Carboxymethylcellulose-Based Hydrogel Obtained from Bacterial Cellulose
Abstract
:1. Introduction
2. Result and Discussion
3. Conclusions
4. Experimental
4.1. Materials
4.2. Bacterial Cellulose Synthesis
4.3. Carboxymethylation of BC
4.4. Characterization
4.5. CMC Crosslinking
4.6. Swelling Capacity
4.7. Rheological Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pushpamalar, V.; Langford, S.J.; Ahmad, M.; Lim, Y.Y. Optimization of Reaction Conditions for Preparing Carboxymethyl Cellulose from Sago Waste. Carbohydr. Polym. 2006, 64, 312–318. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Carboxymethyl Cellulose-Based Antioxidant and Antimicrobial Active Packaging Film Incorporated with Curcumin and Zinc Oxide. Int. J. Biol. Macromol. 2020, 148, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Kim, H.-J.; Rhim, J.-W. Synthesis of Carboxymethyl Cellulose and Agar-Based Multifunctional Films Reinforced with Cellulose Nanocrystals and Shikonin. ACS Appl. Polym. Mater. 2021, 3, 1060–1069. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Jantrawut, P.; Klunklin, W.; Jantanasakulwong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Insomphun, C.; Phongthai, S.; et al. Carboxymethyl Bacterial Cellulose from Nata de Coco: Effects of NaOH. Polymers 2021, 13, 348. [Google Scholar] [CrossRef] [PubMed]
- Dapía, S.; Santos, V.; Parajó, J.C. Carboxymethylcellulose from Totally Chlorine-Free-Bleached Milox Pulps. Bioresour. Technol. 2003, 89, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, L.; Rizzi, F.; Demitri, C.; Pisanello, M.; Scarpa, E.; Qualtieri, A.; Sannino, A.; De Vittorio, M. Determination of Absorption and Structural Properties of Cellulose-Based Hydrogel via Ultrasonic Pulse-Echo Time-of-Flight Approach. Cellulose 2018, 25, 4331–4343. [Google Scholar] [CrossRef]
- Demitri, C.; Lamanna, L.; De Benedetto, E.; Damiano, F.; Cappello, M.S.; Siculella, L.; Sannino, A. Encapsulation of Lactobacillus Kefiri in Alginate Microbeads Using a Double Novel Aerosol Technique. Mater. Sci. Eng. C 2017, 77, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Barba, C.; Montané, D.; Rinaudo, M.; Farriol, X. Synthesis and Characterization of Carboxymethylcelluloses (CMC) from Non-Wood Fibers I. Accessibility of Cellulose Fibers and CMC Synthesis. Cellulose 2002, 9, 319–326. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.; Rahman, M.M.; Susan, M.A.B.H.; Shaikh, M.A.A.; Nayeem, J.; Jahan, M.S. A Novel Approach in Increasing Carboxymethylation Reaction of Cellulose. Carbohydr. Polym. Technol. Appl. 2022, 4, 100236. [Google Scholar] [CrossRef]
- Suriyatem, R.; Auras, R.A.; Rachtanapun, P. Utilization of Carboxymethyl Cellulose from Durian Rind Agricultural Waste to Improve Physical Properties and Stability of Rice Starch-Based Film. J. Polym. Env. 2019, 27, 286–298. [Google Scholar] [CrossRef]
- Suriyatem, R.; Noikang, N.; Kankam, T.; Jantanasakulwong, K.; Leksawasdi, N.; Phimolsiripol, Y.; Insomphun, C.; Seesuriyachan, P.; Chaiyaso, T.; Jantrawut, P.; et al. Physical Properties of Carboxymethyl Cellulose from Palm Bunch and Bagasse Agricultural Wastes: Effect of Delignification with Hydrogen Peroxide. Polymers 2020, 12, 1505. [Google Scholar] [CrossRef] [PubMed]
- Klunklin, W.; Jantanasakulwong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Insomphun, C.; Phongthai, S.; Jantrawut, P.; Sommano, S.R.; et al. Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End. Polymers 2020, 13, E81. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Naithani, S.; Varshney, V.K.; Bisht, S.S.; Rana, V.; Gupta, P.K. Synthesis and Characterization of Carboxymethyl Cellulose from Office Waste Paper: A Greener Approach towards Waste Management. Waste Manag. 2015, 38, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Kim, S.; Selling, G.W.; Cheng, H.N. Conversion of Agricultural Residues to Carboxymethylcellulose and Carboxymethylcellulose Acetate. Ind. Crops Prod. 2014, 60, 259–265. [Google Scholar] [CrossRef]
- Casaburi, A.; Montoya Rojo, Ú.; Cerrutti, P.; Vázquez, A.; Foresti, M.L. Carboxymethyl Cellulose with Tailored Degree of Substitution Obtained from Bacterial Cellulose. Food Hydrocoll. 2018, 75, 147–156. [Google Scholar] [CrossRef]
- Kunjalukkal Padmanabhan, S.; Esposito Corcione, C.; Nisi, R.; Maffezzoli, A.; Licciulli, A. PolyDiethyleneglycol–Bisallyl Carbonate Matrix Transparent Nanocomposites Reinforced with Bacterial Cellulose Microfibrils. Eur. Polym. J. 2017, 93, 192–199. [Google Scholar] [CrossRef]
- Kunjalukkal Padmanabhan, S.; Protopapa, C.; Licciulli, A. Stiff and Tough Hydrophobic Cellulose-Silica Aerogels from Bacterial Cellulose and Fumed Silica. Process Biochem. 2021, 103, 31–38. [Google Scholar] [CrossRef]
- Schlufter, K.; Heinze, T. Carboxymethylation of Bacterial Cellulose. Macromol. Symp. 2010, 294, 117–124. [Google Scholar] [CrossRef]
- Mali, K.K.; Dhawale, S.C.; Dias, R.J.; Dhane, N.S.; Ghorpade, V.S. Citric Acid Crosslinked Carboxymethyl Cellulose-Based Composite Hydrogel Films for Drug Delivery. Indian J. Pharm. Sci. 2018, 80, 657–667. [Google Scholar] [CrossRef]
- Padmanabhan, S.K.; Lionetto, F.; Nisi, R.; Stoppa, M.; Licciulli, A. Sustainable Production of Stiff and Crystalline Bacterial Cellulose from Orange Peel Extract. Sustainability 2022, 14, 2247. [Google Scholar] [CrossRef]
- Adinugraha, M.P.; Marseno, D.W. Haryadi Synthesis and Characterization of Sodium Carboxymethylcellulose from Cavendish Banana Pseudo Stem (Musa Cavendishii LAMBERT). Carbohydr. Polym. 2005, 62, 164–169. [Google Scholar] [CrossRef]
- Ashori, A.; Babaee, M.; Jonoobi, M.; Hamzeh, Y. Solvent-Free Acetylation of Cellulose Nanofibers for Improving Compatibility and Dispersion. Carbohydr. Polym. 2014, 102, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.; Zuluaga, R.; Putaux, J.-L.; Caro, G.; Mondragon, I.; Gañán, P. Structural Characterization of Bacterial Cellulose Produced by Gluconacetobacter Swingsii Sp. from Colombian Agroindustrial Wastes. Carbohydr. Polym. 2011, 84, 96–102. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Rattanapanone, N. Synthesis and Characterization of Carboxymethyl Cellulose Powder and Films from Mimosa Pigra. J. Appl. Polym. Sci. 2011, 122, 3218–3226. [Google Scholar] [CrossRef]
- Kojima, Y.; Takayasu, M.; Toma, M.; Koda, S. Degradation of Cellulose in NaOH and NaOH/Urea Aqueous Solutions by Ultrasonic Irradiation. Ultrason. Sonochemistry 2019, 51, 419–423. [Google Scholar] [CrossRef]
- Gong, H.; Liu, M.; Chen, J.; Han, F.; Gao, C.; Zhang, B. Synthesis and Characterization of Carboxymethyl Guar Gum and Rheological Properties of Its Solutions. Carbohydr. Polym. 2012, 88, 1015–1022. [Google Scholar] [CrossRef]
- Vinogradov, G.V.; Malkin, A.Y. Rheology of Polymers: Viscoelasticity and Flow of Polymers; Springer: Berlin/Heidelberg, Germany, 1980; ISBN 978-3-642-52206-2. [Google Scholar]
- Chen, C.; Liu, B.Y. Changes in Major Components of Tea Fungus Metabolites during Prolonged Fermentation. J. Appl. Microbiol. 2000, 89, 834–839. [Google Scholar] [CrossRef]
- Bono, A.; Ying, P.H.; Yan, F.Y.; Muei, C.L.; Sarbatly, R.; Krishnaiah, D. Synthesis and Characterization of Carboxymethyl Cellulose from palm kernel cake. Adv. Nat. Appl. Sci. 2009, 3, 5–12. [Google Scholar]
- Mohan, T.; Dobaj Štiglic, A.; Beaumont, M.; Konnerth, J.; Gürer, F.; Makuc, D.; Maver, U.; Gradišnik, L.; Plavec, J.; Kargl, R.; et al. Generic Method for Designing Self-Standing and Dual Porous 3D Bioscaffolds from Cellulosic Nanomaterials for Tissue Engineering Applications. ACS Appl. Bio Mater. 2020, 3, 1197–1209. [Google Scholar] [CrossRef] [Green Version]
Sample ID | Molecular Weight (kDa) | DS |
---|---|---|
CMC-0 h | 2347 ± 120 | 0.6 ± 0.02 |
CMC-1 h | 1747 ± 90 | 0.65 ± 0.02 |
CMC-2 h | 1701 ± 78 | 0.6 ± 0.05 |
CMC-3 h | 1441 ± 92 | 0.8 ± 0.1 |
CMC-4 h | 1327 ± 83 | 0.68 ± 0.08 |
CMC-1 2 | 706 ± 40 | 0.9 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunjalukkal Padmanabhan, S.; Lamanna, L.; Friuli, M.; Sannino, A.; Demitri, C.; Licciulli, A. Carboxymethylcellulose-Based Hydrogel Obtained from Bacterial Cellulose. Molecules 2023, 28, 829. https://doi.org/10.3390/molecules28020829
Kunjalukkal Padmanabhan S, Lamanna L, Friuli M, Sannino A, Demitri C, Licciulli A. Carboxymethylcellulose-Based Hydrogel Obtained from Bacterial Cellulose. Molecules. 2023; 28(2):829. https://doi.org/10.3390/molecules28020829
Chicago/Turabian StyleKunjalukkal Padmanabhan, Sanosh, Leonardo Lamanna, Marco Friuli, Alessandro Sannino, Christian Demitri, and Antonio Licciulli. 2023. "Carboxymethylcellulose-Based Hydrogel Obtained from Bacterial Cellulose" Molecules 28, no. 2: 829. https://doi.org/10.3390/molecules28020829
APA StyleKunjalukkal Padmanabhan, S., Lamanna, L., Friuli, M., Sannino, A., Demitri, C., & Licciulli, A. (2023). Carboxymethylcellulose-Based Hydrogel Obtained from Bacterial Cellulose. Molecules, 28(2), 829. https://doi.org/10.3390/molecules28020829