, 48, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.U.; Qazi, U.Y.; Hussain, T.; Nadeem, N.; Zahid, M.; Bhatti, H.N.; Shahid, I. Solar driven photocatalytic degradation potential of novel graphitic carbon nitride based nano zero-valent iron doped bismuth ferrite ternary composite. Opt. Mater. 2021, 120, 111408. [Google Scholar] [CrossRef]
- Marinoiu, A.; Raceanu, M.; Carcadea, E.; Varlam, M. Iodine-doped graphene–Catalyst layer in PEM fuel cells. Appl. Surf. Sci. 2018, 456, 238–245. [Google Scholar] [CrossRef]
- Tahir, N.; Zahid, M.; Bhatti, I.A.; Jamil, Y. Fabrication of visible light active Mn-doped Bi2WO6-GO/MoS2 heterostructure for enhanced photocatalytic degradation of methylene blue. Environ. Sci. Pollut. Res. 2021, 29, 6552–6567. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Zahid, M.; Tahir, N.; Yaseen, M.; Qazi, U.Y.; Javaid, R.; Shahid, I. Enhanced photo-Fenton degradation of Rhodamine B using iodine-doped iron tungstate nanocomposite under sunlight. Int. J. Environ. Sci. Technol. 2023, 20, 3645–3660. [Google Scholar] [CrossRef]
- Raja, K.; Ramesh, P.; Geetha, D. Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 131, 183–188. [Google Scholar] [CrossRef]
- Wu, X.; Bao, C.; Niu, Q.; Lu, W. A novel method to construct a 3D FeWO4 microsphere-array electrode as a non-enzymatic glucose sensor. Nanotechnology 2019, 30, 165501. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Xiong, Z.; Gao, T.; Gong, B.; Liu, P.; Liu, J.; Zhang, J. Elemental mercury removal by I−-doped Bi2WO6 with remarkable visible-light-driven photocatalytic oxidation. Appl. Catal. B Environ. 2021, 282, 119534. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, H.; Hu, X.; Wang, Y.; Liu, E.; Fan, J. A novel S-scheme MoS2/CdIn2S4 flower-like heterojunctions with enhanced photocatalytic degradation and H2 evolution activity. J. Phys. D Appl. Phys. 2020, 53, 205101. [Google Scholar] [CrossRef]
- Nadeem, N.; Yaseen, M.; Rehan, Z.A.; Zahid, M.; Shakoor, R.A.; Jilani, A.; Iqbal, J.; Rasul, S.; Shahid, I. Coal fly ash supported CoFe2O4 nanocomposites: Synergetic Fenton-like and photocatalytic degradation of methylene blue. Environ. Res. 2022, 206, 112280. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Z.-H.; Xu, Y.; Kang, F. Hydrothermal Synthesis of Iodine-Doped Nanoplates with Enhanced Visible and Ultraviolet-Induced Photocatalytic Activities. Int. J. Photoenergy 2012, 2012, 915386. [Google Scholar] [CrossRef]
- Yang, S.; Huang, Y.; Wang, Y.; Yang, Y.; Xu, M.; Wang, G. Photocatalytic degradation of Rhodamine B with H3PW12O40/SiO2 sensitized by H2O2. Int. J. Photoenergy 2012, 2012, 927132. [Google Scholar] [CrossRef]
- Mudhoo, A.; Paliya, S.; Goswami, P.; Singh, M.; Lofrano, G.; Carotenuto, M.; Carraturo, F.; Libralato, G.; Guida, M.; Usman, M.; et al. Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: A review. Environ. Chem. Lett. 2020, 18, 1825–1903. [Google Scholar] [CrossRef]
- Fox, P.M.; Davis, J.A.; Luther, G.W. The kinetics of iodide oxidation by the manganese oxide mineral birnessite. Geochim. Cosmochim. Acta 2009, 73, 2850–2861. [Google Scholar] [CrossRef]
- Chu, W.; Choy, W.K.; So, T.Y. The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. J. Hazard. Mater. 2007, 141, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Soon, A.N.; Hameed, B. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 2011, 269, 1–16. [Google Scholar] [CrossRef]
- Enesca, A.; Isac, L.; Andronic, L.; Perniu, D.; Duta, A. Tuning SnO2–TiO2 tandem systems for dyes mineralization. Appl. Catal. B Environ. 2014, 147, 175–184. [Google Scholar] [CrossRef]
- Visa, M.; Bogatu, C.; Duta, A. Tungsten oxide—Fly ash oxide composites in adsorption and photocatalysis. J. Hazard. Mater. 2015, 289, 244–256. [Google Scholar] [CrossRef]
- Tabasum, A.; Zahid, M.; Bhatt, H.N.; Asghar, M. Fe3O4-GO composite as efficient heterogeneous photo-Fenton’s catalyst to degrade pesticides. Mater. Res. Express 2018, 6, 015608. [Google Scholar] [CrossRef]
- Yaqubzadeh, A.; Ahmadpour, A.; Bastami, T.R.; Hataminia, M. Low-cost preparation of silica aerogel for optimized adsorptive removal of naphthalene from aqueous solution with central composite design (CCD). J. Non-Cryst. Solids 2016, 447, 307–314. [Google Scholar] [CrossRef]
- Daneshvar, N.; Aber, S.; Seyeddorraji, M.; Khataee, A.; Rasoulifard, M. Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep. Purif. Technol. 2007, 58, 91–98. [Google Scholar] [CrossRef]
Photocatalyst | First-Order Kinetics | Second-Order Kinetics | ||
---|---|---|---|---|
R2 | K1 (min−1) | R2 | K2 (min−1) | |
FeWO4/GO | 0.9848 | 0.016 | 0.8603 | 0.0019 |
I-FeWO4/GO | 0.9903 | 0.0168 | 0.776 | 0.0026 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Remarks |
---|---|---|---|---|---|---|
Model | 11,015.3 | 14 | 786.8 | 14,219.36 | <0.0001 | significant |
A—pH | 5.23 | 1 | 5.23 | 94.46 | <0.0001 | |
B—Catalyst | 14.42 | 1 | 14.42 | 260.51 | <0.0001 | |
C—Oxidant | 0.082 | 1 | 0.082 | 1.48 | 0.2432 | |
D—Time | 261.36 | 1 | 261.36 | 4723.37 | <0.0001 | |
AB | 1004.89 | 1 | 1004.89 | 18,160.66 | <0.0001 | |
AC | 38.44 | 1 | 38.44 | 694.7 | <0.0001 | |
AD | 32.49 | 1 | 32.49 | 587.17 | <0.0001 | |
BC | 676 | 1 | 676 | 12,216.87 | <0.0001 | |
BD | 0.64 | 1 | 0.64 | 11.57 | 0.004 | |
CD | 184.96 | 1 | 184.96 | 3342.65 | <0.0001 | |
A2 | 4992.69 | 1 | 4992.69 | 90,229.29 | <0.0001 | |
B2 | 5057.66 | 1 | 5057.66 | 91,403.45 | <0.0001 | |
C2 | 336.8 | 1 | 336.8 | 6086.76 | <0.0001 | |
D2 | 266.43 | 1 | 266.43 | 4815.01 | <0.0001 | |
Residual | 0.83 | 15 | 0.055 | |||
Lack of Fit | 0.53 | 10 | 0.053 | 0.88 | 0.5961 | not significant |
Pure Error | 0.3 | 5 | 0.06 | |||
Cor Total | 11016.1 | 29 | ||||
SD. | 0.24 | R2 | 0.9998 | |||
Mean | 68.25 | Adj. R2 | 0.9998 | |||
C.V. | 0.34 | Pred. R2 | 0.9996 | |||
PRESS | 3.48 | Adeq. Precision | 335.872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfan, M.; Tahir, N.; Zahid, M.; Noreen, S.; Yaseen, M.; Shahbaz, M.; Mustafa, G.; Shakoor, R.A.; Shahid, I. The Fabrication of Halogen-Doped FeWO4 Heterostructure Anchored over Graphene Oxide Nanosheets for the Sunlight-Driven Photocatalytic Degradation of Methylene Blue Dye. Molecules 2023, 28, 7022. https://doi.org/10.3390/molecules28207022
Irfan M, Tahir N, Zahid M, Noreen S, Yaseen M, Shahbaz M, Mustafa G, Shakoor RA, Shahid I. The Fabrication of Halogen-Doped FeWO4 Heterostructure Anchored over Graphene Oxide Nanosheets for the Sunlight-Driven Photocatalytic Degradation of Methylene Blue Dye. Molecules. 2023; 28(20):7022. https://doi.org/10.3390/molecules28207022
Chicago/Turabian StyleIrfan, Muhammad, Noor Tahir, Muhammad Zahid, Saima Noreen, Muhammad Yaseen, Muhammad Shahbaz, Ghulam Mustafa, Rana Abdul Shakoor, and Imran Shahid. 2023. "The Fabrication of Halogen-Doped FeWO4 Heterostructure Anchored over Graphene Oxide Nanosheets for the Sunlight-Driven Photocatalytic Degradation of Methylene Blue Dye" Molecules 28, no. 20: 7022. https://doi.org/10.3390/molecules28207022
APA StyleIrfan, M., Tahir, N., Zahid, M., Noreen, S., Yaseen, M., Shahbaz, M., Mustafa, G., Shakoor, R. A., & Shahid, I. (2023). The Fabrication of Halogen-Doped FeWO4 Heterostructure Anchored over Graphene Oxide Nanosheets for the Sunlight-Driven Photocatalytic Degradation of Methylene Blue Dye. Molecules, 28(20), 7022. https://doi.org/10.3390/molecules28207022