Advanced Fractionation of Kraft Lignin by Aqueous Hydrotropic Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrotropic Fractionation
2.2. Characterization of LKL Fractions
2.2.1. GPC
2.2.2. Elemental Analysis
2.2.3. NMR Characterization
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Hydrotropic Fractionation
3.2.2. Fractions Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Luo, L.; Zheng, L.Q. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crop. Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Berlin, A.; Balakshin, M. Industrial Lignins: Analysis, Properties, and Applications; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 18; pp. 315–336. [Google Scholar] [CrossRef]
- Vakkilainen, E.; Välimäki, E. Effect of Lignin Separation to Black Liquor and Recovery Boiler Operation. In Proceedings of the TAPPI Press—TAPPI Engineering, Pulping and Environmental Conference 2009—Innovations in Energy, Fiber and Compliance, Memphis, TN, USA, 11–14 October 2009; Volume 3, pp. 1515–1556. [Google Scholar] [CrossRef]
- Kienberger, M.; Maitz, S.; Pichler, T.; Demmelmayer, P. Systematic Review on Isolation Processes for Technical Lignin. Processes 2021, 9, 804. [Google Scholar] [CrossRef]
- Tomani, P. The lignoboost process. Cellul. Chem. Technol. 2010, 44, 53–58. [Google Scholar]
- Kouisni, L.; Holt-Hindle, P.; Maki, K.; Paleologou, M. The LignoForce SystemTM: A new process for the production of high-quality lignin from black liquor. Pulp Pap. Can. 2014, 115, 18–22. [Google Scholar]
- Boeriu, C.G.; Fiţigău, F.I.; Gosselink, R.J.A.; Frissen, A.E.; Stoutjesdijk, J.; Peter, F. Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions. Ind. Crop. Prod. 2014, 62, 481–490. [Google Scholar] [CrossRef]
- Ponomarenko, J.; Dizhbite, T.; Lauberts, M.; Viksna, A.; Dobele, G.; Bikovens, O.; Telysheva, G. Characterization of Softwood and Hardwood LignoBoost Kraft Lignins with Emphasis on their Antioxidant Activity. BioResources 2014, 9, 2051–2068. [Google Scholar] [CrossRef] [Green Version]
- Araújo, L.C.P.; Yamaji, F.M.; Lima, V.H.; Botaro, V.R. Kraft lignin fractionation by organic solvents: Correlation between molar mass and higher heating value. Bioresour. Technol. 2020, 314, 123757. [Google Scholar] [CrossRef]
- Jiang, X.; Savithri, D.; Du, X.; Pawar, S.; Jameel, H.; Chang, H.-M.; Zhou, X. Fractionation and Characterization of Kraft Lignin by Sequential Precipitation with Various Organic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 835–842. [Google Scholar] [CrossRef]
- Helander, M.; Theliander, H.; Lawoko, M.; Henriksson, G.; Zhang, L.; Lindström, M. Fractionation of Technical Lignin: Molecular Mass and pH Effects. Bioresources 2013, 8, 2270–2282. [Google Scholar] [CrossRef] [Green Version]
- Zinovyev, G.; Sumerskii, I.; Korntner, P.; Sulaeva, I.; Rosenau, T.; Potthast, A. Molar mass-dependent profiles of functional groups and carbohydrates in kraft lignin. J. Wood Chem. Technol. 2017, 37, 171–183. [Google Scholar] [CrossRef]
- Aminzadeh, S.; Lauberts, M.; Dobele, G.; Ponomarenko, J.; Mattsson, T.; Lindström, M.E.; Sevastyanova, O. Membrane filtration of kraft lignin: Structural charactristics and antioxidant activity of the low-molecular-weight fraction. Ind. Crop. Prod. 2018, 112, 200–209. [Google Scholar] [CrossRef]
- Tofani, G.; Cornet, I.; Tavernier, S. Separation and recovery of lignin and hydrocarbon derivatives from cardboard. Biomass Convers. Biorefin. 2022, 12, 3409–3424. [Google Scholar] [CrossRef]
- Lourençon, T.V.; Hansel, F.A.; da Silva, T.A.; Ramos, L.P.; de Muniz, G.I.; Magalhães, W.L. Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Sep. Purif. Technol. 2015, 154, 82–88. [Google Scholar] [CrossRef]
- Dhapte, V.; Mehta, P. Advances in hydrotropic solutions: An updated review. St. Petersburg Polytech. Univ. J. Phys. Math. 2015, 1, 424–435. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Zhu, J.; Gleisner, R.; Yang, R. Valorization of Wheat Straw Using a Recyclable Hydrotrope at Low Temperatures (≤90 °C). ACS Sustain. Chem. Eng. 2018, 6, 14480–14489. [Google Scholar] [CrossRef]
- Chen, L.; Dou, J.; Ma, Q.; Li, N.; Wu, R.; Bian, H.; Yelle, D.J.; Vuorinen, T.; Fu, S.; Pan, X.; et al. Rapid and near-complete dissolution of wood lignin at ≤80 °C by a recyclable acid hydrotrope. Sci. Adv. 2017, 3, e1701735. [Google Scholar] [CrossRef] [Green Version]
- Korpinen, R.; Fardim, P. Lignin extraction from wood biomass by a hydrotropic solution. O Papel 2009, 70, 69–82. [Google Scholar]
- Gabov, K.; Gosselink, R.J.A.; Smeds, A.I.; Fardim, P. Characterization of Lignin Extracted from Birch Wood by a Modified Hydrotropic Process. J. Agric. Food Chem. 2014, 62, 10759–10767. [Google Scholar] [CrossRef]
- Hatzopoulos, M.H.; Eastoe, J.; Dowding, P.J.; Rogers, S.E.; Heenan, R.; Dyer, R. Are Hydrotropes Distinct from Surfactants? Langmuir 2011, 27, 12346–12353. [Google Scholar] [CrossRef]
- Mansur, C.R.E.; Pires, R.V.; González, G.; Lucas, E.F. Influence of the Hydrotrope Structure on the Physical Chemical Properties of Polyoxide Aqueous Solutions. Langmuir 2005, 21, 2696–2703. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, C.V.; Chakravarthy, I.P.K.; Bharadwaj, A.V.S.L.S.; Prasad, K.M.M. Functions of Hydrotropes in Solutions. Chem. Eng. Technol. 2012, 35, 225–237. [Google Scholar] [CrossRef]
- Karthyani, S.; Pandey, A.; Devendra, L.P. Delignification of cotton stalks using sodium cumene sulfonate for bioethanol production. Biofuels 2020, 11, 431–440. [Google Scholar] [CrossRef]
- Petridis, L.; Smith, J.C. Conformations of Low-Molecular-Weight Lignin Polymers in Water. Chemsuschem 2016, 9, 289–295. [Google Scholar] [CrossRef]
- Abranches, D.O.; Benfica, J.; Soares, B.P.; Leal-Duaso, A.; Sintra, T.E.; Pires, E.; Pinho, S.P.; Shimizu, S.; Coutinho, J.A.P. Unveiling the mechanism of hydrotropy: Evidence for water-mediated aggregation of hydrotropes around the solute. Chem. Commun. 2020, 56, 7143–7146. [Google Scholar] [CrossRef]
- Wagle, V.B.; Kothari, P.S.; Gaikar, V.G. Effect of temperature on aggregation behavior of aqueous solutions of sodium cumene sulfonate. J. Mol. Liq. 2007, 133, 68–76. [Google Scholar] [CrossRef]
- Zinovyev, G.; Sulaeva, I.; Podzimek, S.; Rössner, D.; Kilpeläinen, I.; Sumerskii, I.; Rosenau, T.; Potthast, A. Getting Closer to Absolute Molar Masses of Technical Lignins. Chemsuschem 2018, 11, 3259–3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakshin, M.Y.; Capanema, E.A. Comprehensive structural analysis of biorefinery lignins with a quantitative 13C NMR approach. RSC Adv. 2015, 5, 87187–87199. [Google Scholar] [CrossRef]
- Wang, L.; Lagerquist, L.; Zhang, Y.; Koppolu, R.; Tirri, T.; Sulaeva, I.; von Schoultz, S.; Vähäsalo, L.; Pranovich, A.; Rosenau, T.; et al. Tailored Thermosetting Wood Adhesive Based on Well-defined Hardwood Lignin Fractions. ACS Sustain. Chem. Eng. 2020, 8, 13517–13526. [Google Scholar] [CrossRef]
- Meng, X.; Crestini, C.; Ben, H.; Hao, N.; Pu, Y.; Ragauskas, A.J.; Argyropoulos, D.S. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 2019, 14, 2627–2647. [Google Scholar] [CrossRef] [PubMed]
- Capanema, E.A.; Balakshin, M.Y.; Kadla, J.F. A Comprehensive Approach for Quantitative Lignin Characterization by NMR Spectroscopy. J. Agric. Food Chem. 2004, 52, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Smeds, A.; Wang, L.; Pranovich, A.; Hemming, J.; Willför, S.; Zhang, H.; Xu, C. Fractionation of Lignin with Decreased Heterogeneity: Based on a Detailed Characteristics Study of Sequentially Extracted Softwood Kraft Lignin. ACS Sustain. Chem. Eng. 2021, 9, 13862–13873. [Google Scholar] [CrossRef]
- Ponnuchamy, V.; Gordobil, O.; Diaz, R.H.; Sandak, A.; Sandak, J. Fractionation of lignin using organic solvents: A combined experimental and theoretical study. Int. J. Biol. Macromol. 2021, 168, 792–805. [Google Scholar] [CrossRef]
- Wang, K.; Xu, F.; Sun, R. Molecular Characteristics of Kraft-AQ Pulping Lignin Fractionated by Sequential Organic Solvent Extraction. Int. J. Mol. Sci. 2010, 11, 2988–3001. [Google Scholar] [CrossRef]
- Min, D.; Wang, S.-F.; Chang, H.-M.; Jameel, H.; Lucia, L. Molecular Changes in Corn Stover Lignin Resulting from Pretreatment Chemistry. BioResources 2017, 12, 6262–6275. [Google Scholar] [CrossRef]
Hydrotrope | Fraction Name | % Fraction Yield |
---|---|---|
wt% SXS | 16 wt% | 72.2 ± 0.4 |
14 wt% | 10.8 ± 0.2 | |
12 wt% | 2.5 ± 0.3 | |
10 wt% | 1.1 ± 0.3 | |
wt% SCS | 10 wt% | 5.1 ± 0.7 |
8 wt% | 78.9 ± 0.9 | |
6 wt% | 5.2 ± 0.4 |
Fraction Name | Mn (kDa) | Mw (kDa) | PDI (Mw/Mn) |
---|---|---|---|
Pure Lignin | 2.3 | 24.5 | 10.4 |
16% SXS | 3.2 | 24.6 | 7.6 |
14% SXS | 2.6 | 20.6 | 7.9 |
12% SXS | 3.0 | 9.7 | 3.2 |
10% SXS | 2.4 | 7.3 | 3.0 |
10% SCS | 2.8 | 24.0 | 8.4 |
8% SCS | 4.2 | 21.3 | 5.0 |
6% SCS | 4.1 | 19.0 | 4.6 |
Sample | |||
---|---|---|---|
LKL | C | 64.10 | 0.17 |
H | 5.68 | 0.04 | |
N | 0.24 | 0.02 | |
S | 1.97 | 0 | |
16 wt% SXS | C | 63.94 | 0.04 |
H | 5.75 | 0.02 | |
N | 0.25 | 0.01 | |
S | 2.04 | 0.02 | |
14 wt% SXS | C | 65.73 | 0.06 |
H | 5.79 | 0.04 | |
N | 0.26 | 0.01 | |
S | 1.69 | 0.02 | |
12 wt% SXS | C | 65.19 | 0.11 |
H | 5.78 | 0.04 | |
N | 0.25 | 0.01 | |
S | 1.66 | 0 | |
10 wt% SXS | C | 65.63 | 0.15 |
H | 5.81 | 0.02 | |
N | 0.26 | 0.01 | |
S | 1.65 | 0.01 | |
10 wt% SCS | C | 64.80 | 0.06 |
H | 5.82 | 0.01 | |
N | 0.24 | 0.01 | |
S | 2.24 | 0.02 | |
8 wt% SCS | C | 65.28 | 0.13 |
H | 5.87 | 0 | |
N | 0.25 | 0.02 | |
S | 2.15 | 0.04 | |
6 wt% SCS | C | 65.34 | 0.12 |
H | 5.85 | 0.01 | |
N | 0.24 | 0.01 | |
S | 1.79 | 0.01 |
Per 100 Ar Units | β-O-4′ | β-5 | β-β |
---|---|---|---|
pure lignin | 11.4 | 3.1 | 3.4 |
16 wt% SXS | 12.2 | 3.3 | 3.9 |
14 wt% SXS | 12 | 3.4 | 3.9 |
12 wt% SXS | 9.8 | 2.8 | 3.3 |
10 wt% SXS | 6.6 | 1.8 | 2.4 |
10 wt% SCS | 10.1 | 2.7 | 3.5 |
8 wt% SCS | 10.2 | 3 | 3.7 |
6 wt% SCS | 10.2 | 2.9 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, R.; Muguet, M.C.d.S.; Fardim, P. Advanced Fractionation of Kraft Lignin by Aqueous Hydrotropic Solutions. Molecules 2023, 28, 687. https://doi.org/10.3390/molecules28020687
Gaspar R, Muguet MCdS, Fardim P. Advanced Fractionation of Kraft Lignin by Aqueous Hydrotropic Solutions. Molecules. 2023; 28(2):687. https://doi.org/10.3390/molecules28020687
Chicago/Turabian StyleGaspar, Rita, Marcelo Coelho dos Santos Muguet, and Pedro Fardim. 2023. "Advanced Fractionation of Kraft Lignin by Aqueous Hydrotropic Solutions" Molecules 28, no. 2: 687. https://doi.org/10.3390/molecules28020687
APA StyleGaspar, R., Muguet, M. C. d. S., & Fardim, P. (2023). Advanced Fractionation of Kraft Lignin by Aqueous Hydrotropic Solutions. Molecules, 28(2), 687. https://doi.org/10.3390/molecules28020687