Spectrum–Effect Relationships as an Effective Approach for Quality Control of Natural Products: A Review
Abstract
:1. Introduction
2. The Establishment Process of Spectrum–Effect Relationships
2.1. Samples with Differences
2.2. Establishment of Fingerprints
2.3. Evaluation Based on Pharmacodynamics
2.4. Association Based on Chemometric Methods
2.4.1. Methods to Predict the Correlation between Each Component and Efficacy
2.4.2. Methods to Clarify the Contribution of Each Component to Efficacy
2.4.3. Methods to Find the Main Active Component by Simplifying Data Structure
3. Applications of Spectrum–Effect Relationships
3.1. Quality Evaluation of TCM
Objective | TCM | Fingerprints | Pharmacodynamic | Chemometrics | Component | Reference |
---|---|---|---|---|---|---|
Grade | Sennae Folium | UHPLC-Q-TOF/MS | Laxative effect (lipase inhibitory activity) | PCA, OPLS-DA | 8 sennosides and anthraquinones, 11 flavonoids, and 3 benzophenones | [58] |
Notoginseng | HPLC | Hemostatic effects (rat plasma recalcification experiment and the rat gastric bleeding experiment) | PLSR | Notoginsenoside R1, Ft1, and ginsenoside Rg1, Re, Rg2, Rh1, F1, Rk1, and dencichine, and unconfirmed peak 4, 6, 8, 9, 13, 14, 15 | [62] | |
Notopterygii Rhizoma | HPLC | Anti-inflammatory activity (xylene-induced acute inflammation model of mouse ear swelling and lipopolysaccharide (LPS) induced mononuclear macrophage RAW264.7 model) | GRA | 17 components, including chlorogenic acid, ferulic acid and isoimperatorin | [63] | |
Origin | Saposhnikoviae Radix | PMP-HPLC, FT-IR, and HPSEC | Anti-allergic activity (MTT assay of RBL-2H3 cells) | GRA | Two monosaccharides (rhamnose and galactose), the polysaccharide fragment Mn = 8.67 × 106~9.56 × 106 Da, and the FT-IR absorption peak of 892 cm−1 | [12] |
Chinese propolis | HPLC | Antioxidant activity (DPPH assay) | PCA, MLR | Isoferulic acid, caffeic acid, caffeic acid phenethyl ester, 3,4-dimethoxycinnamic acid, chrysin and apigenin | [56] | |
Species | Rhizoma Coptidis | UHPLC/QqQ-MS | Treating Alzheimer’s disease (anti-acetylcholinesterase activity) | Random forest, Boruta and Pearson correlation | Columbamine, berberine and palmatine | [65] |
Chrysanthemum morifolium | HPLC | Antioxidant activity (DPPH, OH and ABTS assay) | PCA | Chlorogenic acid, 3,5-O-dicaffeoylquinic acid, unknown peak 1, 4,5-O-dicaffeoylquinic acid and kaempferol-3-O-rutinoside | [66] | |
Zicao | UHPLC-QTRAP-MS/MS | Anti-tumor activity (HeLa cells) | OPLS | 27 components, including shikonins, shikonofurans and β, β-dimethylacrylshikonin | [67] | |
Medicinal parts | Morus alba L. | HPLC | Antidiabetic activity (α-glucosidase inhibitory activity) | OPLS | Morin, sanggenon C, kuwanon G, morusin, kaempferol, quercetin, rutin, isoquercitrin, and 1-deoxynojirimycin | [68] |
Trichosanthis Semen | HPLC | Anticoagulant activity (prothrombin time and activated partial thromboplastin time in mice) | Deng’s correlation degree | Adenine, uracil, hypoxanthine, xanthine and adenosine | [69] | |
Formulas | Danshen-Honghua herbal pair | HPLC | Therapeutic effect on vascular dementia (alleviated phenylhydrazine-induced thrombosis and improved bisphenol F and ponatinib induced brain injury in zebrafish) | PLSR | Danshensu, hydroxysafflor yellow A, kaempferol-3-O-rutinoside, rosmarinic acid, lithospermic acid, salvianolic acid B, salvianolic acid A, dihydrotanshinone I, cryptotanshinone, tanshinone I, and tanshinone IIA | [71] |
Banxia Baizhu Tianma Decoction | UHPLC | Antioxidant and anti-inflammatory activities (reactive oxygen species and high sensitivity C-reactive protein models) | HCA and BCA | Gastrodin, liquiritin, hesperidin, isoliquiritin, hesperidin, and isoliquiritigenin | [17] | |
Si Jun Zi Tang | UPLC | Antiproliferative effect (PC9 cells) | HCA and CCA | Ginsenoside Ro and ginsenoside Rg1 | [75] | |
Qi-Yu-San-Long decoction | UHPLC-Q/TOF-MS | Antioxidant activity (DPPH and FRAP assay) inhibits the proliferation ability, horizontal migration ability, vertical migration ability and invasion ability of A549 cells | GRA, PLSR and BPANN | Eight, nine, six, twenty-two, five, and twelve ingredients correspond to 6 therapeutic effects, respectively | [55] | |
Preparations | Zhizi Jinhua pills | HPLC | Antioxidant activity (SOD and MDA in mice serum; DPPH and ABTS assay) | OPLS | 24 of the 30 fingerprints peaks | [16] |
Yindan Xinnaotong soft capsule | LC-MS and GC-MS | Anti-neuroinflammatory activity (inhibit microglia-mediated neuroinflammation) | Pearson correlation analysis | Scutellarin, apigenin-7-O-glucuronide, scutellarein, apigenin, przewaquinone A, dihydrotanshinone I, tanshinone I, cryptotanshinone, tanshinone IIA and miltirone | [77] | |
Xinkeshu Tablets | HPLC | Antiarrhythmic effect (heart rate recovery rate of zebrafish larvae) | OPLS | Danshensu, salvianolic acid A, salvianolic acid B, daidzein, and puerarin | [78] | |
Rong’e Yishen oral liquid | HPLC and electrochemical fingerprints | Antioxidant activity (ABTs) | PLSR and BCA | 15 components of the 48 co-possessing peaks | [79] |
3.2. Pharmaceutical Process Optimization of TCM
Objective | TCM | Fingerprints | Pharmacodynamic | Chemometrics | Optimization Result | Reference |
---|---|---|---|---|---|---|
Extract fractions | Aurantii Fructus | UHPLC-Q-TOF/MS | Promoting gastrointestinal motility activity (normal mice and Gastrointestinal motility disorders model rats) | PCA, BCA and OPLS | Ethyl acetate fraction is the main active fraction | [80] |
Callicarpa nudiflora | HPLC | Anti-inflammatory effect (toes swelling in inflammatory rats) | Pearson analysis and OPLS | Extracts 1, 2, 3, and 5 had greater inhibition effects than the control group | [83] | |
Radix Hedysari | HPLC | Treatment for osteoporosis (increasing the peak bone mass of rat) | GRA | The total extract of Radix Hedysari is the most effective extract | [84] | |
Propolis | UHPLC-MS | Antioxidant activity (DPPH and ABTS assay); antimicrobial activity (Gram-positive, Gram-negative bacteria, and fungi) | PLSR | 50% ethanolic extracts ensure a good antioxidant capacity; all extracts demonstrated antibacterial and antifungal activity | [85] | |
Extract conditions | Angelica dahurica | GC–MS | Antioxidant activity (DPPH, FRAP and ABTS assay); | HCA, PCA and PLSR | Ultrasonic extraction, 80% methanol, 20:1 (ml/g) ratio of liquid to material, and extraction time of 30 min | [86] |
Nigella glandulifera Freyn | HPLC | Anti-diabetic efficacy (In vitro antioxidant activity, Aldose reductase assay, PTP1B assays) | GRA | Microwave-assisted extraction, solid-to-liquid ratio of 1:20 g/mL, ethanol concentration of 70%, extraction time of 35.00 min, and extraction temperature of 66 °C | [87] | |
Processing conditions | Farfarae Flos | UPLC | Antitussive (cough in mice caused by ammonia liquor); expectorant (intraperitoneal injection of phenol red by mice); anti-inflammatory effects (degree of swelling of the mouse ear after application of xylene mice) | GRA and PLSR | Only after honey processing can Farfarae Flos have an expectorant effect | [91] |
Panax notoginseng | HPLC | Anti-Alzheimer’s disease activity (neuroprotective activity of samples by reducing the cytotoxicity of Aβ1-42 in PC12 cells); antioxidant effect (oxygen radical absorption capacity) | PLSR | Better anti-Alzheimer’s disease activity on neuroprotective effect and antioxidant effect can be obtained at a shorter steaming time and a higher steaming temperature | [92] | |
Polygonum multiflorum | UPLC-Q-TOF-MS | Hepatotoxicity (L02 and HepG2 hepatocytes) | GRA, OPLS and BPANN | Emodin dianthrones, emodin-8-O-β-D-glucopyranoside, and PM 14-17 could be used as toxicity markers | [90] | |
Morinda officinalis | HPLC | Protective effects against reproductive oxidative stress damage (cyclophosphamide-induced male mice) | GRA | F-fructofuranosylnystose, nystose, 1-kestoses, inulin-oligosaccharides and inulo-oligosaccharides could be considered Q-markers for processed products | [14] | |
Formulas and preparations process conditions | Qin Jin Hua Tan Tang | UHPLC | Anti-inflammatory activity (xylene-induced ear-swelling mouse model) | GRA, PLSR and redundancy analysis | Ethanol extract 1 exhibited good anti-inflammatory activity | [95] |
Radix Polygoni multiflori-Achyranthes bidentate | HPLC | Antiosteoporosis Effect (mice induced by retinoic acid) | MLR | The order of activity of extracts from each group was petroleum ether > water > ethanol > ethyl acetate > methanol > acetone | [96] | |
Niuhuang Shangqing Pill | 2D-LC | Antibacterial constituents (Anti-streptococcus pneumoniae) | PCA, OPLS and OPLS-DA | All the fractions had different degrees of anti-streptococcus pneumoniae effect, and the 60% ethanol fraction had the strongest effect | [40] | |
Yuanhu Zhitong prescription | UPLC | Anti-alcoholic gastric ulcer (gastric lesion mice induced by anhydrous ethanol) | GRA and PLSR | Yuanhu Zhitong prescription made with vinegar treatment Corydalis Rhizoma had the strongest effect | [97] | |
Component compatibility | Lichong Shengsui Yin | HPLC | Anti-ovarian cancer activity (in vitro tumor inhibition experiments and the survival extension rate in tumor-bearing nude mice) | Regression analysis (ENTER Method, STEPWISE Method) and correlation analysis | The combination of group 3 and group 9 had anti-ovarian cancer activity | [98] |
Salviae Miltiorrhizae Radix et Rhizoma-Chuanxiong Rhizoma | HPLC | Thrombin inhibitory activity (THR and factor Xa inhibitory activity assay) | CCA | The 1:1 ratios of Salviae Miltiorrhizae Radix et Rhizoma–Chuanxiong Rhizoma herbal pairs show the strongest inhibition factor Xa | [99] | |
Curcumae Rhizoma-Sparganii Rhizoma | HPLC | Anti-tumor activity (A549, HepG2, Hela, BGC-823, and MCF-7 cells) | Random forest | The 80% ethanol elution fraction showed strong anti-tumor effects | [100] | |
Zhusha Anshen Pill | HPLC | Sedative-hypnotic effect (spontaneous locomotor activity test and pentobarbital-induced sleeping test of mice) | MLR and GRA | Fe2+ instead of Hg2+ to improve Zhusha Anshen Pill to create Tieshuang Anshen Prescription | [101] |
3.3. Exploration of Drug-Containing Serum of TCM
4. Novel Strategy in Spectrum–Effect Relationships
4.1. Efficacy Verification by Monomeric Compound and Component Knock-Out
4.2. Mechanism Exploration Based on Network Pharmacology and Molecular Docking
4.3. Pharmacodynamic Prediction Based on Chemometric Methods
4.4. Evaluation of the Quality of Multi-Components Based on QAMS
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- She, Y.M.; Hu, Y.H.; Han, L.Y.; Liu, S.X.; Chen, C.Q. Research progress on quality control of Chinese materia medica. Chin. Tradit. Herb. Drugs 2017, 48, 2557–2563. [Google Scholar]
- Liu, D.F.; Zhao, L.N.; Li, Y.F.; Jin, C.D. Research progress and application in fingerprint technology on Chinese materia medica. Chin. Tradit. Herb. Drugs 2016, 47, 4085–4094. [Google Scholar]
- Han, C.; Wang, S.; Li, Z.; Chen, C.; Hou, J.; Xu, D.; Wang, R.; Lin, Y.; Luo, J.; Kong, L. Bioactivity-guided cut countercurrent chromatography for isolation of lysine-specific demethylase 1 inhibitors from Scutellaria baicalensis Georgi. Anal. Chim. Acta 2018, 1016, 59–68. [Google Scholar] [CrossRef]
- Ye, Y.; Li, X.Q.; Tang, P.C.; Yao, S. Natural products chemistry research: Progress in China in 2011. Chin. J. Nat. Med. 2013, 11, 97–109. [Google Scholar] [CrossRef]
- Li, D.Q.; Zhao, J.; Wu, D.; Li, S.P. Discovery of active components in herbs using chromatographic separation coupled with online bioassay. J. Chromatogr. B 2016, 1021, 81–90. [Google Scholar]
- Lu, Y.; Wu, N.; Fang, Y.; Shaheen, N.; Wei, Y. An automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography method for high-throughput screening of antioxidants from natural products. J. Chromatogr. A 2017, 1521, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yan, Z.Y.; Li, W.J.; Xu, T.; Tan, R.A.; Pan, L.; Li, Y.M.; Ma, Y.L. The establishment of chromatographic pharmacodynamics. Educ. Chin. Med. 2002, 21, 62. [Google Scholar]
- Xu, G.L.; Xie, M.; Yang, X.Y.; Song, Y.; Yan, C.; Yang, Y.; Zhang, X.; Liu, Z.Z.; Tian, Y.X.; Wang, Y.; et al. Spectrum-effect relationships as a systematic approach to traditional Chinese medicine research: Current status and future perspectives. Molecules 2014, 19, 17897–17925. [Google Scholar] [CrossRef]
- Zhu, C.S.; Lin, Z.J.; Xiao, M.L.; Niu, H.J.; Zhang, B. The spectrum-effect relationship—A rational approach to screening effective compounds, reflecting the internal quality of Chinese herbal medicine. Chin. J. Nat. Med. 2016, 14, 177–184. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, X.; Ni, H.; Li, P.; Li, H.J. Discovery of quality control markers from traditional Chinese medicines by fingerprint-efficacy modeling: Current status and future perspectives. J. Pharm. Biomed. Anal. 2018, 159, 296–304. [Google Scholar] [CrossRef]
- Tian, W.; Yang, J.; Dou, J.H.; Li, X.M.; Dai, X.F.; Wang, X.M.; Sun, Y.H.; Li, Z.Y. Interbatch quality control of the extract from Artemisia frigida Willd. by spectrum-effect relationship between HPLC fingerprints and the total antioxidant capacity. Int. J. Food Prop. 2022, 25, 541–549. [Google Scholar] [CrossRef]
- Yu, M.Q.; Xu, G.; Qin, M.; Li, Y.L.; Guo, Y.Y.; Ma, Q. Multiple fingerprints and spectrum-effect relationship of polysaccharides from Saposhnikoviae Radix. Molecules 2022, 27, 5278. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.J.; Lin, B.; Song, H.T. Progress in study of spectrum-effect relationship of traditional Chinese medicine and discussions. China J. Chin. Mater. Medica 2015, 40, 1425–1432. [Google Scholar]
- Liu, M.Y.; Luo, Z.H.; Chen, Z.E.; Qin, Y.R.; Liu, Q.Y.; Ding, P. Quality markers for processed products of Morinda officinalis how based on the “oligosaccharides-spectrum-effect”. J. Pharm. Biomed. Anal. 2022, 208, 114403. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Li, K.; Xu, H.; Liang, R.; Wang, W.; Li, H.; Shao, A.; Yang, B. Screening active ingredients of rosemary based on spectrum-effect relationships between UPLC fingerprint and vasorelaxant activity using three chemometrics. J. Chromatogr. B 2019, 1134–1135, 121854. [Google Scholar] [CrossRef]
- Lan, L.; Zhang, J.; Yang, T.; Gong, D.; Zheng, Z.; Sun, G.; Guo, P.; Zhang, H. Compound synthesizing profiling based on quantitative HPLC fingerprints combined with antioxidant activity analysis for Zhizi Jinhua pills. Phytomedicine 2022, 105, 154340. [Google Scholar] [CrossRef]
- Xu, N.; Li, M.C.; Wang, P.; Wang, S.L.; Shi, H.Y. Spectrum-effect relationship between antioxidant and anti-inflammatory effects of Banxia Baizhu Tianma Decoction: An identification method of active substances with endothelial cell protective effect. Front. Pharmacol. 2022, 13, 823341. [Google Scholar] [CrossRef]
- Gong, D.D.; Chen, J.Y.; Sun, Y.; Liu, X.T.; Sun, G.X. Multiple wavelengths maximization fusion fingerprint profiling for quality evaluation of compound liquorice tablets and related antioxidant activity analysis. Microchem. J. 2021, 160, 105671. [Google Scholar]
- Liu, X.Y.; Zhang, H.; Su, M.; Sun, Y.; Liu, H.M.; Zang, H.C.; Nie, L. Comprehensive quality evaluation strategy based on non-targeted, targeted and bioactive analyses for traditional Chinese medicine: Tianmeng oral liquid as a case study. J. Chromatogr. A 2020, 1620, 460988. [Google Scholar] [PubMed]
- Wang, X.J. Study on serum pharmacochemistry of traditional Chinese medicine. World Sci. Technol. Mod. Trad. Chin. Med. 2002, 4, 1–4. [Google Scholar]
- Liu, X.; Wang, X.L.; Zhu, T.T.; Zhu, H.; Zhu, X.C.; Cai, H.; Cao, G.; Xu, X.Y.; Niu, M.J.; Cai, B.C. Study on spectrum-effect correlation for screening the effective components in Fangji Huangqi Tang basing on ultra-high performance liquid chromatography-mass spectrometry. Phytomedicine 2018, 47, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Liu, W.; Yang, D.B.; Qing, Y.J.; Du, P.; Jin, Y.; Yao, X.Y. Establishment of fingerprint of Gegen Qinlian decoction and its formula compatibility groups using UHPLC–MS/MS and its study to spectrum–effect relationship. J. Liq. Chromatogr. Relat. Technol. 2017, 41, 384–390. [Google Scholar] [CrossRef]
- Yu, Y.T.; Zhu, Z.Y.; Xie, M.J.; Deng, L.P.; Xie, X.J.; Zhang, M. Investigation on the Q-markers of Bushen Huoxue Prescriptions for DR treatment based on chemometric methods and spectrum-effect relationship. J. Ethnopharmacol. 2022, 285, 114800. [Google Scholar]
- Zhang, D.D.; Fan, L.D.; Yang, N.; Li, Z.L.; Sun, Z.M.; Jiang, S.Y.; Luo, X.Y.; Li, H.J.; Wei, Q.; Ye, X.C. Discovering the main “reinforce kidney to strengthening Yang” active components of salt Morinda officinalis based on the spectrum-effect relationship combined with chemometric methods. J. Pharm. Biomed. Anal. 2022, 207, 114422. [Google Scholar]
- Deng, R.R. A Preliminary Study on the Identification of Lavender Essential Oil and Its Spectral Effect Relationship. Master’s Thesis, Guangdong Pharmaceutical University, Guangzhou, China, 2018. [Google Scholar]
- Luo, H.; Bian, H.; Han, Y.Q.; Zhang, J.R.; Xia, L.Z.; Zhu, X.W. Investigation on spectrum -activity relationship between extracts from pericarpium citri reticulatae and its pharmacological action. J. Shanxi Univ. Chin. Med. 2016, 17, 22–25. [Google Scholar]
- Hou, Z.F.; Sun, G.X.; Guo, Y.; Yang, F.L.; Gong, D.D. Capillary electrophoresis fingerprints combined with linear quantitative profiling method to monitor the quality consistency and predict the antioxidant activity of Alkaloids of Sophora flavescens. J. Chromatogr. B 2019, 1133, 121827. [Google Scholar]
- Zhang, Y.J.; Yang, L.P.; Zhang, J.; Shi, M.; Sun, G.X. Micellar electrokinetic capillary chromatography fingerprints combined with multivariate statistical analyses to evaluate the quality consistency and predict the fingerprint-efficacy relationship of Salviae miltiorrhizae Radix et Rhizoma (Danshen). J. Sep. Sci. 2017, 40, 2800–2809. [Google Scholar] [CrossRef]
- Hang, N.T.; Hoang, L.V.; Phuong, N.V. Spectrum-effect relationship between high-performance thin-layer chromatography data and xanthine oxidase inhibitory activity of celery seed extract. Biomed. Chromatogr. 2021, 35, e5181. [Google Scholar]
- Shawky, E.; Ibrahim, R.S. Bioprofiling for the quality control of Egyptian propolis using an integrated NIR-HPTLC-image analysis strategy. J. Chromatogr. B 2018, 1095, 75–86. [Google Scholar] [CrossRef]
- Ibrahim, R.S.; Khairy, A.; Zaatout, H.H.; Hammoda, H.M.; Metwally, A.M.; Salman, A.M. Chemometric evaluation of alfalfa sprouting impact on its metabolic profile using HPTLC fingerprint-efficacy relationship analysis modelled with partial least squares regression. J. Pharm. Biomed. Anal. 2020, 179, 112990. [Google Scholar] [CrossRef]
- Ni, L.J.; Zhang, L.G.; Hou, J.; Shi, W.Z.; Guo, M.L. A strategy for evaluating antipyretic efficacy of Chinese herbal medicines based on UV spectra fingerprints. J. Ethnopharmacol. 2009, 124, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.T.; Pei, F.; Su, A.X.; Sanidad, K.Z.; Ma, G.X.; Zhao, L.Y.; Hu, Q.H. Multiple fingerprint and fingerprint-activity relationship for quality assessment of polysaccharides from Flammulina velutipes. Food. Chem. Toxicol. 2020, 135, 110944. [Google Scholar] [PubMed]
- Chang, Y.Q.; Zhang, D.; Yang, G.Y.; Zheng, Y.G.; Guo, L. Screening of anti-lipase components of Artemisia argyi leaves based on spectrum-effect relationships and HPLC-MS/MS. Front. Pharmacol. 2021, 12, 675396. [Google Scholar] [PubMed]
- Chen, C.H.; Chen, J.L.; Shi, J.J.; Chen, S.Y.; Zhao, H.; Yan, Y.; Jiang, Y.C.; Gu, L.; Chen, F.Y.; Liu, X.H. A strategy for quality evaluation of salt-treated Apocyni Veneti Folium and discovery of efficacy-associated markers by fingerprint-activity relationship modeling. Sci. Rep. 2019, 9, 16666. [Google Scholar]
- Tan, L.; Yang, Y.F.; Peng, J.; Zhang, Y.; Wu, B.; He, B.S.; Jia, Y.; Yan, T.X. Schisandra chinensis (Turcz.) Baill. essential oil exhibits antidepressant-like effects and against brain oxidative stress through Nrf2/HO-1 pathway activation. Metab. Brain Dis. 2022, 37, 2261–2275. [Google Scholar] [CrossRef]
- Bai, X.; Liu, L.; Zhang, J.P.; Chen, L.; Wu, T.; Aisa, H.A.; Maiwulanjiang, M. Spectrum-effect relationship between GC-QTOF-MS fingerprint and antioxidant, anti-inflammatory activities of Schizonepeta tenuifolia essential oil. Biomed. Chromatogr. 2021, 35, e5106. [Google Scholar] [CrossRef]
- Wang, D.; Hou, J.; Wu, Y.; Gao, Q.Q.; Chen, Z.P.; Li, W.D. Spectrum-effect relationships of the metal elements in pyritum, its processed products and their activities on proliferation of osteoblasts. Tradit. Chin. Drug Res. Clin. Pharmacol. 2021, 32, 1109–1113. [Google Scholar]
- Chen, X.H.; Cui, L.L.; Bao, Y.R.; Meng, X.S. Spectra-effect relationship of anti-tumor effects of Saltpeter in different regions based on gray correlation analysis. J. Liaoning. Univ. Tradit. Chin. Med. 2019, 21, 61–65. [Google Scholar]
- Wu, R.J.; Liang, J.; Liang, Y.H.; Xiong, L. A spectrum-effect based method for screening antibacterial constituents in Niuhuang Shangqing Pill using comprehensive two-dimensional liquid chromatography. J. Chromatogr. B 2022, 1191, 123121. [Google Scholar]
- Li, Y.F.; Cheng, Y.Y.; Fan, X.H. A Strategy for multidimensional spectrum-effect relationship of traditional Chinese medicine. Chin. J. Nat. Med. 2010, 8, 167–170. [Google Scholar] [CrossRef]
- Yang, L.P.; Xie, X.M.; Yang, L.; Zhang, J.; Sun, G.X. Monitoring quality consistency of Ixeris sonchifolia (Bunge) Hance injection by integrating UV spectroscopic fingerprints, a multi-wavelength fusion fingerprint method, antioxidant activities and UHPLC/Q-TOF-MS. RSC Adv. 2016, 6, 87616–87627. [Google Scholar] [CrossRef]
- Tistaert, C.; Dejaegher, B.; Vander Heyden, Y. Chromatographic separation techniques and data handling methods for herbal fingerprints: A review. Anal. Chim. Acta 2011, 690, 148–161. [Google Scholar] [PubMed]
- Goodarzi, M.; Russell, P.J.; Heyden, Y.V. Similarity analyses of chromatographic herbal fingerprints: A review. Anal. Chim. Acta 2013, 804, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.X.; Gao, J.; Zhao, S.N.; Li, Y.R.; Du, Y.L.; Pan, H.F. The Spectrum–effect relationship between HPLC fingerprint and the invigorating blood and dissolving stasis effect of Hawthorn Leaves. Chromatographia 2020, 83, 409–421. [Google Scholar] [CrossRef]
- Du, W.F.; Zhu, W.H.; Ge, W.H.; Li, C.Y. Research on the effect of spleen-invigorating and anti-swelling active ingredients in crude and processed coix seed based on Spectrum-Effects relationship combined with chemometrics. J. Pharm. Biomed. Anal. 2021, 205, 114350. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tian, W.; Liu, Y.F.; Li, X.M.; Pan, F.F.; Wang, Z.Y.; Li, Z.Y.; Yang, P.L.; Dai, X.F. Quality evaluation of the extract of aerial parts from Atractylodes lancea based on fingerprint and chemometrics. Int. J. Food Prop. 2022, 25, 422–434. [Google Scholar] [CrossRef]
- Liu, X.K.; Wang, Y.; Ge, W.; Cai, G.Z.; Guo, Y.L.; Gong, J. Spectrum-effect relationship between ultra-high-performance liquid chromatography fingerprints and antioxidant activities of Lophatherum gracile Brongn. Food Sci. Nutr. 2022, 10, 1592–1601. [Google Scholar] [CrossRef]
- Wang, D.; Gao, S.; Mu, Y.Y.; Zhu, F.F.; Li, W.L. Application of serum pharmacology studying on spectral effect relationship of traditional Chinese medicine. J. Harbin Univ. Commer. (Nat. Sci. Ed.) 2013, 29, 641–644. [Google Scholar]
- Sun, L.Q.; Qi, J.; Yu, B.Y. Advances of multi-dimensional spectrum-effect relationship for the research on traditional Chinese medicine. J. China Pharm. Univ. 2013, 44, 487–493. [Google Scholar]
- Lv, S.W.; Dong, S.Y.; Guo, Y.Y.; Sun, S.; Kuang, H.X. Advance in application of data analysis technique in spectrum-effect relationship of traditional Chinese medicines. Chin. J. Exp. Tradit. Med. Formulae 2015, 21, 226–230. [Google Scholar]
- Tan, X.R.; Deng, J.L. Grey relational analysis: Multiariable statistical analysis methods. Stat. Res. 1995, 65, 46–48. [Google Scholar]
- Li, X.; Zhang, F.; Wang, X.; Sun, G.X. Evaluating the quality consistency of Rong’e Yishen oral liquid by UV + FTIR quantum profilings and HPLC fingerprints combined with 3-dimensional antioxidant profiles. Microchem. J. 2021, 170, 106715. [Google Scholar] [CrossRef]
- Rencher, A. Methods of Multivariate Analysis, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Huang, M.W.; Li, R.J.; Yang, M.; Zhou, A.; Wu, H.; Li, Z.G.; Wu, H. Discovering the potential active ingredients of Qi-Yu-San-Long decoction for anti-oxidation, inhibition of non-small cell lung cancer based on the spectrum-effect relationship combined with chemometric methods. Front. Pharmacol. 2022, 13, 989139. [Google Scholar] [PubMed]
- Jiang, X.S.; Tao, L.C.; Li, C.G.; You, M.M.; Li, G.Q.; Zhang, C.P.; Hu, F.L. Grouping, Spectrum-effect relationship and antioxidant compounds of Chinese Propolis from different regions using multivariate analyses and off-line anti-DPPH assay. Molecules 2020, 25, 3243. [Google Scholar] [CrossRef]
- Alsberg, B.K.; Kell, D.B.; Goodacre, R. Variable selection in discriminant partial least squares analysis. Anal. Chem. 1998, 70, 4126. [Google Scholar] [PubMed]
- An, Q.; Wang, L.; Ding, X.Y.; Shen, Y.J.; Hao, S.H.; Li, W.J.; Li, H.Y.; Wang, T.H.; Zhan, Z.L.; Zheng, Y.G.; et al. Validation of Sennae Folium specification grade classification based on UPLC-Q-TOF/MS spectrum-effect relationship. Arab. J. Chem. 2022, 15, 104223. [Google Scholar]
- Wold, H. Partial least squares. Encycl. Stat. Sci. 1985, 6, 581–591. [Google Scholar]
- Kong, W.J.; Zhao, Y.L.; Shan, L.M.; Xiao, X.H.; Guo, W.Y. Spectrum-effect Relationships between HPLC fingerprints and biothermo-logical activity of Zuojinwan and its similar formulaes. Acta Chim. Sin. 2008, 66, 2533–2538. [Google Scholar]
- Fan, L.H.; Fan, W.X.; Wei, Z.Q.; Tan, C.Q.; Wu, C.J.; Huang, Y.L. A Rapid near infrared spectroscopy evaluation system for quality management of Chinese medicinal materials based on appearance characteristics. Pharm. Clin. Chin. Mater. Medica 2021, 12, 15–19. [Google Scholar]
- Li, Q.Y.; Bian, L.H.; Wang, X.M.; Yao, Z.W.; Li, J.Y.; Wan, G.H.; Wei, X.J.; Liu, J.F.; Yu, J.H.; Jin, C.X.; et al. Spectrum-effect relationship of hemostatic effects of Notoginseng Radix et Rhizoma with different commodity specifications. China J. Chin. Mater. Medica 2021, 46, 4157–4166. [Google Scholar]
- Liu, Y.; Guo, H.Q.; Yang, L.; Cheng, Y.R.; Shi, X.J.; Yang, L.; Gong, Y.T.; Dong, L. Study on anti-inflammatory activities in vitro and in vivo and relation of fingerprint with pharmacodynamics of Notopterygii Rhizoma et Radix from three commercial specifications. Chin. Tradit. Herb. Drugs 2019, 50, 6052–6058. [Google Scholar]
- Zhao, L.Y.; Shi, M.Y.; Zhang, Q.Y.; Qin, L.P.; Sun, Y.Q. Research progress on quality characteristics and formation mechanism of genuine medicinal materials. Chin. Tradit. Herb. Drugs 2022, 53, 6931–6947. [Google Scholar]
- Qi, L.M.; Zhong, F.R.; Liu, N.N.; Wang, J.; Nie, K.D.; Tan, Y.L.; Ma, Y.T.; Xia, L.N. Characterization of the anti-AChE potential and alkaloids in Rhizoma Coptidis from different Coptis species combined with spectrum-effect relationship and molecular docking. Front. Plant Sci. 2022, 13, 1020309. [Google Scholar]
- Lu, Y.F.; Li, D.X.; Zhang, R.; Zhao, L.L.; Qiu, Z.; Du, Y.; Ji, S.; Tang, D.Q. Chemical antioxidant quality markers of Chrysanthemum morifolium using a spectrum-effect approach. Front. Pharmacol. 2022, 13, 809482. [Google Scholar] [PubMed]
- Liao, M.; Yan, P.; Liu, X.C.; Du, Z.F.; Jia, S.L.; Aybek, R.; Li, A.Q.; Kaisa, S.; Jiang, H.L. Spectrum-effect relationship for anti-tumor activity of shikonins and shikonofurans in medicinal Zicao by UHPLC-MS/MS and chemometric approaches. J. Chromatogr. B 2020, 1136, 121924. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Du, X.; Yang, Y.Y.; Cui, X.M.; Zhang, Z.J.; Li, Y. Comparative study of chemical composition and active components against alpha-glucosidase of various medicinal parts of Morus alba L. Biomed. Chromatogr. 2018, 32, e4328. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.Y.; Zou, C.C. Study on anticoagulant material basis and mechanism of Trichosanthis Semen and its shell andkernel based on spectrum-effect relationship integrated molecular docking. China J. Chin. Mater. Medica 2022, 47, 1370–1382. [Google Scholar]
- Qu, C.; Pu, Z.J.; Zhou, G.S.; Wang, J.; Zhu, Z.H.; Yue, S.J.; Li, J.P.; Shang, L.L.; Tang, Y.P.; Shi, X.Q.; et al. Comparative analysis of main bio-active components in the herb pair DanshenHonghua and its single herbs by ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry. J. Sep. Sci. 2017, 40, 3392–3401. [Google Scholar] [CrossRef]
- Zhang, P.L.; He, S.R.; Wu, S.Q.; Li, Y.; Wang, H.Y.; Yan, C.Y.; Yang, H.; Li, P. Discovering a multi-component combination against bascular Dementia from Danshen-Honghua herbal pair by spectrum-effect relationship analysis. Pharmaceuticals 2022, 15, 1073. [Google Scholar] [CrossRef]
- Wang, Y.L.; Hu, G.; Zhang, Q.; Yang, Y.X.; Li, Q.Q.; Hu, Y.J.; Chen, H.; Yang, F.Q. Screening and Characterizing Tyrosinase Inhibitors from Salvia miltiorrhiza and Carthamus tinctorius by Spectrum-Effect Relationship Analysis and Molecular Docking. J. Anal. Methods Chem. 2018, 2018, 2141389. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhang, Q.; Yin, S.J.; Cai, L.; Yang, Y.X.; Liu, W.J.; Hu, Y.J.; Chen, H.; Yang, F.Q. Screening of blood-activating active components from Danshen-Honghua herbal pair by spectrum-effect relationship analysis. Phytomedicine 2019, 54, 149–158. [Google Scholar] [CrossRef]
- Shi, J.W.; Li, Z.Z.; Wu, J.S.; Jin, W.Y.; Chang, X.Y.; Sun, H.; Dong, L.; Jiang, Z.P.; Shi, Y. Identification of the bioactive components of Banxia Xiexin Decoction that protect against CPT-11-induced intestinal toxicity via UPLC-based spectrum-effect relationship analyses. J. Ethnopharmacol. 2021, 266, 113421. [Google Scholar]
- Zhou, X.W.; Li, Y.; Zhang, M.Y.; Hao, J.J.; Gu, Q.; Liu, H.Y.; Chen, W.; Shi, Y.F.; Dong, B.; Zhang, Y.Y.; et al. Spectrum-effect relationship between UPLC fingerprints and antilung cancer effect of Si Jun Zi Tang. Evid.-Based Complement. Altern. Med. 2019, 2019, 7282681. [Google Scholar] [CrossRef]
- Tong, J.B.; Gao, Y.T.; Fan, C.L.; Yang, C.; Han, M.X.; Zhang, N.Z. Clinical observation of qiyu sanlong decoction for non-small cell lung cancer in moderate and advanced stages. J. New Chin. Med. 2018, 50, 146–150. [Google Scholar]
- Pang, H.Q.; Zhou, P.; Meng, X.W.; Yang, H.; Li, Y.; Xing, X.D.; Wang, H.Y.; Yan, F.R.; Li, P.; Gao, W. An image-based fingerprint-efficacy screening strategy for uncovering active compounds with interactive effects in Yindan Xinnaotong soft capsule. Phytomedicine 2022, 96, 153911. [Google Scholar]
- Wei, Y.H.; Nie, L.; Gao, L.L.; Zhong, L.; Sun, Z.Y.; Yang, X.C.; Yue, J.N.; Zeng, Y.Z.; Li, L.; Sun, J.; et al. An integrated strategy to identify and quantify the quality markers of Xinkeshu Tablets based on spectrum-effect relationship, network pharmacology, plasma pharmacochemistry, and pharmacodynamics of zebrafish. Front. Pharmacol. 2022, 13, 899038. [Google Scholar]
- Li, X.; Zhang, F.; Shi, Y.N.; Bao, B.C.; Sun, G.X. Assessing the quality consistency of Rong’e Yishen oral liquid by five-wavelength maximization profilings and electrochemical fingerprints combined with antioxidant activity analyses. Anal. Chim. Acta 2022, 1192, 339348. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.F.; Zhou, L.F.; Zhong, M.Y.; Zhang, M.; Yang, L.; Yang, Y.F.; Chen, H.F.; Yang, W.L.; Yuan, J.B. Spectrum-effect relationship between UHPLC-Q-TOF/MS fingerprint and promoting gastrointestinal motility activity of Fructus aurantii based on multivariate statistical analysis. J. Ethnopharmacol. 2021, 279, 114366. [Google Scholar] [PubMed]
- Zhu, J.; Zhong, L.Y.; Ye, X.D.; Gong, Q.F.; Zhang, J.L. Comparison of dryness in different processed products of Aurantii fructus and investigation of their effect on gastrointestinal function in rats with functional dyspepsia. Chin. J. Exp. Tradit. Med. Formulae 2017, 23, 20–26. [Google Scholar]
- Qiao, R.F.; Zhong, M.Y.; Zhang, M.; Yang, L.; Du, X.Q.; Tuo, F.L.; Yuan, J.B. Dryness comparison of different fractions of Aurantii fructus extract on normal mice and gastrointestinal motility disorder rats and spectrum-dryness study. China J. Chin. Mater. Medica 2021, 46, 5291–5303. [Google Scholar]
- Li, Y.M.; Yang, Y.F.; Kang, X.D.; Li, X.F.; Wu, Y.Z.; Xiao, J.P.; Ye, Y.; Yang, J.Q.; Yang, Y.; Liu, H. Study on the anti-inflammatory effects of Callicarpa nudiflora based on the spectrum-effect relationship. Front. Pharmacol. 2021, 12, 806808. [Google Scholar] [PubMed]
- Chen, X.Y.; Gou, S.H.; Shi, Z.Q.; Xue, Z.Y.; Feng, S.L. Spectrum-effect relationship between HPLC fingerprints and bioactive components of Radix Hedysari on increasing the peak bone mass of rat. J. Pharm. Anal. 2019, 9, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Nichitoi, M.M.; Josceanu, A.M.; Isopescu, R.D.; Isopencu, G.O.; Geana, E.I.; Ciucure, C.T.; Lavric, V. Polyphenolics profile effects upon the antioxidant and antimicrobial activity of propolis extracts. Sci. Rep. 2021, 11, 20113. [Google Scholar]
- Yang, H.T.; Li, Q. Optimization of extraction process and the antioxidant activity spectrum-effect relationship of Angelica dahurica. Biomed. Chromatogr. 2022, 36, e5322. [Google Scholar]
- Ma, Y.; Li, J.; Tong, F.; Xin, X.L.; Aisa, H.A. Optimization of microwave-assisted extraction using response surface methodology and the potential anti-diabetic efficacy of Nigella glandulifera Freyn determined using the spectrum–effect relationship. Ind. Crop. Prod. 2020, 153, 112592. [Google Scholar]
- Wu, X.; Wang, S.P.; Lu, J.R.; Jing, Y.; Li, M.X.; Cao, J.L.; Bian, B.L.; Hu, C.J. Seeing the unseen of Chinese herbal medicine processing (Paozhi): Advances in new perspectives. Chin. Med. 2018, 13, 4. [Google Scholar] [PubMed]
- Wu, H.S.; Lv, Y.; Wei, F.Y.; Li, C.Y.; Ge, W.H.; Du, W.F. Comparative analysis of anti-osteoporosis efficacy in Radix Dipsaci before and after processing with salt based on spectrum-effect relationship. J. Pharm. Biomed. Anal. 2022, 221, 115078. [Google Scholar]
- Song, Y.F.; Yang, J.B.; Hu, X.W.; Gao, H.Y.; Wang, P.F.; Wang, X.T.; Liu, Y.; Cheng, X.L.; Wei, F.; Ma, S.C. A stepwise strategy integrating metabolomics and pseudotargeted spectrum-effect relationship to elucidate the potential hepatotoxic components in Polygonum multiflorum. Front. Pharmacol. 2022, 13, 935336. [Google Scholar]
- Yang, L.; Jiang, H.; Wang, S.; Hou, A.J.; Man, W.J.; Zhang, J.X.; Guo, X.Y.; Yang, B.Y.; Kuang, H.X.; Wang, Q.H. Discovering the major antitussive, expectorant, and anti-Inflammatory bioactive constituents in Tussilago farfara L. based on the spectrum-effect relationship combined with chemometrics. Molecules 2020, 25, 620. [Google Scholar] [CrossRef]
- Ma, D.D.; Wang, J.; Yin, G.; Wang, L.J.; Jin, Y.B.; Huang, Y.; Bi, K.S.; Lu, Y.; Wang, T.J. The Study of steaming durations and temperatures on the chemical characterization, neuroprotective, and antioxidant activities of Panax notoginseng. Evid.-Based Complement. Altern. Med. 2022, 2022, 3698518. [Google Scholar]
- Xiong, Y.; Chen, L.J.; Hu, Y.P.; Cui, X.M. Uncovering Active Constituents Responsible for different activities of raw and steamed Panax notoginseng roots. Front. Pharmacol. 2017, 8, 745. [Google Scholar]
- Zhang, Z.J.; Chen, L.J.; Cui, X.M.; Zhang, Y.M.; Hu, Y.P.; Wang, C.X.; Xiong, Y.X. Identification of anti-inflammatory components of raw and steamed Panax notoginseng root by analyses of spectrum-effect relationship. RSC Adv. 2019, 9, 17950–17958. [Google Scholar] [PubMed]
- Duan, F.P.; Li, Y.S.; Zhao, M.Z.; Hu, T.Y.; Pan, X.Q.; Feng, Y.; Ma, F.; Qiu, S.Q.; Zheng, Y.Q. Screening of anti-inflammatory components of Qin Jin Hua Tan Tang by a multivariate statistical analysis Approach for Spectrum-Effect Relationships. J. Anal. Methods Chem. 2021, 2021, 6348979. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.T.; Wang, B.; Kang, T.G. Spectrum–effect relationships between fingerprints of radix Polygoni multiflori-Achyranthes bidentate and antiosteoporosis effect based on different extraction solvents. Pharmacogn. Mag. 2021, 17, 16–22. [Google Scholar]
- Wang, X.J.; Wang, S.; Hou, A.J.; Yu, H.; Zhang, J.X.; Zheng, S.W.; Zhang, S.H.; Lv, J.H.; Dong, J.J.; Yang, L.; et al. The effect of anti-alcoholic gastric ulcer before and after vinegar-processed Yuanhu Zhitong prescription based on spectral-effect relationship. Biomed. Chromatogr. 2022, 36, e5410. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, Y.; Zhang, Y.; Feng, G.; Yang, Z.X.; Guan, Q.X.; Wang, R.; Han, F.J. Multi-dimensional spectrum-effect relationship of the impact of Chinese herbal formula Lichong Shengsui Yin on ovarian cancer. Molecules 2017, 22, 979. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.Y.; Yin, S.J.; Jiang, H.; Lu, M.; Yang, F.Q.; Hu, Y.J. Screening of potential thrombin and factor Xa inhibitors from the Danshen-Chuanxiong herbal pair through a spectrum-effect relationship analysis. Molecules 2021, 26, 7293. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chang, Y.L.; Wang, X.H.; Wang, Y.; Ren, X.Y.; Ma, J.M.; Yu, A.X.; Wei, J.; Fan, Q.Q.; Dong, Y.; et al. An integrated approach to uncover anti-tumor active materials of Curcumae Rhizoma-Sparganii Rhizoma based on spectrum-effect relationship, molecular docking, and ADME evaluation. J. Ethnopharmacol. 2021, 280, 114439. [Google Scholar]
- Zhai, M.H.Y.; Gong, D.D.; Gao, Q.N.; Zhang, H.; Sun, G.X. Evaluating the spectrum-effect profiling and pharmacokinetics of Tieshuang Anshen Prescription with better sedative-hypnotic effect based on Fe2+ than Hg2+. Biomed. Pharmacother. 2021, 141, 111923. [Google Scholar]
- Sun, M.Y.; Liu, L.L.; Liu, X.Y.; Dou, D.Q. The ginsenosides of black ginseng against prostatic cancer by spectrum-effect and structure-effect relationships. Int. J. Pharmacol. 2022, 18, 488–510. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yu, L.; Yang, J.H.; Ding, Z.S.; He, Y.; Wan, H.T. Spectrum effect correlation of yangyin tongnao granules on cerebral ischemia-reperfusion injury rats. Front. Pharmacol. 2022, 13, 947978. [Google Scholar] [PubMed]
- Chen, H.L.; Yang, F.R.; Fu, C.K.; Zhang, Z.M.; Xu, K.J.; Lu, S.F.; Chen, Z.P.; Wu, L.; Li, W.D. Study on the material basis of Dahuang Zhechong pill of anti-hepatoma effect by promoting vascular normalization. Biomed. Chromatogr. 2022, 36, e5305. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.F.; Jing, Z.X.; Li, Y.J.; Lv, S.W.; Li, W.N.; Cai, G.F.; Yang, D.Q.; Wang, Y.H. Screening anaphylactoid components of Shuang Huang Lian Injection by analyzing spectrum-effect relationships coupled with UPLC-TOF-MS. Biomed. Chromatogr. 2019, 33, e4376. [Google Scholar]
- Qi, J.J.; Zhang, Q.Q.; Li, L.L.; Huang, Q.; Yao, M.; Wang, N.; Peng, D.Y. Spectrum-effect relationship between UPLC-Q-TOF-MS fingerprint and anti-AUB effect of Clinopodium chinense (Benth.) O. Kuntze. J. Pharm. Biomed. Anal. 2022, 217, 114828. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.R.; Qu, J.M.; Ke, F.; Zhang, H.T.; Zhang, Y.W.; Zhang, Q.; Li, Q.; Bi, K.S.; Xu, H.R. Material basis elucidation and quantification of dandelion through spectrum-effect relationship study between UHPLC fingerprint and antioxidant activity via multivariate statistical analysis. Molecules 2022, 27, 2632. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Q.; Cui, Y.P.; Lu, J.; Meng, L.J.; Ma, C.Y.; Liu, Z.H.; Zhang, Y.; Kang, W.Y. Spectrum-effect relationship of immunologic activity of Ganoderma lucidum by UPLC-MS/MS and component knock-out method. Food Sci. Hum. Wellness 2021, 10, 278–288. [Google Scholar]
- Liu, X.; Jiang, N.; Xu, X.; Liu, C.; Liu, Z.; Zhang, Y.; Kang, W. Anti-hepatoma compound determination by the method of spectrum effect relationship, component knock-out, and UPLC-MS2 in Scheflera heptaphylla (L.) Frodin Harms and its mechanism. Front. Pharmacol. 2020, 11, 1342. [Google Scholar]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar]
- Zhao, M.T.; Hao, M.; Tong, H.J.; Su, L.L.; Fei, C.H.; Gu, W.; Mao, J.; Lu, T.L.; Mao, C.Q. Screening of blood-activating active components from Curcuma wenyujin Y.H. Chen et C. Ling rhizome based on spectrum-effect relationship analysis and network pharmacology. J. Chromatogr. B 2022, 1188, 123022. [Google Scholar]
- Feng, C.Q.; Zhang, Z.M.; Zhang, Y.M.; Wang, Y.R.; Yong, W.X.; Tai, A.N.; Li, D.G.; Jing, X.J.; Liu, Y.Q. Material basis of Xuanfei Huazhuo Prescription in treatment of COVID-19 by multi-target molecular docking. Chin. J. Exp. Tradit. Med. Formulae 2020, 26, 32–39. [Google Scholar]
- Morris, G.M.; Lim-Wilby, M. Molecular docking. In Molecular Modeling of Proteins; Springer: Berlin/Heidelberg, Germany, 2008; pp. 365–382. [Google Scholar]
- Zhu, J.F.; Ding, H.Y.; Zhong, L.K.; Xin, W.X.; Yi, X.J.; Fang, L. Spectrum-effect relationship-based strategy combined with molecular docking to explore bioactive flavonoids from Sceptridium ternatum. Molecules 2022, 27, 5698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Hou, A.J.; Dong, J.J.; Zheng, S.W.; Yu, H.; Wang, X.J.; Jiang, H.; Yang, L. Screening out key compounds of Glechomae Herba for antiurolithic activity and quality control based on spectrum-effect relationships coupled with UPLC-QDA. Biomed. Pharmacother. 2022, 149, 112829. [Google Scholar]
- Liu, J.; Wang, F.F.; Jiang, Z.M.; Liu, E.H. Identification of antidiabetic components in Uncariae Rammulus Cum Uncis based on phytochemical isolation and spectrum-effect relationship analysis. Phytochem. Anal. 2022, 33, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.F.; Wang, M.Q.; Jiang, J.P.; Zhang, K.H.; Wei, M.M.; Chen, H. Analysis of the spectrum-effect relationship of hemostatic effect of Blumea riparia based on BP artificial neural network. Chin. Tradit. Pat. Med. 2020, 42, 1543–1548. [Google Scholar]
- Cui, Y.P. Application of Spectral Effect Correlation Analysis in the Study of Immune Activity of Ganoderma lucidum. Master’s Thesis, Henan University, Kaifeng, China, 2020. [Google Scholar]
- Wang, Z.M.; Gao, H.M.; Fu, X.T.; Wang, W.H. Multi-components quantitation by one marker new method for quality evaluation of Chinese herbal medicine. China J. Chin. Mater. Medica 2006, 23, 1925–1928. [Google Scholar]
- Li, T.T.; Wang, X.F.; Ma, L.; Shu, Z.H.; Fu, X.Y. Improved overall quality control standards of Chinese herbs medicine through combining the spectrum effect relationships with the multi-components quantities by one marker. Chin. J. Exp. Tradit. Med. Formulae 2014, 20, 225–228. [Google Scholar]
- Chen, Z.Y.; Wang, M.M.; Yang, Y.Y.; Cui, X.M.; Hu, J.; Li, Y.; Zhao, F. Promotion of a quality standard for Porana sinensis Hemsl. based on the efficacy-oriented effect-constituent index. Biomed. Chromatogr. 2020, 34, e4726. [Google Scholar]
- Wang, M.Q. Study on the Quality Evaluation of Radix Yunnanensis Sinensis Based on the Relationship between One Test and Multiple Evaluation and Spectral Efficiency. Master’s Thesis, Guangxi University of Traditional Chinese Medicine, Nanning, China, 2018. [Google Scholar]
- Fan, X.K. In Situ TLC-FTIR and New TLC Plate with Further Exploration. Master’s Thesis, Hebei Normal University, Shijiazhuang, China, 2014. [Google Scholar]
- Krizman, P.J.; Cernelic, K.; Wondra, A.G.; Rodic, Z.; Prosek, M.; Prosek, M. The Importance of Standardization in Quantitative Thin-Layer Chromatography-Retrospective and Case Studies. JPC-J. Planar Chromatogr. 2013, 26, 299–305. [Google Scholar] [CrossRef]
- Tao, L.; Tian, R.; Yu, X.; Sun, L.; He, Y.; Xie, P.S.; Ma, S. Application of chemometric algorithms in the high-performance thin-layer chromatography fingerprint of traditional Chinese medicines. J. AOAC Int. 2019, 102, 720–725. [Google Scholar]
- Liu, M.T.; Zhao, J.; Li, S.P. Application of smartphone in detection of thin-layer chromatography: Case of Salvia miltiorrhiza. J. Chromatogr. A 2021, 1637, 461826. [Google Scholar] [CrossRef]
- Ge, L.; Li, N.; Yang, M.H.; Tian, S.G. Study on high-performance thin-layer chromatography analysis and antioxidant ability of Hippophae rhamnoides L. fruits. Food Ferment. Ind. 2022, 48, 263–269. [Google Scholar]
- Chen, Y.L.; Li, L.N.; Xu, R.; Li, F.; Gu, L.H.; Liu, H.W.; Wang, Z.T.; Yang, L. Characterization of natural herbal medicines by thin-layer chromatography combined with laser ablation-assisted direct analysis in real-time mass spectrometry. J. Chromatogr. A 2021, 1654, 462461. [Google Scholar] [CrossRef] [PubMed]
Method | Advantage | Limitation |
---|---|---|
H/UHPLC-UV/DAD | It is suitable for most compounds, and has the advantages of simple operation, strong specificity, good repeatability, high sensitivity, wide linear range and low cost | Long analysis time, large solvent consumption; compounds without UV–visible light absorption cannot be detected |
H/UHPLC-ELSD | A universal detector that can detect a variety of samples with lower volatility than the mobile phase | Low sensitivity, especially for compounds with UV absorption; high requirements for mobile phase |
H/UHPLC-MS | High throughput detection, structure analysis of unknown compounds, high stability, sensitivity and repeatability | Expensive equipment, easy contamination of ion sources, and complex operation |
GC-FID | Destructive mass type universal detector with wide linear range, high separation efficiency, fast analysis speed, small sample dosage and high detection sensitivity | Long analysis time, a known compound is required for qualitative analysis |
GC-MS | High qualitative reliability, high sensitivity, suitable for most volatile compounds | Expensive equipment, not suitable for analysis of thermally unstable compounds |
CE-UV | Short analysis time, less solvent consumption, less sample demand, low cost; and the sample does not require color development or dyeing with fluorescein dyes | Only compounds containing aromatic molecules or containing conjugated structures absorbed in the UV range can be detected |
UV | Non-destructive analysis, fast analysis, low cost of use | Poor repeatability, serious spectral overlap and poor accuracy |
IR | Fast analysis, does not consume solvents, no sample preparation, low cost | Low accuracy in quantification, low specificity |
TLC | Simple operation, low equipment requirements, fast analysis speed | Quantitative difficulty and poor separation of polymer compounds |
ICP-MS | Suitable for simultaneous detection of multiple elements and low detection limit | Expensive system, low automation, and serious signal drift |
Combination methods | The chemical composition information reflected by different instrumental analysis methods or detection conditions is more comprehensive | - |
Method | Characteristic | Advantage | Disadvantage |
---|---|---|---|
GRA | By measuring the degree of similarity or difference in the development trend of variables, the correlation between variables is measured | Can use the known information to reveal unknown information, less data demand, low data requirements | Difficult to describe the overall contribution of the corresponding components of peaks |
BCA | The degree of correlation between the two variables was analyzed using the original data of the sample | Reflect the direction between two variables | Integrality is ignored, and the synergistic effect of various peaks on pharmacodynamics cannot be explained |
HCA | An unsupervised analysis method in which samples or variables are categorized according to their degree of similarity | Intuitive, concise and achieve the preliminary analysis before actual modeling | Cannot reflect the magnitude and direction of correlation between fingerprint peaks and pharmacodynamic indexes |
ANNs | Consider the complexity of the internal function of the existing information and the ambiguity of the relationship | Nonlinear fitting ability, simplify the data and self-adaptation | Long model training time, slow convergence speed and unstable memory system, overfitting may occur for small sample data, black box model, the mechanism is hard to understand |
MLR | Establish a linear relationship between a dependent variable and the independent variable | Predict and analyze the difficult index through the easy index | Not enough to ensure the accuracy of the model when the relationship between independent variables is a multiple linear relationship |
PLSR | Establish a linear relationship between dependent and independent variables in the case of multiple variables | Less data demand, maximum use of data information, small computation, and high prediction accuracy | Results are difficult to interpret due to the definition of latent variables |
CCA | Reflect the overall correlation between the two groups of indicators by using the correlation between the two canonical variables | Simplify complex data, quantitatively describe the degree of linear correlation | Dimensionality reduction reduces the data content; only the correlation between one variable and one variable is considered, and the correlation between variables within the variable group cannot be considered. |
PCA | Reduce the dimension of data while maintaining the maximum contribution to the variance of data | Extracting data, removing redundant information | The meaning of the principal component characteristic dimension is fuzzy and poor in interpretation; dimensionality reduction may result in data loss |
TCM | Fingerprints | Pharmacodynamic | Animal | Chemometrics | Component | Reference |
---|---|---|---|---|---|---|
Black ginseng | HPLC | Anti-cancer activity (MTT assay of prostate cancer cell-DU145) | Rats | BCA and GRA | The active components of Black ginseng against prostate cancer were mainly ginsenosides Rg5, S-Rg3, R-Rg3, RK1 and S-Rg2. | [102] |
Yangyin Tongnao Granules | HPLC | Inflammatory factors (tumor necrosis factor-α and interleukin-18) | Cerebral ischemia-reperfusion injury rats | GRA, MLR, and PLSR | Six components | [103] |
Fangji Huangqi Tang | UHPLC-ESI-Q-TOF-MS | Anti-adriamycin nephrosis biological effect (cystatin C, blood urea nitrogen and serum creatinine) | Rats | CCA | Tetrandrine, N-methylfangchinoline, tetrandrine-M2, tetrandrine-M3, tetrandrine-M4, fangchinoline, curine, licoricone-M1, licochalcone B-M3, fenfangjine F-M2 and glycyrrhetic acid | [21] |
Dahuang Zhechong Pill | UPLC | Anti-hepatoma effect (HepG2 and HUVEC cells) | Liver cirrhosis and hepatocellular carcinoma rats induced by diethylnitrosamine | PLSR | Allantoin, hypoxanthine, salidroside, hydroxypaeoniflorin, liquiritin, isoliquiritin and other 26 components | [104] |
Shuang Huang Lian Injection | UPLC | Screening anaphylactoid components (RBL-2H3 cells) | Rats | Regression analysis and CCA | Chlorogenic, syringin, beferulic acid, 5-hydroxy-7,3’,4’,5’-7-tetramethoxy flavone, caffeic acid methyl ester | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Zhang, C.; Yang, Y.; Tang, S.; Liu, X.; Yong, J.; Peng, T. Spectrum–Effect Relationships as an Effective Approach for Quality Control of Natural Products: A Review. Molecules 2023, 28, 7011. https://doi.org/10.3390/molecules28207011
He P, Zhang C, Yang Y, Tang S, Liu X, Yong J, Peng T. Spectrum–Effect Relationships as an Effective Approach for Quality Control of Natural Products: A Review. Molecules. 2023; 28(20):7011. https://doi.org/10.3390/molecules28207011
Chicago/Turabian StyleHe, Peiyu, Chunling Zhang, Yaosong Yang, Shuang Tang, Xixian Liu, Jin Yong, and Teng Peng. 2023. "Spectrum–Effect Relationships as an Effective Approach for Quality Control of Natural Products: A Review" Molecules 28, no. 20: 7011. https://doi.org/10.3390/molecules28207011
APA StyleHe, P., Zhang, C., Yang, Y., Tang, S., Liu, X., Yong, J., & Peng, T. (2023). Spectrum–Effect Relationships as an Effective Approach for Quality Control of Natural Products: A Review. Molecules, 28(20), 7011. https://doi.org/10.3390/molecules28207011