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Abstract: Invasive fungal infections represent a public health problem that worsens over the years
with the increasing resistance to current antimycotic agents. Therefore, there is a compelling medical
need of widening the antifungal drug repertoire, following different methods such as drug reposi-
tioning, identification and validation of new molecular targets and developing new inhibitors against
these targets. In this work we developed a structure-based strategy for drug repositioning and new
drug design, which can be applied to infectious fungi and other pathogens. Instead of applying
the commonly accepted off-target criterion to discard fungal proteins with close homologues in
humans, the core of our approach consists in identifying fungal proteins with active sites that are
structurally similar, but preferably not identical to binding sites of proteins from the so-called “human
pharmacolome”. Using structural information from thousands of human protein target-inhibitor
complexes, we identified dozens of proteins in fungal species of the genera Histoplasma, Candida,
Cryptococcus, Aspergillus and Fusarium, which might be exploited for drug repositioning and, more
importantly, also for the design of new fungus-specific inhibitors. As a case study, we present the
in vitro experiments performed with a set of selected inhibitors of the human mitogen-activated
protein kinases 1/2 (MEK1/2), several of which showed a marked cytotoxic activity in different
fungal species.

Keywords: fungal pathogens; drug repurposing; drug development; new therapeutic targets;
structural bioinformatics; MEK inhibitors

1. Introduction

Invasive fungal infections (IFIs), caused by yeasts and filamentous fungi, are oppor-
tunistic infections that occur mostly in immunodepressed patients and in patients in critical
conditions, causing a high morbidity and mortality [1]. IFIs may manifest with different
intensities, from simple and mild infections, as is the case of external mycoses, to severe
systemic and disseminated mycoses that can cause death [2]. The epidemiological land-
scape of invasive mycoses is in continuous change, driven by etiological variations among
hospitals, countries and the influence of multiple local variables, patient risk factors and
medical and surgical praxis [3].

The current repertoire of antifungal drugs includes different classes of molecules:
pyrimidines, polyenes, echinocandins and azoles [4–6]. These antifungal drugs, however,
present several important drawbacks, such as their adverse side effects, the increasing
resistance developed by many fungal pathogens and long treatment times [7]. Therefore,
there is a compelling medical need for broadening the therapeutic alternatives to treat these
infections. Two main alternatives in this route are drug repositioning and the development
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of new drugs directed to new molecular targets in fungi. In either case, a favorable balance
between clinical benefits and adverse effects is a relevant issue to take into account.

Commonly, the identification of new targets in pathogens focuses on unique proteins,
not present in humans, or with low sequence similarity with human proteins. This approach
intends to minimize possible cross-reactions leading to adverse secondary effects. For
example, Sosa et al. (2018) developed a database (Target-Pathogen) and a search system
that integrates multiple sources of information for the identification of possible targets in
pathogens [8]. Among the filters applied in this search system is the so-called “off-target
criterion”, which discards proteins with close homologues in humans. Similarly, in more
recent works, Mukherjee and coworkers applied a “subtractive genomics” approach to filter
out homologous proteins in the search for targets in Candida species [9], while Palumbo and
coworkers applied the same off-target criterion in a search for potential targets in Listeria
monocytogenes, following a multilayer omics strategy [10].

Drug repositioning, also referred to as drug repurposing, is a different strategy con-
sisting in finding new medical uses for approved drugs or compounds that have shown an
acceptable safety profile in clinical trials, including those that have failed in later stages
during the development. This strategy implies shorter development times, lower costs
and fewer risks [11,12]. Successful drug repurposing cases have been reported in various
therapeutic areas, prompting pharmaceutical companies to open up collaborations with
biotech firms and academic communities to synergize research in this area [12–14].

The emergence of various genomic, drug and disease knowledge databases has pro-
moted the rapid development of a variety of computational approaches to guide drug
repositioning and new drug development projects. Thus, the so-called network-based
methods combine and exploit various kinds of information from multiple data sources, e.g.,
transcriptomics, drug-induced expression profiling, disease–disease associations, drug–
drug interactions, among others [13,15]. Structure-based methods, on the other hand,
rely on techniques such as protein–ligand docking, molecular dynamics simulations, vir-
tual screening and quantitative structure–activity relationship (QSAR). Additionally, in
recent years, the use of artificial intelligence methods in drug development is gaining
a big momentum [15,16].

Drug repurposing approaches have been applied as well to fungal infections [17]. For
example, finasteride, a drug generally used for the treatment of benign prostatic hyperpla-
sia, showed efficacy in the prevention of biofilm formation by Candida albicans, when used
alone and in combination with fluconazole, and showed an effect also in the treatment of
preformed biofilms [18]. Another example is atorvastatin, a drug used as a plasma choles-
terol reducer, which showed antifungal activity by inhibiting the production of ergosterol
from the cell wall in five Candida strains (C. albicans, C. glabrata, C. kefyr, C. stellatoidea and
C. krusei) [19]. Furthermore, several drug libraries have been screened against different
pathogenic fungi in the search of drugs with previously unknown antifungal effects [20–26].

Currently, the more than one and a half thousand FDA-approved drugs and several
thousand compounds in clinical trials, together with their molecular targets, constitute a
rich repertoire for drug repurposing and new drug development. According to a study
published by Santos et al. (2017), by the year 2015 the Food and Drug Administration (FDA)
in the United States had approved a total of 1578 drugs, targeting 893 different human
and pathogen-derived biomolecules. This set of targets is defined in the article as the
“pharmacolome”, which is spread across the fourteen groups of the anatomical therapeutic
chemical (ATC) classification system. A quick survey over the compiled pharmacolome
shows the limited availability of approved drugs to treat invasive fungal infections [27].

In this work we developed a structural bioinformatics strategy to identify potential
therapeutic targets in fungi, test them in vitro using known drugs and inhibitors and, in
suitable cases, intend to develop new fungus-specific inhibitors. The core of this approach
consists in identifying fungal proteins with active sites that are structurally similar, but
preferably not identical to binding sites of proteins from the human pharmacolome. On the
one hand, a high structural similarity with a human counterpart allows validation of the



Molecules 2023, 28, 692 3 of 17

fungal target using cross-reactive inhibitors of the human protein (possibly leading to drug
repurposing). On the other hand, a few amino acid differences in the binding pocket would
produce local topological and chemical changes that might be exploited for the design of
new specific inhibitors of the fungal target.

Using structural information, we have identified dozens of proteins in several fungal
species of the genera Histoplasma, Candida, Cryptococcus, Aspergillus and Fusarium, which
might be exploited for drug repurposing and for the design of new antifungal agents. As
case study we analyze a few fungal proteins showing binding sites similar to the non-ATP
competitive binding site of the human mitogen-activated protein kinases 1 and 2 (MEK1/2),
and present the in vitro experiments performed with a set of selected (MEK1/2) inhibitors,
several of which showed marked cytotoxic activity in various fungal species. Importantly,
the binding sites of the MEK analogs in several fungal species show mutations that create
opportunities for the design of fungus-specific inhibitors.

2. Results and Discussion
2.1. Selected Set of Human Protein Targets and Binding Site Definition

The primary data source for this work was the list compiled by Santos and coworkers
(2017), which included 549 protein targets of small drugs approved by the FDA up to
2015 [27]. We complemented these data by including the small drugs (and their protein
targets) approved between 2016 and 2020, which added another 90 small drugs, resulting
in a total of 639 human protein targets. From this set, 433 proteins included in their UniProt
records cross-referenced to PDB structures, which amounted to more than 8500 PDB entries.
The automated and subsequent manual analysis of all these structures, as described in
Section 3, yielded 264 different protein targets in complex with one or more ligands.

Figure 1 shows the distribution of the number of PDB complexes per protein target.
Most of the targets are represented in the PDB by more than a single protein–ligand complex,
which allows a more comprehensive definition of the binding site. An extreme case is the
estrogen receptor (UniProt ID: P03372), with more than 500 protein–ligand structures. In
spite of this disparity in the numbers of complexes per target, we found consistent binding
pocket definitions for most of the proteins. For example, for the estrogen receptor the only
found binding site region, located between sequence positions 342 and 544, corresponds to
the estradiol binding site.
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Figure 1. Distribution of the number of human targets per number of PDB protein–ligand complexes
in the analyzed set of 264 proteins from the pharmacolome. For the first gross interval [1, 10), a
distribution in smaller intervals (1, 2–4, 5–7 and 8–10) is shown in dark blue bars.

The obtained set of PDB entries included 86 ligands corresponding to FDA-approved small
drugs (Table S1), which were distributed across > 400 complexes. The large majority of these
drugs have >60% of their surface area buried in the protein upon complexation (Figure 2A),
while the few cases showing a lower percent of buried area (for example, for cholic acid)
corresponds to extra copies of the ligand lying on external areas of the protein surface. We
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decided to use this value of 60% of buried ligand surface, covering most of the complexes,
as cutoff for further analysis of the binding sites. Likewise, we applied a molecular weight
cutoff, allowing a maximum of 80 heavy atoms (corresponding roughly to 1.1 kDa), to
discard large ligands, which were mostly peptides and oligonucleotides (see Figure 2B).
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Figure 2. Statistics from the protein–ligand complexes of targets from the human pharmacolome.
(A) Histogram of the buried ligand area upon complexation for FDA-approved drugs (data for
cholic acid were omitted). (B) Distribution of ligand molecular weights for FDA-approved drugs.
(C) Distribution of the number of residues per binding pocket for the 264 selected human targets.
(D) Distribution of binding region sequence lengths for the 264 human targets.

The analysis performed to delimit the binding regions within the protein sequences
yielded around 1200 clusters of sequence regions, corresponding to 272 protein targets. By
manually reviewing these clusters, we selected 343 binding regions in a total of 264 proteins
from the human pharmacolome. About 30% of these proteins contained more than one
pocket region.

Figure 2C shows the distribution of the number of amino acid residues per binding
pocket, as defined here following a contact distance criterion. This means that each amino
acid belonging to a binding pocket has at least one atom within a contact distance (4.5 Å)
from a ligand in at least one PDB complex. These contacts include mostly amino acid side
chains, but also residues that interact only through their backbone atoms. The numbers of
pocket amino acids across different targets span a wide range, having a maximum at around
20–30 residues. These residues are distributed along sequence regions of different lengths,
mostly within a range of 100–250 residues (Figure 2D). The largest regions correspond to
transmembrane proteins, such as the alpha units of the sodium channel proteins 2, 9 and
4 (Q99250, Q15858, P35499) and the Voltage-dependent T-type calcium channel subunit
alpha-1G (O43497), where the protein chain crosses the cell membrane several times, with
large sequence stretches separating the ligand-binding segments.

2.2. Searching a Fungal Proteome for Binding Sites–Case Study: Histoplasma capsulatum

Here we present the results obtained for the Histoplasma capsulatum proteome as
example of the application of the developed strategy. Figure 3A shows the significant
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differences between the results obtained using the full human protein sequences for BLAST
and those obtained using the defined 343 binding site regions, even though the restrictions
imposed for the second type of search were stronger: ≥80% sequence coverage vs. ≥40%
for the full sequences (for most of the proteins, the binding region covers around 40–50%
of the full sequence). As shown in Figure 3A, BLAST with binding regions yielded a
significantly higher number of hits.
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Histoplasma capsulatum proteome, using as input either the full sequences (green bars) or the binding
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plot showing the higher similarity between human and fungal binding pockets, as compared with
the similarity between the binding region sequences that encompass the binding pocket amino acids.

The similarity further increases when comparing only the sets of amino acids forming
the binding pockets (Figure 3B), which for the fungal proteins were defined from their
alignments with the human binding region sequences, as explained in Methods (Section 3).
Even for proteins with low similarity (<30% aa identity) in their binding region sequences,
the identity between the binding pocket amino acids may be considerably high. For
example, the alignment for the aromatic-L-amino-acid decarboxylase (P20711, sequence
region 147–303) yields a 33% aa identity with a sequence segment of a fungal protein
(UniProt identifier C0NW51; annotated as a glutamate decarboxylase-like protein), while
the identity of the corresponding binding pocket residues reaches 85%. Not surprisingly,
highly similar binding pockets belong to proteins with conserved roles in the cell, as is the
case of polymerases and other enzymes. Several of these binding pockets correspond to
binding sites for ATP and different cofactors.

2.3. Expanding the Search to Other Fungal Proteomes

The above analysis carried out for Histoplasma capsulatum was extended to other five
fungal proteomes of microorganisms of medical relevance: Aspergillus fumigatus, Candida
albicans, Candida parapsilosis, Cryptococcus neoformans and Fusarium oxysporum. The main
results from these analyses are summarized in Table 1, while the full list of hits is pre-
sented in Table S1. The fungal proteins listed in Table 1 contain binding pockets showing
≥70% aa identity with their human counterparts. Interestingly, four of the human tar-
gets have orthologs with 100% conserved binding sites in all or most of the investigated
fungal species.
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Table 1. Proteins with similar binding pockets (≥70% aa identity) for the six fungal species.

Human Protein Target UniProt
Code

Fungal Species *

Histoplasma
capsulatum % Aspergillus

fumigatus % Candida
albicans % Candida

parapsilosis % Cryptococcus
neoformans % Fusarium

oxysporum %

Ribonucleotide reductase P23921 F0U515 100 Q4WNR5 100 Q5A0N3 96 G8BE28 96 Q5KGK1 100
Ornithine decarboxylase P11926 F0U9K9 100 Q4WBW7 95 P78599 100 G8B654 100 Q5KJY8 100 A0A0D2XUF0 95

HMG-CoA reductase P04035 F0UKH1 97 Q4WHZ1 97 A0A1D8PD39 100 G8B666 100 Q5KEN6 93 A0A0D2XPE5 97
P-glycoprotein 1 P08183 F0UGI7 93 Q4WTT9 87 Q5KN49 87 A0A0D2XVG0 80

IMP dehydrogenase 2 P12268 F0UKI1 93 Q4WHZ9 93 Q59Q46 97 G8B7I7 97 Q5KP44 97 A0A0D2XAA8 93
FPP synthase P14324 F0UP55 91 Q4WEB8 91 A0A1D8PH78 91 G8B7C3 91 Q5KG83 96 A0A0D2XDQ9 91

Ribonucleotide reductase P23921 F0U515 91 Q4WNR5 87 Q5A0N3 96 G8BE28 91 Q5KGK1 91 A0A0D2XVB2 91
Glutathione reductase P00390 F0UFI2 91 Q4WRK8 91 Q6FRV2 73 Q5KH19 91 A0A0C4DHU2 91

Xanthine dehydrogenase P47989 F0UCF6 90 Q4WQ15 90 A0A0D2Y4E4 90
DNA topoisomerase 2-β Q02880 F0UWA9 87.5 Q4WLF7 75 O93794 82 Q5KP97 71 A0A0C4DHU5 87

Histone deacetylase 2 Q92769 F0UKC3 87 Q4WHY0 87 Q5ADP0 95.7 G8BBB0 96 Q5KF65 95.7 A0A0D2X821 87
GSK-3 beta P49841 F0UQX6 87 Q4WDL1 93 A0A2H0ZU47 83 G8BDX2 80 Q5KMR8 90 A0A0D2XCF2 87

DHOdehase Q02127 F0UDX1 87 Q4X169 87 Q874I4 100 G8BA68 100 Q5KK62 100
Histone deacetylase 7 Q8WUI4 F0UVW7 85 Q4WE71 75 Q5A960 80 G8BBK1 80 Q5KL48 80 A0A0D2YC83 72.7
Thymidylate synthase P04818 F0URV8 84 Q4W9N9 88 A0A2H0ZCG7 88 G8BCL7 88 P0CS12 78 A0A0D2X8Z9 88

PKC-alpha P17252 F0UE28 84 Q4WVG0 84 A0A2H1A7H5 84 G8BAI0 79 A0A0S2LIC5 84 A0A0D2XWP4 89.5
IMP dehydrogenase 2 P12268 F0UKI1 82 Q4WHZ9 86 Q59Q46 82 G8B7I7 86 Q5KP44 82 A0A0D2XAA8 82

IMPase 1 P29218 F0UHX4 82 Q4WEX3 82 Q6FSE7 87 Q5KKG2 83 A0A0D2XJP5 78
FPP synthase P14324 F0UP55 82 Q4WEB8 82 A0A1D8PH78 77 G8B7C3 77 Q5KG83 74 A0A0D2XDQ9 82

GARS/AIRS/GART P22102 F0UHE5 81 Q4WDH1 81 A0A1D8PE67 75 G8BD50 75 Q5K7B4 75 A0A0D2Y2N6 88
Histone deacetylase 6 Q9UBN7 F0UVW7 81.2 Q5A960 75 G8BBK1 75 Q5KL48 86.7 A0A0D2YC83 87.5

DHOdehase Q02127 F0UDX1 80 Q4X169 88
Histone deacetylase 8 Q9BY41 F0UKC3 80 Q4WHY0 80 A0A2H0ZKW1 80 G8BBB0 76 Q5KF65 76.2 A0A0D2X821 80

PPIase FKBP1A P62942 F0URT3 78 P28870 74 P0CP94 78
HMG-CoA reductase P04035 F0UKH1 77 Q4WSY2 77 A0A1D8PD39 77 G8B666 77 Q5KEN6 85 A0A0D2XPE5 77
Histone deacetylase 1 Q13547 F0UKK7 77 Q4WI19 77 A0A1D8PSA6 82 G8BBQ5 88 Q5KF65 71 A0A0D2X821 71

Rho kinase 2 O75116 F0UBW5 76 Q4WQ81 76 Q5AP53 73 G8BKE8 71 Q5KEJ1 73
ALDH class 2 P05091 F0UNE9 75 Q4WM26 79 Q6FPK0 74 Q5KEX3 73 A0A0D2XAL2 74

CPSase 1 P31327 F0UNF7 75
Tubulin beta-3 chain Q13509 F0UQK5 74 Q4WA70 93 A0A1D8PC97 96 G8B7W7 96 Q5K876 89 A0A0C4DHQ2 93

MEK2 P36507 F0UAN5 74 Q4WWH7 76 Q6FQU4 82 G8BFG7 79 Q5KKP1 87 A0A0D2XNJ1 79
MEK1 Q02750 F0UAN5 74 Q4WWH7 76 A0A2H0ZYL6 77 G8BAQ2 76 Q5KKP1 77 A0A0D2XNJ1 77

Succinate dehydrogenase P51649 F0U4T1 72.2 Q4WPA5 78 Q6FVP8 81 G8B862 78 Q5K8N2 81 A0A0D2Y168 88
CFTR P13569 F0ULL9 72 Q4WIK7 74 Q6FWS5 79 Q5KL35 78

DPDE4 Q07343 F0UHN7 71.4
FADK 2 Q14289 F0UKJ3 70.8 Q4X028 76 A0A2H0ZKT3 83 A0A0D2XB54 71

MAPK 11 Q15759 F0USW8 70,4 Q4WSF6 70 Q92207 70 G8BE43 70 Q5KC34 70 A0A0D2XQS0 74
ATP-binding cassette G2 Q9UNQ0 F0U6H3 70 Q4WXJ0 70 Q6FQ96 76.2 Q5KCK1 71.4 A0A0D2Y998 71.4

IDPc O75874 Q4WX92 100 A0A1D8PHH7 100 G8BDJ9 100 Q5KLU0 100 A0A0D2XM79 100
ICD-M P48735 Q4WX92 100 A0A1D8PS79 100 G8BDJ9 100 Q5KLU0 100 A0A0D2XM79 100

DNA topoisomerase 2 P11388 Q4WLF7 89 A0A1D8PMM1 96 G8BHF5 96 Q5KP97 86 A0A0C4DHU5 93
PARP-2 Q9UGN5 Q4WU62 83.9 A0A0D2XUC2 87.1

IDPc O75874 Q4WX92 77 A0A2H0ZLU3 77 A0A0D2XM79 71
Cyclin-dependent kinase 6 Q00534 Q4WN13 77 P43063 73 G8BG79 73 A0A0D2Y7P8 71

Thioredoxin reductase 1 Q16881 Q4WRK8 73.9
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Table 1. Cont.

Human Protein Target UniProt
Code

Fungal Species *

Histoplasma
capsulatum % Aspergillus

fumigatus % Candida
albicans % Candida

parapsilosis % Cryptococcus
neoformans % Fusarium

oxysporum %

DHOdehase Q02127 Q874I4 84 G8BA68 84 Q5KK62 74
Tyrosine kinase CSK P41240 A0A1D8PR87 80 G8BKZ2 80

ROCK-I Q13464 Q6FP74 71 Q5KEJ1 70
BCNG-2 Q9UL51 Q59V20 70,6

Proto-oncogene c-Src P12931 Q9Y7W4 70
NTK38 P51813 A0A0C4DJR2 73
CFTR P13569 A0A0D2XXA6 71

ALDH class 2 P05091 A0A0D2YFW3 70

* For each human target and each proteome, only the fungal protein with the highest aa identity percent is shown. The color code goes from dark to light gray following the decreasing
percent of pocket aa identity (from 100% to 70%).



Molecules 2023, 28, 692 8 of 17

It is worth noting that Table 1 shows, for each human target, only the highest ranked
fungal protein. However, for several human targets we found two or three fungal proteins
(within the same species) having similar binding pockets, with relatively small differences
in their aa identity percentages. This is the case, for example, of the DNA polymerase delta
catalytic subunit, which yielded two matches in each of the six proteomes. The binding
region sequences of these fungal proteins differ in aa identity (38–60%) compared to the
corresponding sequence region in the human target, but all of them contain very similar
binding pockets (~90% aa identity). Table S2 shows the full lists of matches; additionally,
see below as an example the results for MEK1/2 in Figure 4.
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Figure 4. Alignment of the binding pocket residues for the non-ATP competitive site of MEK1/2
(Q02750 and P36507), with the corresponding residues in the identified fungal proteins having similar
binding pockets, for the six analyzed species. The third column in the table shows the calculated aa
identity percentages for the set of binding pocket residues. Fully conserved positions are highlighted
in blue; non-conservative substitutions at positions 79 and 118 are marked in bold.

Several of the human proteins included in Table 1 are the targets of drugs and in-
hibitors that have been tested in fungi. For example, the cancer drug sorafenib, which
targets multiple proteins, among them the P-glycoprotein 1 (P08183), was identified from
a kinase inhibitor library screening as a strong inhibitor of Histoplasma capsulatum and
Cryptococcus neoformans [28]. Statins such as atorvastatin and simvastatin, targeting the
HMG-CoA reductase (P04035) have shown inhibitory effects in Candida albicans, Candida
Glabrata and Aspergillus fumigatus [29]. Disulfiram, a drug inhibiting the aldehyde de-
hydrogenase (P05091) that is used to treat chronic alcoholism, showed strong inhibitory
effects in Candida albicans and Candida auris [30]. The immunosuppressive drug tacrolimus,
targeting the peptidyl-prolyl cis-trans isomerase FKBP1A (P62942) had effects in 11 fungi
and 3 oomycetes of agricultural importance [31]. Finally, vorinostat, targeting histone
deacetylases (Q92769, Q9UBN7) and used in the treatment of cutaneous T cell lymphomas,
showed strong effects in Aspergillus spp. [32].

The identification in this work of fungal proteins with binding pockets similar to
those of human proteins targeted by drugs that have shown inhibitory effects in fungi, not
only serves as a strong support of the developed strategy, but also helps to identify the
actual fungal targets and to understand the mechanisms of action of such drugs in these
microorganisms. Furthermore, many of the human proteins included in Tables 1 and S2,
are the targets of drugs and inhibitors that have not been tested yet in fungi, which opens
up a large research space for drug repositioning and new drug development.

Since the fungal proteomes have been annotated mostly in an automated way, func-
tional assignments for the identified proteins are not always reliable. Therefore, it would be
difficult in many cases to establish direct functional relationships between the human tar-
gets and the identified fungal proteins having similar binding sites. For practical purposes,
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nonetheless, the obtained results lead straightforwardly to the use of known inhibitors of
the human targets to test their effects in fungi. Such chemical probing of the predicted
targets may be accomplished either by following a comprehensive in vitro testing of a
large number of inhibitors (when available), or by following a computational modeling
approach to define a more limited set of molecules to be tested, as we illustrate below
with the in silico predictions and in vitro assays performed with inhibitors of the human
MEK1/2 proteins.

2.4. Several MEK1/2 (MEK) Inhibitors Have Strong Inhibitory Effects in Various
Pathogenic Fungi

In humans, the dual specificity mitogen-activated protein kinases 1 and 2 (MEK1 and
MEK2, also known as MAP2K1 and MAP2K2), are essential components of the mitogen
activated protein (MAP) kinase signal transduction pathway. Both MEK1 and MEK2 have a
unique inhibitor-binding pocket adjacent to the Mg/ATP-binding site [33]. Currently, four
MEK inhibitors have been approved by the FDA for cancer treatment: trametinib, binime-
tinib, selumetinib and cobimetinib [34] while others are in clinical trials. The web platform
of Selleck Chemicals (Houston, TX, USA), for example, currently lists 33 commercially
available MEK inhibitors.

In general, inhibitors of the PI3K/AKT/mTOR, RAS/RAF/MEK/ERK pathway,
which are used in the treatment of malignancies and immune-mediated diseases, may
predispose to fungal infections by suppressing important components of the adaptive
and innate immune response [35], therefore, they would not likely be used as antifungal
agents. Nonetheless, there are a few reports where MEK inhibitors have been tested in
plant pathogenic fungi. For example, the MEK1/2 inhibitor U0126 was found to decrease
germination and hyphae growth in Aspergillus fumigatus [36] and to inhibit the conidial
germination and pathogenicity of Setosphaeria turcica, a plant pathogen [37].

The binding region sequence encompassing the non-ATP binding pocket in MEK1/2
goes from residue 78 to 219 (ca. 200 aa). In this region we identified 23 amino acids
(identical in the two proteins) shaping the binding pocket inner surface. Running BLAST
using the MEK1/2 binding region sequences yielded three proteins in each of the six
analyzed proteomes, showing 62–77% of aa identity between their binding pocket residues
and those of MEK (Figure 4).

The alignment in Figure 4 reveals a high degree of binding pocket conservation,
with 10 out of 23 residues fully conserved across the human and all the fungal variants.
Furthermore, in most cases the amino acid substitutions are conservative, as in positions
78, 99, 127, 141, 143, 212, 215 y 216. At positions 79 and 118, drastic substitutions (G/Y;
L/G or L/A, respectively) appear in a few proteins in several fungal species. As discussed
below, some of these substitutions represent interesting opportunities for the design of
fungus-specific inhibitors.

We decided to test our predictions by assaying in vitro a set of reported MEK inhibitors
on the six fungal species analyzed in silico. Docking simulations on the constructed models
for proteins F0UAN5 and A0D2XNJ1 from Histoplasma capsulatum and Fusarium oxyspo-
rum, respectively, were performed for 25 inhibitors found in complex with MEK1 in the
Protein Data Bank. As result, we selected seven inhibitors: cobimetinib [38], myricetin [39],
refametinib [40], trametinib [41], GDC0623 [42], AZD6244 [43] and TAK-733 [44] for the
in vitro assays.

Table 2 shows the results of the growth inhibition experiments performed for the six
fungal species. The most susceptible microorganism was Histoplasma capsulatum, with four
inhibitors (cobimetinib, GDC-0623, myricetin and refametinib) showing IC50 values in
the low micromolar range. Similarly, Aspergillus fumigatus was strongly affected by three
inhibitors (cobimetinib, GDC-0623 and TAK-733), while only one inhibitor (cobimetinib)
showed a marked effect on Fusarium oxysporum. No inhibitor had effects on all the fungal
species. The two tested Candida species were affected by two inhibitors each, but only
at a high micromolar range (>100 µM). The use of a very low concentration of the SDS
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surfactant (0.002%), which most likely increases inhibitor solubility, improved the observed
inhibitory effects in most cases. This concentration of SDS alone, or in combination with
DMSO or ethanol, had only minor effects in fungal viability.

Table 2. Result of the in vitro susceptibility assays (IC50 values, (µM)).

Inhibitor

Fungal Species

Histoplasma capsulatum Cryptococcus
neoformans Candida albicans Candida

parapsilosis
Fusarium

oxysporum
Aspergillus
fumigatus

Solvent * +SDS ** Solvent +SDS Solvent +SDS Solvent +SDS Solvent +SDS Solvent +SDS
cobimetinib 53 <12.5 >188 >188 >188 >188 >188 158 ~100 65 >100 82
GDC-0623 114 63 194 83 >219 >219 >219 >219 >100 ~100 8 7
myricetin >251 36 >251 >251 >251 >251 >251 >251 >251 >251 >251 >251
TAK-733 >198 198 >198 198 >198 198 >198 >198 >100 >100 >100 54

AZD-6244 >328 >328 >328 >328 >328 >328 >328 >328 >328 >328 >328 >328
refametinib 25 <17.5 81 54 175 114 >175 175 ND ND ND ND
trametinib >49 >49 >49 >49 >49 >49 >49 >49 >49 >49 >49 >49

IC50 values < 100 µM are marked in bold and shadowed in gray. The “<” and “>” signs are used when the IC50
value is lower/greater than the minimum/maximum tested concentration. * Compounds were dissolved in
DMSO or ethanol, and added to culture medium. ** Same as above, with the addition of 0.002% SDS.

Since for each of the investigated fungal species we found three proteins with binding
sites similar to that of the human MEKs, it is not possible to attribute the observed cytotoxic
effects to a particular protein. Furthermore, and although less probable, the actual target
might be a different, so far unidentified fungal protein. Reliable target validation would
require complementary experiments, e.g., genetic manipulations to affect protein expression.
In addition, as discussed below, target validation could be supported with growth inhibition
assays involving compounds predicted to be specific for a particular fungal protein.

2.5. Opportunities for the Design of Fungus-Specific Inhibitors

Several of the fungal proteins in Figure 4 show amino acid substitutions in their
binding pockets, as compared with the human MEKs, that cause small local topological
changes, in particular mutations L118G (A. fumigatus, H. capsulatum) and L118A in the two
Candida species. As illustrated in Figure 5 for the Histoplasma capsulatum protein F0UAN5,
mutation L118G creates a void space within the binding site, previously occupied by the
bulky Leu sidechain. This additional small cavity could be filled up by compounds with
suitable chemical structures, which, on the other hand, would not bind to human MEK1/2
because of the steric hindrances caused by the leucine sidechain. As discussed above, the
actual antifungal effect of these fungus-specific inhibitors would depend on the relevance
of their targets for cell vitality.
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Performing this kind of analysis on the different pairs of human and fungal proteins
having similar binding pockets, as found in this study, may disclose many potential
fungal targets with binding site mutations that open up a design space for fungus-specific
inhibitors. The zone between 60–75% binding pocket aa identity (Figure 3B), which includes
dozens of fungal proteins, looks particularly interesting in this regard.

3. Computational and Experimental Methods
3.1. Computational Strategy to Identify Potential Targets in Fungi and Other Pathogens

Our approach consists in identifying fungal proteins with active sites (meaning the
set of residues lining the binding pocket) that are similar to active sites of proteins from
the human pharmacolome. As mentioned in the Introduction, a high structural similarity
with the binding site of a human counterpart facilitates a chemical validation of the fungal
target using known inhibitors of the human protein and, ultimately, may lead to a drug
repurposing strategy. We, however, are more focused on exploiting one or a few relevant
amino acid differences in the binding pocket that would create a “design space” for new
specific inhibitors of the fungal target.

Briefly, we employed a structural approach to identify binding site similarities, taking
advantage of the thousands of available crystal structures for proteins of the human
pharmacolome, many of them in complex with inhibitors. As explained in detail in the
following sections, we used these bound inhibitors as anchors to define the binding site
amino acids for each human target, followed by local sequence searches and analyses
against the proteomes of several fungal species. The workflow is represented in Figure 6.
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3.1.1. Selection of the Human Protein Targets to Be Used for Fungal Proteome Searches

The list of FDA-approved small drugs and their protein targets, up to 2015 as compiled
by Santos et al. (2017), was the main primary source for our work. We updated this list
up to 2020 by including the small drugs approved by the FDA between 2016 and 2020,
taken from the “Compilation of CDER NME and New Biologic Approvals 1985–2020”
(www.fda.gov, accessed on 15 November 2021) and mapping their protein targets using
the DrugBank database [45]. The compiled data included the generic drug names, their
molecular weights, as well as the UniProt identifier [46] of their protein targets, which
were used to retrieve the amino acid sequences and the available crystal structures that are
associated with many of these proteins.

www.fda.gov
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3.1.2. Binding Site Definition at the Structural Level in the Human Targets

Binding site determination for a human target relied on the existence of at least one
protein–ligand complex in the Protein Data Bank (PDB) [47]. Therefore, the next step
was to determine which of the thousands of PDB structures associated with hundreds of
human clinical protein targets contain bound inhibitors. For this purpose, we used our
own program ‘complex_info’ [48], which identifies bound small ligands and carries out
a detailed geometric analysis of the protein–ligand interactions, providing information
on ligand size (number of heavy atoms), percent of buried ligand surface area, contacting
protein atoms and amino acids, among other useful data. We used a filter of 10 heavy
atoms as minimum to identify bound ligands, including small peptides and small nucleic
acid chains.

Next, we focused the analysis on protein–ligand complexes containing FDA-approved
drugs to gather statistics on the number of heavy atoms, surface area buried in the protein
upon complexation and the number of contacting protein residues. We then used these
data to adjust our search parameters and define more precisely the binding pockets in the
human protein targets. In this process we excluded crystallographic molecules such as
buffers and polyethylene glycols, heme groups and large peptides and nucleic acid ligands.
Finally, for each obtained protein–ligand complex we defined the pocket region as the set of
amino acid residues found within 4.5 Å from the ligand, using the VMD program [49]. For
each of the identified complexes we tabulated the protein UniProt identifier, the PDB ligand
ID, the number of ligand heavy atoms and the PDB sequence number of each binding
pocket residue.

3.1.3. Defining Binding Site Regions at the Sequence Level for the Human Targets

We reasoned that using the functionally conserved binding site regions of the human
targets for a BLAST search would increase the chances of finding similar regions in fungal
proteins. Therefore, the next step was to delimit, for each selected protein target, a contin-
uous sequence region containing the binding site pocket, based on the list of individual
binding site amino acids identified in the previous step. Commonly, these binding site
residues were scattered along a large sequence segment of a few hundred amino acids. In
many cases, more than one protein–ligand complex was available in the PDB for the same
target, yielding slightly different binding site lists depending on the size and geometry of
each ligand. In addition, the sequence numbering for the same protein may differ between
PDB entries, which created an additional difficulty for mapping the binding site residues
to the reference Uniprot sequence. To solve this problem, we used pentamer sequence
segments, each containing at least one of the binding site amino acids, to find its position
in the reference sequence by simple string search. From this mapping procedure we could
define a continuous sequence region containing all the binding site residues.

For those human target proteins having several binding site lists (originated from
different protein–ligand complexes), we clustered and aligned the obtained sequence re-
gions and manually revised each cluster. From this analysis we defined a unique consensus
binding region sequence for each target protein.

3.1.4. Searching for Similar Binding Sites in Fungal Proteomes

The binding region sequences for the obtained set of human targets, as defined in the
previous step, were used as query sequences for BLAST searches [50] in fungal proteomes,
aiming to focus the search into regions that are more likely to be conserved among evo-
lutionary distant organisms, such as humans and fungi. For comparison purposes, we
performed BLAST searches using also the full sequences of the human targets.

For the subsequent analyses, we considered as hits only those alignments covering > 80%
of the query sequence (i.e., the binding region sequence). The obtained alignments were
then used to establish functional relationships between the binding pocket residues of the
human targets and the corresponding amino acids in the fungal sequences. This way, the
fungal binding sites became also defined at the amino acid level, as illustrated in Figure 7.
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The similarity (percent of amino acid identity) between a human binding site and its
corresponding fungal binding pocket was evaluated taking into account only the binding
pocket residues. Lastly, we analyzed the alignments showing > 70% identity for the set of
binding pocket residues. From the DrugBank we retrieved the list of approved drugs for a
small set of these human targets, using also web services such as Drugs.com (“Drugs.Com
| Prescription Drug Information, Interactions & Side Effects,” 2021, last accessed on 10
April 2022).
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in full in one-letter code. Binding pocket amino acids are shown with their side chains (green, thin
sticks) enclosed in a whitish volume, and are highlighted in green bold letters in the sequence. The
MEK1 inhibitor in the 3dv3 structure is shown in thick sticks, colored in magenta. The ATP ligand is
shown in orange sticks.

3.2. Fungal Proteomes Included in the Study

We analyzed the proteomes of six fungal species: Aspergillus fumigatus (UP000002530),
Candida albicans (UP000000559), Candida parapsilosis (UP000005221), Cryptococcus neoformans
(UP000002149), Fusarium oxysporum (UP000009097) and Histoplasma capsulatum (UP000008142),
retrieved from the UniProt database.

3.3. Homology Modeling and Molecular Docking

For homology modeling of fungal proteins, we used the SwissModel server [51].
Structural models of the Histoplasma capsulatum protein with UniProt identifier F0UAN5
and the Fusarium oxysporum protein A0D2XNJ1 were constructed using as template the
crystal structure of human MEK1 in complex with an inhibitor (PDB code 3dv3) [52].
AutoDock Tools [53] was employed to prepare molecules for docking simulations, which
were carried out with AutoDock Vina [54] using default parameters and a box enclosing
the non-ATP competitive binding site.

3.4. In Vitro Assays of MEK Inhibitors

The in vitro tests to assess the susceptibility to MEK inhibitors were carried out in 96-
well microplates, seeding 300,000 cells/well for yeasts (Histoplasma capsulatum, Cryptococcus
neoformans, Candida albicans and Candida parapsilosis) and 40,000 conidia/well for Fusarium
oxysporum and Aspergillus fumigatus. Histoplasma capsulatum was cultured for 6 days in
HAMF12 medium supplemented with cysteine and glutamine. The other yeasts were
cultured in RPMI 1640 supplemented with 2% glucose for 24 h (for the two Candidas) or
72 h (Cryptococcus), all of them at 37 ◦C and stirring at 150 rpm.
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MEK inhibitors were purchased from Cayman Chemicals (Ann Arbor, MI, USA). For
each compound, the maximum tested concentration was determined by the solubility data
reported by the manufacturer. Each inhibitor was dissolved either in DMSO or ethanol
according to manufacturer’s instructions. The stock solution for each compound was
used at 1% as maximum, so that the DMSO concentration in the culture medium (kept
at 1%) would not have toxic effects on the fungi. The compounds were tested also with
the addition of 0.002% SDS, which most likely increased their solubility. Controls with 1%
DMSO or ethanol, alone or combined with 0.002% SDS, were included in each microplate.
To determine the half maximal inhibitory concentration (IC50), a 2-fold dilution series of
4 or 5 inhibitor concentrations was used. Fungal viability was determined using the XTT
colorimetric assay.

4. Concluding Remarks

We have developed a strategy for a rational, structure-based approach to drug reposi-
tioning and new drug design, which can be applied not only to infectious fungi, but also to
other pathogens. Following this methodology, we have identified fungal proteins having
high binding site similarities with human targets of drugs that have shown inhibitory
effects in fungi. These results not only support the developed strategy, but also contribute
to identify the fungal targets responsible for these effects. Importantly, they also expose
new routes to explore many drugs and inhibitors not yet tested in fungi.

Not all the identified fungal proteins, even if they are essential for the microorganism,
are suitable for drug repositioning to treat fungal infections, especially in cases where
the treatment produces severe side effects (as for many cancer drugs) or when it has
immunosuppressive effects, which opens a door to opportunistic mycotic and bacterial
infections. For a number of human targets, however, the available drugs may have only
mild secondary effects, so they might be used to treat fungal infections if they show strong
cytotoxic effects on these pathogens. Last but not least, the small structural differences
in binding pocket architecture between some pairs of human and fungal proteins can be
exploited to design specific antifungal drugs.
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