Green Synthesis of Flower-Like Carrageenan-Silver Nanoparticles and Elucidation of Its Physicochemical and Antibacterial Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Green Synthesis of c-AgNPs
2.2. Characterisations of AgNPs
2.2.1. Fourier-Transform Infrared (FT-IR) Analysis
2.2.2. X-ray Diffraction (XRD) Analysis
2.2.3. Energy-Dispersive X-ray (EDX) Analysis
2.3. Morphology and Structural Properties of c-AgNPs
2.4. Antibacterial Activity of AgNP-Carrageenan
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Carrageenan-Silver Nanoparticles (c-AgNPs)
3.3. Characterisations of c-AgNPs
3.3.1. UV-Visible (UV-Vis) Spectroscopy
3.3.2. Fourier-Transform Infrared (FT-IR) Spectroscopy
3.3.3. X-ray Diffraction (XRD) Spectroscopy
3.3.4. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FE-SEM)
3.3.5. Energy-Dispersive X-ray (EDX) Spectroscopy
3.3.6. Atomic Force Microscopy (AFM)
3.3.7. Transmission Electron Microscope (TEM)
3.4. Antibacterial Activity of AgNP-Carrageenan
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AgNPs | Silver Nanoparticles |
c-AgNPs | Carrageenan-Silver Nanoparticles |
AgNO3 | Silver Nitrate |
SPR | Surface Plasmon Resonance |
JCPDS | Joint Committee on Powder Diffraction Standards |
DMSO | Dimethyl Sulfoxide |
SERS | Surface-Enhanced Raman Scattering |
SEF | Surface-Enhanced Fluorescence |
ROS | Reactive Oxygen Species |
LPS | Lipopolysaccharides |
CTAB | Cetyltrimethylammonium Bromide |
PVP | Polyvinylpyrrolidone |
References
- Ribeiro, A.I.; Modic, M.; Cvelbar, U.; Dinescu, G.; Mitu, B.; Nikiforov, A.; Leys, C.; Kuchakova, I.; De Vrieze, M.; Felgueiras, H.P.; et al. Effect of dispersion solvent on the deposition of PVP-silver nanoparticles onto DBD plasma-treated polyamide 6,6 fabric and its antimicrobial efficiency. Nanomaterials 2020, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Jemal, K.; Sandeep, B.V.; Pola, S. Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Allophylus serratus Leaf and Leaf Derived Callus Extracts Mediated Silver Nanoparticles. J. Nanomater. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, M.; Pohl, P. Synthesis of biogenic silver nanoparticles (Agcl-nps) using a pulicaria vulgaris gaertn. aerial part extract and their application as antibacterial, antifungal and antioxidant agents. Nanomaterials 2020, 10, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Gaikwad, K.K.; Park, S.I.; Lee, Y.S. Microwave-assisted step reduced extraction of seaweed (Gelidiella aceroso) cellulose nanocrystals. Int. J. Biol. Macromol. 2017, 99, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Li, S.; Shao, Y.; Zhang, C.; Wang, J. Single-step synthesis of hierarchical flower-like silver structures with assistance of gallic acid. Mater. Res. Express 2021, 8, 15010. [Google Scholar] [CrossRef]
- Huq, M.A. Green synthesis of silver nanoparticles using pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int. J. Mol. Sci. 2020, 21, 1510. [Google Scholar] [CrossRef] [Green Version]
- Soshnikova, V.; Kim, Y.J.; Singh, P.; Huo, Y.; Markus, J.; Ahn, S.; Castro-Aceituno, V.; Kang, J.; Chokkalingam, M.; Mathiyalagan, R.; et al. Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artif. Cells Nanomedicine Biotechnol. 2018, 46, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Giri, A.K.; Jena, B.; Biswal, B.; Pradhan, A.K.; Arakha, M.; Acharya, S.; Acharya, L. Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria. Sci. Rep. 2022, 12, 8383. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.T.; Nguyen, L.P.; Nguyen, D.T.; Le Cam-Huong, T.; Dang, C.H.; Chi, T.T.K.; Nguyen, T.D. A novel approach using plant embryos for green synthesis of silver nanoparticles as antibacterial and catalytic agent. Res. Chem. Intermed. 2021, 47, 4613–4633. [Google Scholar] [CrossRef]
- Sahayaraj, K.; Rajesh, S.; Rathi, J.M. Silver nanoparticles biosynthesis using marine alga Padina pavonica (Linn.) and its microbicidal activity. Dig. J. Nanomater. Biostructures 2012, 7, 1557–1567. [Google Scholar]
- Chandirika, J.U.; Selvi, S.T.; Annadurai, G. Synthesis and characterization of silver nanoparticle using Melia azedarach for vegetable coating and antibacterial activity. J. Innov. Pharm. Biol. Sci. 2018, 5, 38–42. [Google Scholar]
- Riaz, M.; Sharafat, U.; Zahid, N.; Ismail, M.; Park, J.; Ahmad, B.; Rashid, N.; Fahim, M.; Imran, M.; Tabassum, A. Synthesis of Biogenic Silver Nanocatalyst and their Antibacterial and Organic Pollutants Reduction Ability. ACS Omega 2022, 7, 14723–14734. [Google Scholar] [CrossRef]
- Molina, G.A.; Esparza, R.; López-Miranda, J.L.; Hernández-Martínez, A.R.; España-Sánchez, B.L.; Elizalde-Peña, E.A.; Estevez, M. Green synthesis of Ag nanoflowers using Kalanchoe Daigremontiana extract for enhanced photocatalytic and antibacterial activities. Colloids Surf. B. Biointerfaces 2019, 180, 141–149. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, X.; Gao, Y.; Yin, J.; Bai, M.; Wang, F. Green synthesis of gold nanoparticles using carrageenan oligosaccharide and their in vitro antitumor activity. Mar. Drugs 2018, 16, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztürk, İ.; Beğiç, N.; Bener, M.; Apak, R. Antioxidant capacity measurement based on κ-carrageenan stabilized and capped silver nanoparticles using green nanotechnology. J. Mol. Struct. 2021, 1242, 130846. [Google Scholar] [CrossRef]
- Nhung, T.T.; Lee, S.W. Green synthesis of asymmetrically textured silver meso-flowers (AgMFs) as highly sensitive SERS substrates. ACS Appl. Mater. Interfaces 2014, 6, 21335–21345. [Google Scholar] [CrossRef]
- Chen, D.; Wendt, C.H.; Pui, D.Y.H. A novel approach for introducing bio-materials into cells. J. Nanoparticle Res. 2000, 2, 133–139. [Google Scholar] [CrossRef]
- Zhu, M.; Li, X.; Ge, L.; Zi, Y.; Qi, M.; Li, Y.; Li, D.; Mu, C. Green synthesis of κ-carrageenan@Ag submicron-particles with high aqueous stability, robust antibacterial activity and low cytotoxicity. Mater. Sci. Eng. C. 2020, 106, 110185. [Google Scholar] [CrossRef] [PubMed]
- Elsupikhe, R.F.; Shameli, K.; Ahmad, M.B.; Ibrahim, N.A.; Zainudin, N. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res. Lett. 2015, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alam, J.; Alhoshan, M.; Shukla, A.K.; Aldalbahi, A.; Ali, F.A.A.; Dass, L.A.; Muthumareeswaran, M.R. κ-Carrageenan as a promising pore-former for the preparation of a highly porous polyphenylsulfone membrane. Mater. Lett. 2017, 204, 108–111. [Google Scholar] [CrossRef]
- Goel, A.; Meher, M.K.; Gupta, P.; Gulati, K.; Pruthi, V.; Poluri, K.M. Microwave assisted κ-carrageenan capped silver nanocomposites for eradication of bacterial biofilms. Carbohydr. Polym. 2019, 206, 854–862. [Google Scholar] [CrossRef]
- Elsupikhe, R.F.; Shameli, K.; Ahmad, M.B. Sonochemical method for the synthesis of silver nanoparticles in κ-carrageenan from silver salt at different concentrations. Res. Chem. Intermed. 2015, 41, 8515–8525. [Google Scholar] [CrossRef]
- Gün Gök, Z.; Karayel, M.; Yiğitoğlu, M. Synthesis of carrageenan coated silver nanoparticles by an easy green method and their characterization and antimicrobial activities. Res. Chem. Intermed. 2021, 47, 1843–1864. [Google Scholar] [CrossRef]
- Wan, H.; Li, C.; Mahmud, S.; Liu, H. Kappa carrageenan reduced-stabilized colloidal silver nanoparticles for the degradation of toxic azo compounds. Colloids Surf. A. Physicochem. Eng. Asp. 2021, 616, 126325. [Google Scholar] [CrossRef]
- Kailas, T.; Kersen, P.; Martin, G.; Truus, K.; Tuvikene, R.; Vaher, M. Extraction and quantification of hybrid carrageenans from the biomass of the red algae Furcellaria lumbricalis and Coccotylus truncatus. Proc. Est. Acad. Sci. Chem. 2006, 55, 40. [Google Scholar] [CrossRef]
- Pandey, S.; Do, J.Y.; Kim, J.; Kang, M. Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr. Polym. 2020, 230, 115597. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, X.; Zhao, L.; Xue, Y.; Zhao, X.; Li, Q.; Xia, Y. Facile and green fabrication of carrageenan-silver nanoparticles for colorimetric determination of Cu2+ and S2−. Nanomaterials 2020, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Jena, B.K.; Mishra, B.K.; Bohidar, S. Synthesis of branched Ag nanoflowers based on a bioinspired technique: Their surface enhanced Raman scattering and antibacterial activity. J. Phys. Chem. C. 2009, 113, 14753–14758. [Google Scholar] [CrossRef]
- Muhammed Ajmal, C.; Faseela, K.P.; Singh, S.; Baik, S. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration. Sci. Rep. 2016, 6, 34894. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.C.; Ngan Luong, T.Q.; Vu, T.T.; Anh, C.T.; Dao, T.C. Synthesis of wool roll-like silver nanoflowers in an ethanol/water mixture and their application to detect traces of the fungicide carbendazim by SERS technique. RSC Adv. 2022, 12, 11583–11590. [Google Scholar] [CrossRef]
- Allafchian, A.; Allafchian, A.; Mousavi, S.H.; Jalali, S.A.H.; Jalali, S.A.H. Synthesis of antibacterial flower-like silver nanostructures by self-assembly of diphenylalanine peptide on graphite. Micro. Nano. Lett. 2020, 15, 486–489. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Z.; Lin, F.; Qin, H.; Zhang, Z.; Zhang, J.; Lei, X.; Dai, P.; Zhang, X. Two-step process for synthesizing flower-like silver nanoparticles by wet-chemical method. Mater. Lett. 2018, 233, 184–187. [Google Scholar] [CrossRef]
- Webber, V.; de Carvalho, S.M.; Ogliari, P.J.; Hayashi, L.; Barreto, P.L.M. Otimização da extração de carragenana de kappaphycus alvarezii utilizando metodologia de superfície de resposta. Cienc. E. Tecnol. Aliment. 2012, 32, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Thiurunavukkarau, R.; Shanmugam, S.; Subramanian, K.; Pandi, P.; Muralitharan, G.; Arokiarajan, M.; Kasinathan, K.; Sivaraj, A.; Kalyanasundaram, R.; AlOmar, S.Y.; et al. Silver nanoparticles synthesized from the seaweed Sargassum polycystum and screening for their biological potential. Sci. Rep. 2022, 12, 14757. [Google Scholar] [CrossRef]
- Singh, P.; Mijakovic, I. Green synthesis and antibacterial applications of gold and silver nanoparticles from Ligustrum vulgare berries. Sci. Rep. 2022, 12, 7902. [Google Scholar] [CrossRef]
- Sun, L.; Song, Y.; Wang, L.; Guo, C.; Sun, Y.; Li, Z.; Liu, Z. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J. Phys. Chem. C. 2008, 112, 1415–1422. [Google Scholar] [CrossRef]
- Grueso, E.; Perez-Tejeda, P.; Giráldez-Pérez, R.M.; Prado-Gotor, R.; Muriel-Delgado, F. Ethanol effect on gold nanoparticle aggregation state and its implication in the interaction mechanism with DNA. J. Colloid Interface Sci. 2018, 529, 65–76. [Google Scholar] [CrossRef]
- Tilaki, R.M.; Zad, A.I.; Mahdavi, S.M. The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation. J. Nanoparticle Res. 2007, 9, 853–860. [Google Scholar] [CrossRef]
- Chang, Q.; Shi, X.; Liu, X.; Tong, J.; Liu, D.; Wang, Z. Broadband plasmonic silver nanoflowers for high-performance random lasing covering visible region. Nanophotonics 2017, 6, 1151–1160. [Google Scholar] [CrossRef]
- Ma, N.; Liu, X.; Yang, Z.; Tai, G.; Yin, Y.; Liu, S.; Li, H.; Guo, P.; Zhao, X.S. Carrageenan Asissted Synthesis of Palladium Nanoflowers and Their Electrocatalytic Activity toward Ethanol. ACS Sustain. Chem. Eng. 2018, 6, 1133–1140. [Google Scholar] [CrossRef]
- Kajani, A.A.; Bordbar, A.K.; Zarkesh Esfahani, S.H.; Khosropour, A.R.; Razmjou, A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv. 2014, 4, 61394–61403. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. A Facile One-Pot Synthesis of Eco-Friendly Nanoparticles Using Carissa carandas: Ovicidal and Larvicidal Potential on Malaria, Dengue and Filariasis Mosquito Vectors. J. Clust. Sci. 2017, 28, 15–36. [Google Scholar] [CrossRef]
- Adawyia, J.H.; Alwan, M.A.; Allaa, A.J. Optimizing of porous silicon morphology for synthesis of silver nanoparticles. Microporous Mesoporous Mater. 2016, 227, 152–160. [Google Scholar] [CrossRef]
- Saedi, S.; Shokri, M.; Rhim, J.W. Preparation of carrageenan-based nanocomposite films incorporated with functionalized halloysite using AgNP and sodium dodecyl sulfate. Food Hydrocoll. 2020, 106, 105934. [Google Scholar] [CrossRef]
- Liu, F.; Liu, J.; Cao, X. Microwave-assisted Synthesis Silver Nanoparticles and Their Surface Enhancement Raman Scattering. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 2017, 46, 2395–2398. [Google Scholar] [CrossRef] [Green Version]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Ali, F.A.A.; Alam, J.; Shukla, A.K.; Alhoshan, M.; Ansari, M.A.; Al-Masry, W.A.; Rehman, S.; Alam, M. Evaluation of antibacterial and antifouling properties of silver-loaded GO polysulfone nanocomposite membrane against Escherichia coli, Staphylococcus aureus, and BSA protein. React. Funct. Polym. 2019, 140, 136–147. [Google Scholar] [CrossRef]
- Shukla, A.K.; Alam, J.; Ansari, M.A.; Alhoshan, M.; Alam, M.; Kaushik, A. Selective ion removal and antibacterial activity of silver-doped multi-walled carbon nanotube / polyphenylsulfone nanocomposite membranes. Mater. Chem. Phys. 2019, 233, 102–112. [Google Scholar] [CrossRef]
Bacteria | Zone of Inhibition (mm) * | |||||||
---|---|---|---|---|---|---|---|---|
Deionised Water | Carrageenan | Ampicillin (0.1 mg/mL) | c-AgNP Concentration (mg/mL) | |||||
0.1 | 0.5 | 1 | 2 | 4 | ||||
E. coli | 0 | 0 | 13.3 ± 0.6 | 8.0 ± 0.0 | 8.3 ± 0.6 | 9.3 ± 0.6 | 9.7 ± 0.6 | 11.7 ± 0.6 |
S. aureus | 0 | 0 | 12.3 ± 0.6 | 7.3 ± 0.6 | 8.0 ± 0.0 | 9.0 ± 0.0 | 9.0 ± 0.0 | 9.7 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaffar, S.S.; Saallah, S.; Misson, M.; Siddiquee, S.; Roslan, J.; Lenggoro, W. Green Synthesis of Flower-Like Carrageenan-Silver Nanoparticles and Elucidation of Its Physicochemical and Antibacterial Properties. Molecules 2023, 28, 907. https://doi.org/10.3390/molecules28020907
Jaffar SS, Saallah S, Misson M, Siddiquee S, Roslan J, Lenggoro W. Green Synthesis of Flower-Like Carrageenan-Silver Nanoparticles and Elucidation of Its Physicochemical and Antibacterial Properties. Molecules. 2023; 28(2):907. https://doi.org/10.3390/molecules28020907
Chicago/Turabian StyleJaffar, Syafiqah Syazwani, Suryani Saallah, Mailin Misson, Shafiquzzaman Siddiquee, Jumardi Roslan, and Wuled Lenggoro. 2023. "Green Synthesis of Flower-Like Carrageenan-Silver Nanoparticles and Elucidation of Its Physicochemical and Antibacterial Properties" Molecules 28, no. 2: 907. https://doi.org/10.3390/molecules28020907
APA StyleJaffar, S. S., Saallah, S., Misson, M., Siddiquee, S., Roslan, J., & Lenggoro, W. (2023). Green Synthesis of Flower-Like Carrageenan-Silver Nanoparticles and Elucidation of Its Physicochemical and Antibacterial Properties. Molecules, 28(2), 907. https://doi.org/10.3390/molecules28020907