Identifying Potential Molecular Targets in Fungi Based on (Dis)Similarities in Binding Site Architecture with Proteins of the Human Pharmacolome
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selected Set of Human Protein Targets and Binding Site Definition
2.2. Searching a Fungal Proteome for Binding Sites–Case Study: Histoplasma capsulatum
2.3. Expanding the Search to Other Fungal Proteomes
2.4. Several MEK1/2 (MEK) Inhibitors Have Strong Inhibitory Effects in Various Pathogenic Fungi
2.5. Opportunities for the Design of Fungus-Specific Inhibitors
3. Computational and Experimental Methods
3.1. Computational Strategy to Identify Potential Targets in Fungi and Other Pathogens
3.1.1. Selection of the Human Protein Targets to Be Used for Fungal Proteome Searches
3.1.2. Binding Site Definition at the Structural Level in the Human Targets
3.1.3. Defining Binding Site Regions at the Sequence Level for the Human Targets
3.1.4. Searching for Similar Binding Sites in Fungal Proteomes
3.2. Fungal Proteomes Included in the Study
3.3. Homology Modeling and Molecular Docking
3.4. In Vitro Assays of MEK Inhibitors
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zeng, H.; Wu, Z.; Yu, B.; Wang, B.; Wu, C.; Wu, J.; Lai, J.; Gao, X.; Chen, J. Network Meta-Analysis of Triazole, Polyene, and Echinocandin Antifungal Agents in Invasive Fungal Infection Prophylaxis in Patients with Hematological Malignancies. BMC Cancer 2021, 21, 404. [Google Scholar] [CrossRef] [PubMed]
- Vallabhaneni, S.; Mody, R.K.; Walker, T.; Chiller, T. The Global Burden of Fungal Diseases. Infect. Dis. Clin. N. Am. 2016, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Seagle, E.E.; Williams, S.L.; Chiller, T.M. Recent Trends in the Epidemiology of Fungal Infections. Infect. Dis. Clin. N. Am. 2021, 35, 237–260. [Google Scholar] [CrossRef]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef]
- Houšť, J.; Spížek, J.; Havlíček, V. Antifungal Drugs. Metabolites 2020, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Nami, S.; Aghebati-Maleki, A.; Morovati, H.; Aghebati-Maleki, L. Current Antifungal Drugs and Immunotherapeutic Approaches as Promising Strategies to Treatment of Fungal Diseases. Biomed. Pharmacother. 2019, 110, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Wheat, L.J.; Azar, M.M.; Bahr, N.C.; Spec, A.; Relich, R.F.; Hage, C. Histoplasmosis. Infect. Dis. Clin. N. Am. 2016, 30, 207–227. [Google Scholar] [CrossRef]
- Sosa, E.J.; Burguener, G.; Lanzarotti, E.; Defelipe, L.; Radusky, L.; Pardo, A.M.; Marti, M.; Turjanski, A.G.; Fernández Do Porto, D. Target-Pathogen: A Structural Bioinformatic Approach to Prioritize Drug Targets in Pathogens. Nucl. Acids Res. 2018, 46, D413–D418. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kundu, I.; Askari, M.; Barai, R.S.; Venkatesh, K.V.; Idicula-Thomas, S. Exploring the Druggable Proteome of Candida Species through Comprehensive Computational Analysis. Genomics 2021, 113, 728–739. [Google Scholar] [CrossRef]
- Palumbo, M.; Sosa, E.; Castello, F.; Schottlender, G.; Serral, F.; Turjanski, A.; Palomino, M.M.; do Porto, D.F. Integrating Diverse Layers of Omic Data to Identify Novel Drug Targets in Listeria Monocytogenes. Front. Drug Discov. 2022, 2, 969415. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug. Discov. 2018, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug Repositioning: A Brief Overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhaelen, Q. Computational Methods for Drug Repurposing; Humana: New York, NY, USA, 2019; Volume 1903, ISBN 978-1-4939-8954-6. [Google Scholar]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial Intelligence in Drug Discovery and Development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Peyclit, L.; Yousfi, H.; Rolain, J.M.; Bittar, F. Drug Repurposing in Medical Mycology: Identification of Compounds as Potential Antifungals to Overcome the Emergence of Multidrug-Resistant Fungi. Pharmaceuticals 2021, 14, 488. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Dozal, A.A.; Lown, L.; Jahng, M.; Walraven, C.J.; Lee, S.A. In Vitro Analysis of Finasteride Activity against Candida Albicans Urinary Biofilm Formation and Filamentation. Antimicrob. Agents Chemother. 2014, 58, 5855–5862. [Google Scholar] [CrossRef] [Green Version]
- Nasr Esfahani, A.; Golestannejad, Z.; Khozeimeh, F.; Dehghan, P.; Maheronnaghsh, M.; Zarei, Z. Antifungal Effect of Atorvastatin against Candida Species in Comparison to Fluconazole and Nystatin. Med. Pharm. Rep. 2019, 98, 368–373. [Google Scholar] [CrossRef]
- Didone, L.; Scrimale, T.; Baxter, B.K.; Krysan, D.J. A High-Throughput Assay of Yeast Cell Lysis for Drug Discovery and Genetic Analysis. Nat. Protoc. 2010, 5, 1107–1114. [Google Scholar] [CrossRef]
- Butts, A.; DiDone, L.; Koselny, K.; Baxter, B.K.; Chabrier-Rosello, Y.; Wellington, M.; Krysanb, D.J. A Repurposing Approach Identifies Off-Patent Drugs with Fungicidal Cryptococcal Activity, a Common Structural Chemotype, and Pharmacological Properties Relevant to the Treatment of Cryptococcosis. Eukaryot. Cell 2013, 12, 278–287. [Google Scholar] [CrossRef]
- Kim, K.; Zilbermintz, L.; Martchenko, M. Repurposing FDA Approved Drugs against the Human Fungal Pathogen, Candida Albicans. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wall, G.; Chaturvedi, A.K.; Wormley, F.L.; Wiederhold, N.P.; Patterson, H.P.; Patterson, T.F.; Lopez-Ribot, J.L. Screening a Repurposing Library for Inhibitors of Multidrug-Resistant Candida Auris Identifies Ebselen as a Repositionable Candidate for Antifungal Drug Development. Antimicrob. Agents Chemother. 2018, 62, e01084-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miró-Canturri, A.; Ayerbe-Algaba, R.; Smani, Y. Drug Repurposing for the Treatment of Bacterial and Fungal Infections. Front. Microbiol. 2019, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Pereira de Mello, T.; Nunes Silva, L.; de Souza Ramos, L.; Freire Frota, H.; Branquinha, M.H.; Sousa dos Santos, A.L. Drug Repurposing Strategy against Fungal Biofilms. Curr. Top. Med. Chem. 2020, 20, 509–516. [Google Scholar] [CrossRef]
- Wall, G.; Lopez-Ribot, J.L. Screening Repurposing Libraries for Identification of Drugs with Novel Antifungal Activity. Antimicrob. Agents Chemother. 2020, 64, e00924-20. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A Comprehensive Map of Molecular Drug Targets. Nat. Rev. Drug. Discov. 2016, 16, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Berkes, C.; Franco, J.; Lawson, M.; Brann, K.; Mermelstein, J.; Laverty, D.; Connors, A. Kinase Inhibitor Library Screening Identifies the Cancer Therapeutic Sorafenib and Structurally Similar Compounds as Strong Inhibitors of the Fungal Pathogen Histoplasma Capsulatum. Antibiotics 2021, 10, 1223. [Google Scholar] [CrossRef]
- Macreadie, I.G.; Johnson, G.; Schlosser, T.; Macreadie, P.I. Growth Inhibition of Candida Species and Aspergillus Fumigatus by Statins. FEMS Microbiol. Lett. 2006, 262, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Hao, W.; Qiao, D.; Han, Y.; Du, N.; Li, X.; Fan, Y.; Ge, X.; Zhang, H. Identification of Disulfiram as a Potential Antifungal Drug by Screening Small Molecular Libraries. J. Infect. Chemother. 2021, 27, 696–701. [Google Scholar] [CrossRef]
- Antypenko, L.; Sadykova, Z.; Meyer, F.; Garbe, L.A.; Steffens, K. Tacrolimus as Antifungal Agent. Acta Chim. Slov. 2019, 66, 784–791. [Google Scholar] [CrossRef]
- Tu, B.; Yin, G.; Li, H. Synergistic Effects of Vorinostat (SAHA) and Azoles against Aspergillus Species and Their Biofilms. BMC Microbiol. 2020, 20, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohren, J.F.; Chen, H.; Pavlovsky, A.; Whitehead, C.; Zhang, E.; Kuffa, P.; Yan, C.; McConnell, P.; Spessard, C.; Banotai, C.; et al. Structures of Human MAP Kinase Kinase 1 (MEK1) and MEK2 Describe Novel Noncompetitive Kinase Inhibition. Nat. Struct. Mol. Biol. 2004, 11, 1192–1197. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.; Yang, S.; Wu, X.; Li, H.; Wang, Q. MEK Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J. Hematol. Oncol. 2021, 14, 1. [Google Scholar] [CrossRef]
- Bechman, K.; Galloway, J.B.; Winthrop, K.L. Small-Molecule Protein Kinases Inhibitors and the Risk of Fungal Infections. Curr. Fungal Infect. Rep. 2019, 13, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Dong-mei, M.A.; Ya-juan, J.I.; Fang, Y.; Wei, L.I.U.; Zhe, W.A.N.; Ruo-yu, L.I. Effects of U0126 on Growth and Activation of Mitogen-Activated Protein Kinases in Aspergillus Fumigatus. Chin. Med. J. 2013, 126, 220–225. [Google Scholar] [CrossRef]
- FAN, Y.; GU, S.; DONG, J.; DONG, B. Effects of MEK-Specific Inhibitor U0126 on the Conidial Germination, Appressorium Production, and Pathogenicity of Setosphaeria Turcica. Agric. Sci. China 2007, 6, 78–85. [Google Scholar] [CrossRef]
- Singh, A.; Ruan, Y.; Tippett, T.; Narendran, A. Targeted Inhibition of MEK1 by Cobimetinib Leads to Differentiation and Apoptosis in Neuroblastoma Cells. J. Exp. Clin. Cancer Res. 2015, 34, 104. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.W.; Kang, N.J.; Rogozin, E.A.; Kim, H.G.; Cho, Y.Y.; Bode, A.M.; Lee, H.J.; Surh, Y.J.; Bowden, G.T.; Dong, Z. Myricetin Is a Novel Natural Inhibitor of Neoplastic Cell Transformation and MEK1. Carcinogenesis 2007, 28, 1918–1927. [Google Scholar] [CrossRef]
- Iverson, C.; Larson, G.; Lai, C.; Yeh, L.T.; Dadson, C.; Weingarten, P.; Appleby, T.; Vo, T.; Maderna, A.; Vernier, J.M.; et al. RDEA119/BAY 869766: A Potent, Selective, Allosteric Inhibitor of MEK1/2 for the Treatment of Cancer. Cancer Res. 2009, 69, 6839–6847. [Google Scholar] [CrossRef] [Green Version]
- Salama, A.K.S.; Kim, K.B. Trametinib (GSK1120212) in the Treatment of Melanoma. Expert Opin. Pharmacother. 2013, 14, 619–627. [Google Scholar] [CrossRef]
- Hatzivassiliou, G.; Haling, J.R.; Chen, H.; Song, K.; Price, S.; Heald, R.; Hewitt, J.F.M.; Zak, M.; Peck, A.; Orr, C.; et al. Mechanism of MEK Inhibition Determines Efficacy in Mutant KRAS- versus BRAF-Driven Cancers. Nature 2013, 501, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.C.; Marsh, V.; Bernat, B.A.; Ballard, J.; Colwell, H.; Evans, R.J.; Parry, J.; Smith, D.; Brandhuber, B.J.; Gross, S.; et al. Biological Characterization of ARRY-142886 (AZD6244), a Potent, Highly Selective Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitor. Clin. Cancer Res. 2007, 13, 1576–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Q.; Dougan, D.R.; Gong, X.; Halkowycz, P.; Jin, B.; Kanouni, T.; O’Connell, S.M.; Scorah, N.; Shi, L.; Wallace, M.B.; et al. Discovery of TAK-733, a Potent and Selective MEK Allosteric Site Inhibitor for the Treatment of Cancer. Bioorg. Med. Chem. Lett. 2011, 21, 1315–1319. [Google Scholar] [CrossRef]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A Comprehensive Resource for in Silico Drug Discovery and Exploration. Nucleic Acids Res. 2006, 34, D668–D672. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; et al. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F.; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank: A Computer-Based Archival File for Macromolecular Structures. J. Mol. Biol. 1977, 112, 535–542. [Google Scholar] [CrossRef]
- Moreno, E.; León, K. Geometric and Chemical Patterns of Interaction in Protein-Ligand Complexes and Their Application in Docking. Proteins Struct. Funct. Genet. 2002, 47, 1–13. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Tecle, H.; Shao, J.; Li, Y.; Kothe, M.; Kazmirski, S.; Penzotti, J.; Ding, Y.H.; Ohren, J.; Moshinsky, D.; Coli, R.; et al. Beyond the MEK-Pocket: Can Current MEK Kinase Inhibitors Be Utilized to Synthesize Novel Type III NCKIs? Does the MEK-Pocket Exist in Kinases Other than MEK? Bioorg. Med. Chem. Lett. 2009, 19, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software News and Updates AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
Human Protein Target | UniProt Code | Fungal Species * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Histoplasma capsulatum | % | Aspergillus fumigatus | % | Candida albicans | % | Candida parapsilosis | % | Cryptococcus neoformans | % | Fusarium oxysporum | % | ||
Ribonucleotide reductase | P23921 | F0U515 | 100 | Q4WNR5 | 100 | Q5A0N3 | 96 | G8BE28 | 96 | Q5KGK1 | 100 | ||
Ornithine decarboxylase | P11926 | F0U9K9 | 100 | Q4WBW7 | 95 | P78599 | 100 | G8B654 | 100 | Q5KJY8 | 100 | A0A0D2XUF0 | 95 |
HMG-CoA reductase | P04035 | F0UKH1 | 97 | Q4WHZ1 | 97 | A0A1D8PD39 | 100 | G8B666 | 100 | Q5KEN6 | 93 | A0A0D2XPE5 | 97 |
P-glycoprotein 1 | P08183 | F0UGI7 | 93 | Q4WTT9 | 87 | Q5KN49 | 87 | A0A0D2XVG0 | 80 | ||||
IMP dehydrogenase 2 | P12268 | F0UKI1 | 93 | Q4WHZ9 | 93 | Q59Q46 | 97 | G8B7I7 | 97 | Q5KP44 | 97 | A0A0D2XAA8 | 93 |
FPP synthase | P14324 | F0UP55 | 91 | Q4WEB8 | 91 | A0A1D8PH78 | 91 | G8B7C3 | 91 | Q5KG83 | 96 | A0A0D2XDQ9 | 91 |
Ribonucleotide reductase | P23921 | F0U515 | 91 | Q4WNR5 | 87 | Q5A0N3 | 96 | G8BE28 | 91 | Q5KGK1 | 91 | A0A0D2XVB2 | 91 |
Glutathione reductase | P00390 | F0UFI2 | 91 | Q4WRK8 | 91 | Q6FRV2 | 73 | Q5KH19 | 91 | A0A0C4DHU2 | 91 | ||
Xanthine dehydrogenase | P47989 | F0UCF6 | 90 | Q4WQ15 | 90 | A0A0D2Y4E4 | 90 | ||||||
DNA topoisomerase 2-β | Q02880 | F0UWA9 | 87.5 | Q4WLF7 | 75 | O93794 | 82 | Q5KP97 | 71 | A0A0C4DHU5 | 87 | ||
Histone deacetylase 2 | Q92769 | F0UKC3 | 87 | Q4WHY0 | 87 | Q5ADP0 | 95.7 | G8BBB0 | 96 | Q5KF65 | 95.7 | A0A0D2X821 | 87 |
GSK-3 beta | P49841 | F0UQX6 | 87 | Q4WDL1 | 93 | A0A2H0ZU47 | 83 | G8BDX2 | 80 | Q5KMR8 | 90 | A0A0D2XCF2 | 87 |
DHOdehase | Q02127 | F0UDX1 | 87 | Q4X169 | 87 | Q874I4 | 100 | G8BA68 | 100 | Q5KK62 | 100 | ||
Histone deacetylase 7 | Q8WUI4 | F0UVW7 | 85 | Q4WE71 | 75 | Q5A960 | 80 | G8BBK1 | 80 | Q5KL48 | 80 | A0A0D2YC83 | 72.7 |
Thymidylate synthase | P04818 | F0URV8 | 84 | Q4W9N9 | 88 | A0A2H0ZCG7 | 88 | G8BCL7 | 88 | P0CS12 | 78 | A0A0D2X8Z9 | 88 |
PKC-alpha | P17252 | F0UE28 | 84 | Q4WVG0 | 84 | A0A2H1A7H5 | 84 | G8BAI0 | 79 | A0A0S2LIC5 | 84 | A0A0D2XWP4 | 89.5 |
IMP dehydrogenase 2 | P12268 | F0UKI1 | 82 | Q4WHZ9 | 86 | Q59Q46 | 82 | G8B7I7 | 86 | Q5KP44 | 82 | A0A0D2XAA8 | 82 |
IMPase 1 | P29218 | F0UHX4 | 82 | Q4WEX3 | 82 | Q6FSE7 | 87 | Q5KKG2 | 83 | A0A0D2XJP5 | 78 | ||
FPP synthase | P14324 | F0UP55 | 82 | Q4WEB8 | 82 | A0A1D8PH78 | 77 | G8B7C3 | 77 | Q5KG83 | 74 | A0A0D2XDQ9 | 82 |
GARS/AIRS/GART | P22102 | F0UHE5 | 81 | Q4WDH1 | 81 | A0A1D8PE67 | 75 | G8BD50 | 75 | Q5K7B4 | 75 | A0A0D2Y2N6 | 88 |
Histone deacetylase 6 | Q9UBN7 | F0UVW7 | 81.2 | Q5A960 | 75 | G8BBK1 | 75 | Q5KL48 | 86.7 | A0A0D2YC83 | 87.5 | ||
DHOdehase | Q02127 | F0UDX1 | 80 | Q4X169 | 88 | ||||||||
Histone deacetylase 8 | Q9BY41 | F0UKC3 | 80 | Q4WHY0 | 80 | A0A2H0ZKW1 | 80 | G8BBB0 | 76 | Q5KF65 | 76.2 | A0A0D2X821 | 80 |
PPIase FKBP1A | P62942 | F0URT3 | 78 | P28870 | 74 | P0CP94 | 78 | ||||||
HMG-CoA reductase | P04035 | F0UKH1 | 77 | Q4WSY2 | 77 | A0A1D8PD39 | 77 | G8B666 | 77 | Q5KEN6 | 85 | A0A0D2XPE5 | 77 |
Histone deacetylase 1 | Q13547 | F0UKK7 | 77 | Q4WI19 | 77 | A0A1D8PSA6 | 82 | G8BBQ5 | 88 | Q5KF65 | 71 | A0A0D2X821 | 71 |
Rho kinase 2 | O75116 | F0UBW5 | 76 | Q4WQ81 | 76 | Q5AP53 | 73 | G8BKE8 | 71 | Q5KEJ1 | 73 | ||
ALDH class 2 | P05091 | F0UNE9 | 75 | Q4WM26 | 79 | Q6FPK0 | 74 | Q5KEX3 | 73 | A0A0D2XAL2 | 74 | ||
CPSase 1 | P31327 | F0UNF7 | 75 | ||||||||||
Tubulin beta-3 chain | Q13509 | F0UQK5 | 74 | Q4WA70 | 93 | A0A1D8PC97 | 96 | G8B7W7 | 96 | Q5K876 | 89 | A0A0C4DHQ2 | 93 |
MEK2 | P36507 | F0UAN5 | 74 | Q4WWH7 | 76 | Q6FQU4 | 82 | G8BFG7 | 79 | Q5KKP1 | 87 | A0A0D2XNJ1 | 79 |
MEK1 | Q02750 | F0UAN5 | 74 | Q4WWH7 | 76 | A0A2H0ZYL6 | 77 | G8BAQ2 | 76 | Q5KKP1 | 77 | A0A0D2XNJ1 | 77 |
Succinate dehydrogenase | P51649 | F0U4T1 | 72.2 | Q4WPA5 | 78 | Q6FVP8 | 81 | G8B862 | 78 | Q5K8N2 | 81 | A0A0D2Y168 | 88 |
CFTR | P13569 | F0ULL9 | 72 | Q4WIK7 | 74 | Q6FWS5 | 79 | Q5KL35 | 78 | ||||
DPDE4 | Q07343 | F0UHN7 | 71.4 | ||||||||||
FADK 2 | Q14289 | F0UKJ3 | 70.8 | Q4X028 | 76 | A0A2H0ZKT3 | 83 | A0A0D2XB54 | 71 | ||||
MAPK 11 | Q15759 | F0USW8 | 70,4 | Q4WSF6 | 70 | Q92207 | 70 | G8BE43 | 70 | Q5KC34 | 70 | A0A0D2XQS0 | 74 |
ATP-binding cassette G2 | Q9UNQ0 | F0U6H3 | 70 | Q4WXJ0 | 70 | Q6FQ96 | 76.2 | Q5KCK1 | 71.4 | A0A0D2Y998 | 71.4 | ||
IDPc | O75874 | Q4WX92 | 100 | A0A1D8PHH7 | 100 | G8BDJ9 | 100 | Q5KLU0 | 100 | A0A0D2XM79 | 100 | ||
ICD-M | P48735 | Q4WX92 | 100 | A0A1D8PS79 | 100 | G8BDJ9 | 100 | Q5KLU0 | 100 | A0A0D2XM79 | 100 | ||
DNA topoisomerase 2 | P11388 | Q4WLF7 | 89 | A0A1D8PMM1 | 96 | G8BHF5 | 96 | Q5KP97 | 86 | A0A0C4DHU5 | 93 | ||
PARP-2 | Q9UGN5 | Q4WU62 | 83.9 | A0A0D2XUC2 | 87.1 | ||||||||
IDPc | O75874 | Q4WX92 | 77 | A0A2H0ZLU3 | 77 | A0A0D2XM79 | 71 | ||||||
Cyclin-dependent kinase 6 | Q00534 | Q4WN13 | 77 | P43063 | 73 | G8BG79 | 73 | A0A0D2Y7P8 | 71 | ||||
Thioredoxin reductase 1 | Q16881 | Q4WRK8 | 73.9 | ||||||||||
DHOdehase | Q02127 | Q874I4 | 84 | G8BA68 | 84 | Q5KK62 | 74 | ||||||
Tyrosine kinase CSK | P41240 | A0A1D8PR87 | 80 | G8BKZ2 | 80 | ||||||||
ROCK-I | Q13464 | Q6FP74 | 71 | Q5KEJ1 | 70 | ||||||||
BCNG-2 | Q9UL51 | Q59V20 | 70,6 | ||||||||||
Proto-oncogene c-Src | P12931 | Q9Y7W4 | 70 | ||||||||||
NTK38 | P51813 | A0A0C4DJR2 | 73 | ||||||||||
CFTR | P13569 | A0A0D2XXA6 | 71 | ||||||||||
ALDH class 2 | P05091 | A0A0D2YFW3 | 70 |
Inhibitor | Fungal Species | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Histoplasma capsulatum | Cryptococcus neoformans | Candida albicans | Candida parapsilosis | Fusarium oxysporum | Aspergillus fumigatus | |||||||
Solvent * | +SDS ** | Solvent | +SDS | Solvent | +SDS | Solvent | +SDS | Solvent | +SDS | Solvent | +SDS | |
cobimetinib | 53 | <12.5 | >188 | >188 | >188 | >188 | >188 | 158 | ~100 | 65 | >100 | 82 |
GDC-0623 | 114 | 63 | 194 | 83 | >219 | >219 | >219 | >219 | >100 | ~100 | 8 | 7 |
myricetin | >251 | 36 | >251 | >251 | >251 | >251 | >251 | >251 | >251 | >251 | >251 | >251 |
TAK-733 | >198 | 198 | >198 | 198 | >198 | 198 | >198 | >198 | >100 | >100 | >100 | 54 |
AZD-6244 | >328 | >328 | >328 | >328 | >328 | >328 | >328 | >328 | >328 | >328 | >328 | >328 |
refametinib | 25 | <17.5 | 81 | 54 | 175 | 114 | >175 | 175 | ND | ND | ND | ND |
trametinib | >49 | >49 | >49 | >49 | >49 | >49 | >49 | >49 | >49 | >49 | >49 | >49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedoya-Cardona, J.E.; Rubio-Carrasquilla, M.; Ramírez-Velásquez, I.M.; Valdés-Tresanco, M.S.; Moreno, E. Identifying Potential Molecular Targets in Fungi Based on (Dis)Similarities in Binding Site Architecture with Proteins of the Human Pharmacolome. Molecules 2023, 28, 692. https://doi.org/10.3390/molecules28020692
Bedoya-Cardona JE, Rubio-Carrasquilla M, Ramírez-Velásquez IM, Valdés-Tresanco MS, Moreno E. Identifying Potential Molecular Targets in Fungi Based on (Dis)Similarities in Binding Site Architecture with Proteins of the Human Pharmacolome. Molecules. 2023; 28(2):692. https://doi.org/10.3390/molecules28020692
Chicago/Turabian StyleBedoya-Cardona, Johann E., Marcela Rubio-Carrasquilla, Iliana M. Ramírez-Velásquez, Mario S. Valdés-Tresanco, and Ernesto Moreno. 2023. "Identifying Potential Molecular Targets in Fungi Based on (Dis)Similarities in Binding Site Architecture with Proteins of the Human Pharmacolome" Molecules 28, no. 2: 692. https://doi.org/10.3390/molecules28020692
APA StyleBedoya-Cardona, J. E., Rubio-Carrasquilla, M., Ramírez-Velásquez, I. M., Valdés-Tresanco, M. S., & Moreno, E. (2023). Identifying Potential Molecular Targets in Fungi Based on (Dis)Similarities in Binding Site Architecture with Proteins of the Human Pharmacolome. Molecules, 28(2), 692. https://doi.org/10.3390/molecules28020692