Effect of Autoclaving on the Physicochemical Properties and Biological Activity of Aluminum Oxyhydroxide Used as an Adjuvant in Vaccines
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Zeta Potential of Aluminum Oxyhydroxide
2.2. The pH Measurement of Aluminum Oxyhydroxide Solution
2.3. The X-Ray Diffraction Analysis of Aluminum Oxyhydroxide
2.4. The Adsorption Capacity of Aluminum Oxyhydroxide with BSA
2.5. The Langmuir Adsorption Isotherm of Aluminum Oxyhydroxide
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Sample Preparation and Resterilization
3.2.2. Zeta Potential Measurement
3.2.3. pH Measurement
3.2.4. Adsorption of Bovine Serum Albumin with Aluminum Oxyhydroxide
3.2.5. X-Ray Powder Diffraction Study
3.2.6. Adsorption Isotherm Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Gherardi, R.K.; Coquet, M.; Cherin, P.; Belec, L.; Moretto, P.; Dreyfus, P.A.; Pelissier, J.F.; Chariot, P.; Authier, F.J. Macrophagicmyofasciitis lesions assess long-term persistence of vaccine-derived aluminiumoxyhydroxide in muscle. Brain 2001, 124, 1821–1831. [Google Scholar] [CrossRef] [PubMed]
- Authier, F.J.; Cherin, P.; Creange, A.; Bonnotte, B.; Ferrer, X.; Abdelmoumni, A.; Ranoux, D.; Pelletier, J.; Figarella-Branger, D.; Granel, B.; et al. Central nervous system disease in patients with macrophagic myofasciitis. Brain 2001, 124, 974–983. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, R.K.; Authier, F.J. Aluminum inclusion macrophagic myofasciitis: A recently identified condition. Immunol. Allergy Clin. N. Am. 2003, 23, 699–712. [Google Scholar] [CrossRef]
- Shoenfeld, Y.; Agmon-Levin, N. ‘ASIA’—Autoimmune/inflammatory syndrome induced by adjuvants. J. Autoimmun. 2010, 36, 4–8. [Google Scholar] [CrossRef]
- Authier, F.J.; Sauvat, S.; Champey, J.; Drogou, I.; Coquet, M.; Gherardi, R.K. Chronic fatigue syndrome in patients with macrophagic myofasciitis. Arthritis Rheumatol. 2003, 48, 569–570. [Google Scholar] [CrossRef] [PubMed]
- Couette, M.; Boisse, M.F.; Maison, P.; Brugieres, P.; Cesaro, P.; Chevalier, X.; Gherardi, R.K.; Bachoud-Levi, A.C.; Authier, F.J. Long-term persistence of vaccine-derived aluminum oxyhydroxide is associated with chronic cognitive dysfunction. J. Inorg. Biochem. 2009, 103, 1571–1578. [Google Scholar] [CrossRef]
- Exley, C.; Siesjö, P.; Eriksson, H. The immunobiology of aluminium adjuvants: How do they really work? Trends Immunol. 2010, 31, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Flarend, R.E.; Hem, S.L.; White, J.L.; Elmore, D.; Suckow, M.A.; Rudy, A.C.; Dandashli, E.A. In vivo absorption of aluminium-containing vaccine adjuvants using 26Al. Vaccine 1997, 15, 1314–1318. [Google Scholar] [CrossRef]
- Morefield, G.L.; Sokolovska, A.; Jiang, D.; HogenEsch, H.; Robinson, J.P.; Hem, S.L. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine 2005, 23, 1588–1595. [Google Scholar] [CrossRef]
- Hamilton, J.A.; Byrne, R.; Whitty, G. Particulate adjuvants can induce macrophage survival, DNA synthesis, and a synergistic, proliferative response to GM-CSF and CSF-1. J. Leukoc. Biol. 2000, 67, 226–232. [Google Scholar] [CrossRef]
- Verdier, F.; Burnett, R.; Michelet-Habchi, C.; Moretto, P.; Fievet-Groyne, F.; Sauzeat, E. Aluminium assay and evaluation of the local reaction at several time points after intramuscular administration of aluminiumcontaining vaccines in the Cynomolgus monkey. Vaccine 2005, 23, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Authier, F.J.; Sauvat, S.; Christov, C.; Chariot, P.; Raisbeck, G.; Poron, M.F.; Yiou, F.; Gherardi, R. AlOH3-adjuvanted vaccine-induced macrophagic myofasciitis in rats is influenced by the genetic background. Neuromuscul. Disord. 2006, 16, 347–352. [Google Scholar] [CrossRef]
- Brigitte, M.; Schilte, C.; Plonquet, A.; Baba-Amer, Y.; Henri, A.; Charlier, C.; Tajbakhsh, S.; Albert, M.; Gherardi, R.K.; Chrétien, F. Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheumatol. 2010, 62, 268–279. [Google Scholar] [CrossRef]
- Carbone, F.R.; Belz, G.T.; Heath, W.R. Transfer of antigen between migrating and lymph node-resident DCs in peripheral T-cell tolerance and immunity. Trends Immunol. 2004, 25, 655–658. [Google Scholar] [CrossRef]
- Cundell, A.M. Justification for the use of aseptic filling for sterile injectable products. PDA J. Pharm. Sci. Technol. 2014, 68, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Nail, S.L.; White, J.L.; Hem, S.L. Structure of Aluminium Oxyhydroxide Gel I: Initial precipitate. J. Pharm. Sci. 1976, 65, 1188–1191. [Google Scholar] [CrossRef] [PubMed]
- Masood, H.; White, J.L.; Hem, S.L. Relation between protein adsorptive capacity and the X-ray diffraction pattern of Aluminium Oxyhydroxide adjuvant. Vaccine 1994, 12, 187–189. [Google Scholar] [CrossRef]
- Al-Shakshir, R.; Regnier, F.; White, J.L.; Hem, S.L. Effect of protein adsorption on the surface characteristics of aluminium oxyhydroxide adjuvant. Vaccine 1994, 12, 472–474. [Google Scholar] [CrossRef]
- Danielsson, R.; Eriksson, H. Aluminium adjuvants in vaccines—A way to modulate the immune response. Semin. Cell Dev. Biol. 2021, 115, 3–9. [Google Scholar] [CrossRef]
- Ramesh, T.N. Mechanism of structural transformations during thermal decomposition studies of aluminium hydroxide polymorph. Inernational J. Sci. Res. 2013, 1, 514–518. [Google Scholar]
- Khodan, A.N.; Kopitsa, G.P.; Yorov, K.h.E.; Baranchikov, A.E.; Ivanov, V.K.; Feoktystov, A.; Pipich, V. Structural Analysis of Aluminum Oxyhydroxide Aerogel by Small Angle X-ray Scattering. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2018, 12, 287–296. [Google Scholar] [CrossRef]
- Bozgeyik, K.; Kopac, T. Adsorption of Bovine Serum Albumin onto Metal Oxides: Adsorption Equilibrium and Kinetics onto Alumina and Zirconia. Int. J. Chem. React. Eng. 2010, 8, 1–24. [Google Scholar] [CrossRef]
Aluminum Oxyhydroxide | Without Resterilization | 30 min Resterilization | 60 min Resterilization | 120 min Resterilization |
---|---|---|---|---|
Zeta Potential (mV) | 41 | 39 | 42 | 41 |
Aluminum Oxyhydroxide | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 | Mean |
---|---|---|---|---|---|---|---|---|
Without Resterilization | 6.1 | 6.1 | 6.2 | 6.2 | 6.2 | 6.1 | 6.2 | 6.2 |
30 min Resterilization | 5.9 | 5.8 | 5.9 | 5.9 | 5.9 | 5.8 | 5.9 | 5.9 |
60 min Resterilization | 5.8 | 5.8 | 5.8 | 5.9 | 5.8 | 5.8 | 5.8 | 5.8 |
120 min Resterilization | 5.8 | 5.7 | 5.8 | 5.8 | 5.8 | 5.8 | 5.7 | 5.8 |
Aluminum Oxyhydroxide | Position, AlOOH (020) | FWHM | ||||
---|---|---|---|---|---|---|
2θ (°) | Δx | d (Ǻ) | Δx | 2θ (°) | Δx | |
Without Resterilization | 13.412 | 6.5966 | 4.79 | |||
30 min Resterilization | 13.495 | 0.083 | 6.5563 | −0.0403 | 4.59 | −0.2 |
60 min Resterilization | 13.652 | 0.243 | 6.4938 | −0.1028 | 4.42 | −0.37 |
120 min Resterilization | 13.699 | 0.287 | 6.4589 | −0.1377 | 4.21 | −0.58 |
Aluminum Oxyhydroxide | Essay 1 mg BSA/mg AlOH | Essay 2 mg BSA/mg AlOH | Essay 3 mg BSA/mg AlOH | Essay 4 mg BSA/mg AlOH | Essay 5 mg BSA/mg AlOH | Essay 6 mg BSA/mg AlOH | Mean mg BSA/mg AlOH |
---|---|---|---|---|---|---|---|
Without Resterilization | 1.34 | 1.38 | 1.38 | 1.36 | 1.42 | 1.39 | 1.38 |
30 min Resterilization | 1.19 | 1.13 | 1.31 | 1.17 | 1.26 | 1.20 | 1.21 |
60 min Resterilization | 1.09 | 1.11 | 1.15 | 1.12 | 1.09 | 1.14 | 1.12 |
120 min Resterilization | 0.91 | 0.96 | 0.95 | 0.95 | 0.93 | 0.91 | 0.94 |
Aluminum Oxyhydroxide without Resterilization | |||
BSA (mg/mL) | BSA-Unadsorbed (mg/mL) (c) | BSA Adsorbed/AlOH (mg/mg) (y) | c/y |
1.0 | 0.013 | 1.10 | 0.01181 |
1.1 | 0.120 | 1.19 | 0.10084 |
1.2 | 0.146 | 1.22 | 0.11967 |
1.3 | 0.182 | 1.23 | 0.14796 |
1.4 | 0.250 | 1.29 | 0.19379 |
1.5 | 0.377 | 1.29 | 0.29224 |
1.6 | 0.455 | 1.29 | 0.35271 |
Aluminum Oxyhydroxide with Resterilization at 121 °C for 120 min | |||
BSA (mg/mL) | BSA Unadsorbed (mg/mL) (c) | BSA Adsorbed/AlOH (mg/mg) (y) | c/y |
1.0 | 0.005 | 0.84 | 0.00595 |
1.1 | 0.187 | 0.89 | 0.21011 |
1.2 | 0.371 | 0.96 | 0.38646 |
1.3 | 0.405 | 1.01 | 0.40099 |
1.4 | 0.501 | 1.04 | 0.48173 |
1.5 | 0.598 | 1.06 | 0.56415 |
1.6 | 0.693 | 1.06 | 0.65377 |
Aluminum Oxyhydroxide | Adsorption Capacity BSA/AlOH (mg/mg) | Affinity Constant (μg/mL)−1 |
---|---|---|
Without resterilization | 1.32 | 0.171 |
With resterilization at 121 °C for 120 min | 1.10 | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skiba, M.; Fatmi, S.; Milon, N.; Bounoure, F.; Lahiani-Skiba, M. Effect of Autoclaving on the Physicochemical Properties and Biological Activity of Aluminum Oxyhydroxide Used as an Adjuvant in Vaccines. Molecules 2023, 28, 584. https://doi.org/10.3390/molecules28020584
Skiba M, Fatmi S, Milon N, Bounoure F, Lahiani-Skiba M. Effect of Autoclaving on the Physicochemical Properties and Biological Activity of Aluminum Oxyhydroxide Used as an Adjuvant in Vaccines. Molecules. 2023; 28(2):584. https://doi.org/10.3390/molecules28020584
Chicago/Turabian StyleSkiba, Mohamed, Sofiane Fatmi, Nicolas Milon, Frédéric Bounoure, and Malika Lahiani-Skiba. 2023. "Effect of Autoclaving on the Physicochemical Properties and Biological Activity of Aluminum Oxyhydroxide Used as an Adjuvant in Vaccines" Molecules 28, no. 2: 584. https://doi.org/10.3390/molecules28020584
APA StyleSkiba, M., Fatmi, S., Milon, N., Bounoure, F., & Lahiani-Skiba, M. (2023). Effect of Autoclaving on the Physicochemical Properties and Biological Activity of Aluminum Oxyhydroxide Used as an Adjuvant in Vaccines. Molecules, 28(2), 584. https://doi.org/10.3390/molecules28020584