Rapid Determination of Nitrate Nitrogen Isotope in Water Using Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy (FTIR-ATR) Coupled with Deconvolution Algorithm
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectral Characterization
2.2. Spectral Processing
2.3. Principal Component Analysis
2.4. Prediction of Nitrate Nitrogen with a Water Deduction Algorithm
2.5. Prediction of Nitrate Nitrogen with a Deconvolution Algorithm
3. Materials and Methods
3.1. Materials
3.2. Spectra Recording and Pre-Processing
3.3. Spectra Recording and Pre-Processing
3.4. Prediction Models
3.5. Calibration and Validation Datasets
3.6. Model Evaluation
3.7. Limit of Detection
3.8. Systematic Error Assessment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Ministry of Ecology and Environment. Bulletin of the Second National Pollution Source Census [EB/OL]; Ministry of Ecology and Environment: Beijing, China, 2021.
- Burow, K.R.; Nolan, B.T.; Rupert, M.G.; Dubrovsky, N.M. Nitrate in groundwater of the United States, 1991–2003. Environ. Sci. Technol. 2010, 44, 4988–4997. [Google Scholar] [CrossRef] [PubMed]
- Nestler, A.; Berglund, M.; Accoe, F.; Duta, S.; Xue, D.; Boeckx, P.; Taylor, P. Isotopes for improved management of nitrate pollution in aqueous resources: Review of surface water field studies. Environ. Sci. Pollut. Res. 2011, 18, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Xie, R.; Hao, Y.; Lu, J. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed. Environ. Pollut. 2017, 229, 586–594. [Google Scholar] [CrossRef]
- Husic, A.; Fox, J.; Adams, E.; Pollock, E.; Ford, W.; Agouridis, C.; Backus, J. Quantification of nitrate fate in a karst conduit using stable isotopes and numerical modeling. Water Res. 2020, 170, 115348. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Huang, H.; Mei, K.; Xia, F.; Chen, Z.; Yang, Y.; Dahlgren, R.A.; Zhang, M.; Ji, X. Riverine nitrate source apportionment using dual stable isotopes in a drinking water source watershed of southeast China. Sci. Total Environ. 2020, 724, 137975. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Peng, J.; Cao, X.; Xu, Y.; Yu, H.; Duan, G.; Qu, J. Isotopic and chemical evidence for nitrate sources and transformation processes in a plateau lake basin in Southwest China. Sci. Total Environ. 2020, 711, 134856. [Google Scholar] [CrossRef] [PubMed]
- Fadhullah, W.; Yaccob, N.S.; Syakir, M.I.; Muhammad, S.A.; Yue, F.J.; Li, S. Nitrate sources and processes in the surface water of a tropical reservoir by stable isotopes and mixing model. Sci. Total Environ. 2020, 700, 134517. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Y.; Du, P.; Shui, Y.; Cai, A.; Lv, C.; Bao, Y.; Li, Y.; Li, S.; Zhang, P. Tracing the sources of nitrate in the rivers and lakes of the southern areas of the Tibetan Plateau using dual nitrate isotopes. Sci. Total Environ. 2019, 658, 132–140. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, X.; Chen, Z.; Mei, K.; Wang, Z.; Dahlgren, R.A.; Zhang, M.; Ji, X. A support vector regression model to predict nitrate-nitrogen isotopic composition using hydro-chemical variables. J. Environ. Manage. 2021, 290, 112674. [Google Scholar] [CrossRef]
- Shao, Y.; Du, C.; Shen, Y.; Ma, F.; Zhou, J. Evaluation of net nitrification rates in paddy soil using mid-infrared attenuated total reflectance spectroscopy. Anal. Methods 2017, 9, 748–755. [Google Scholar] [CrossRef]
- Shaviv, A.; Kenny, A.; Shmulevitch, I.; Singher, L.; Raichlin, Y.; Katzir, A. Direct monitoring of soil and water nitrate by FTIR based FEWS or membrane systems. Environ. Sci. Technol. 2003, 37, 2807–2812. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Du, C.; Zheng, S.; Du, Y. In Situ monitoring of nitrate content in leafy vegetables using attenuated total reflectance-fourier-transform mid-infrared spectroscopy coupled with machine learning algorithm. Food. Anal. methods 2021, 14, 2237–2248. [Google Scholar] [CrossRef]
- Gan, F.; Wu, K.; Ma, F.; Du, C. In Situ determination of nitrate in water using Fourier transform mid-infrared attenuated total reflectance spectroscopy coupled with deconvolution algorithm. Molecules 2020, 25, 5838. [Google Scholar] [CrossRef]
- Wu, K.; Ma, F.; Li, Z.; Wei, C.; Gan, F.; Du, C. In-situ rapid monitoring of nitrate in urban water bodies using Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR) coupled with deconvolution algorithm. J. Environ. Manage. 2022, 317, 115452. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Linker, R.; Shaviv, A.; Zhou, J. In situ evaluation of net nitrification rate in terra rossa soil using a fourier transform infrared attenuated total reflection15N tracing technique. Appl. Spectrosc. 2009, 63, 1168–1173. [Google Scholar] [PubMed]
- Shao, Y.; Du, C.; Zhou, J.; Ma, F.; Zhu, Y.; Yang, K.; Tian, C. Quantitative analysis of different nitrogen isotope labelled nitrates in paddy soil using mid-infrared attenuated total reflectance spectroscopy. Anal. Methods 2017, 9, 5388–5394. [Google Scholar] [CrossRef]
- Shao, Y.; Du, C.; Shen, Y.; Ma, F.; Zhou, J. Rapid determination of nitrogen isotope labeled nitrate using mid-infrared attenuated total reflectance spectroscopy. Chin. J. Anal. Chem. 2014, 42, 747–752. [Google Scholar] [CrossRef]
- Jansson, P.A. Deconvolution: With Applications in Spectroscopy; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Zou, M.; Unbehauen, R. A deconvolution method for spectroscopy. Meas. Sci. Technol. 1995, 6, 482–487. [Google Scholar]
- Du, H.; Yi, R.; Dong, L.; Liu, M.; Jia, W.; Zhao, Y.; Liu, X.; Hui, M.; Kong, L.; Chen, X. Rotating asymmetrical phase mask method for improving signal-to-noise ratio in wave front coding systems. Appl. Optics. 2019, 58, 6157–6164. [Google Scholar]
- Wang, D.; Kong, X.; Dong, L.; Chen, L.; Wang, Y.; Wang, X. A predictive deconvolution method for non-white-noise reflectivity. Appl. Geophys. 2019, 16, 101–115. [Google Scholar] [CrossRef]
- Niedzielski, P.; Kurzyca, I.; Siepak, J. A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples. Anal. Chim. Acta 2006, 577, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Albanese, D.; Matteo, M.D.; Alessio, C. Screen printed biosensors for detection of nitrates in drinking water. Comput. Aided Chem. Eng. 2010, 28, 283–288. [Google Scholar]
- Krista, J.; Kopanica, M.; Novotný, L. Voltammetric determination of nitrates using silver electrodes. Electroanal 2000, 12, 199–204. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 8, 1627–1639. [Google Scholar] [CrossRef]
- Buslov, D.K.; Nikonenko, N.A. Regularized method of spectral curve deconvolution. Appl. Spectrosc. 1997, 51, 666–672. [Google Scholar] [CrossRef]
- Buslov, D.K.; Nikonenko, N.A.; Sushko, N.I.; Zhbankov, R.G. Analysis of the structure of the bands in the IRspectrum of β-D glucose by the regularized method of deconvolution. J. Appl. Spectrosc. 2002, 69, 817–824. [Google Scholar] [CrossRef]
- Ma, F.; Du, C.; Zhou, J.; Shen, Y. Investigation of soil properties using different techniques of mid-infrared spectroscopy. Eur. J. Soil Sci. 2019, 70, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Du, C.; Yu, C.; Zhou, J. Use of FTIR-PAS combined with chemometrics to quantify nutritional information in rapeseeds (Brassica napus). J. Plant Nutr. Soil Sci. 2014, 177, 927–933. [Google Scholar] [CrossRef]
- Doran, E.M.; Yost, M.G.; Fenske, R.A. Measuring dermal exposure to pesticide residues with attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. Bull. Environ. Contam. Toxicol. 2000, 64, 666–672. [Google Scholar] [CrossRef]
- Filgueiras, P.R.; Sad, C.M.S.; Loureiro, A.R.; Santos, M.F.P.; Castro, E.V.R.; Dias, J.C.M.; Poppi, R.J. Determination of API gravity, kinematic viscosity and water content in petroleum by ATR-FTIR spectroscopy and multivariate calibration. Fuel 2014, 116, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.J.; Toledo, J.V.; Zolnier, S.; Lopes, D.D.C.; Pires, C.V.; Silva, T.G.F.D. Prediction of mineral contents in sugarcane cultivated under saline conditions based on stalk scanning by Vis/NIR spectral reflectance. Biosyst. Eng. 2017, 156, 17–26. [Google Scholar] [CrossRef]
- Neto, A.J.; Lopes, D.C.; Pinto, F.A.C.; Zolnier, S. Vis/NIR spectroscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves. Biosyst. Eng. 2017, 155, 124–133. [Google Scholar] [CrossRef]
14NO3−/15NO3− | Calibration | Validation | Bias | ||||
---|---|---|---|---|---|---|---|
RC2 | RMSEC | RPDC | RV2 | RMSEV | RPDV | ||
1:0 | 0.999 | 0.071 | 44.32 | 0.722 | 2.57 | 1.86 | 0.302 |
3:1 | 0.741 | 2.62 | 1.96 | 0.862 | 2.13 | 2.15 | 0.232 |
2:1 | 0.993 | 0.78 | 12.13 | 0.772 | 2.71 | 1.83 | 0.192 |
1:1 | 0.555 | 3.37 | 1.49 | 0.628 | 3.28 | 1.53 | −0.269 |
1:2 | 0.900 | 1.75 | 3.17 | 0.923 | 1.61 | 2.60 | 0.163 |
1:3 | 0.867 | 1.98 | 2.74 | 0.747 | 2.55 | 1.93 | −0.156 |
0:1 | 0.460 | 3.19 | 1.36 | 0.394 | 3.35 | 1.28 | 0.298 |
14NO3−/15NO3− | Calibration | Validation | Bias | ||||
---|---|---|---|---|---|---|---|
RC2 | RMSEC | RPDC | RV2 | RMSEV | RPDV | ||
1:0 | 0.952 | 1.15 | 4.68 | 0.935 | 1.21 | 2.93 | 0.105 |
3:1 | 0.851 | 1.63 | 2.59 | 0.960 | 1.43 | 2.59 | 0.079 |
2:1 | 0.961 | 0.82 | 5.06 | 0.976 | 0.76 | 6.27 | 0.088 |
1:1 | 0.957 | 0.78 | 4.82 | 0.843 | 1.55 | 2.38 | −0.062 |
1:2 | 0.971 | 0.71 | 5.85 | 0.908 | 1.12 | 3.19 | 0.041 |
1:3 | 0.952 | 0.82 | 4.56 | 0.982 | 0.85 | 4.57 | −0.036 |
0:1 | 0.877 | 1.57 | 2.86 | 0.857 | 1.62 | 2.55 | −0.031 |
Nitrate Nitrogen Isotope | Concentration | Spectral Pre-Processing | Statistic Parameters | References | ||
---|---|---|---|---|---|---|
R2 | RPD | RMSE | ||||
14NO3− | 0–20 (mg·L−1) | Deconvolution | 0.986 | 3.15 | 0.203 | [14] |
14NO3− | 0–4.3 (mg·L−1) | Deconvolution | 0.886 | 2.76 | 0.286 | [15] |
15NO3− | 0–200 (mg·L−1) | Water deduction | 0.990 | 4.85 | 9.20 | [16] |
15NO3− | 0–120 (mg·kg−1) | Water deduction | 0.980 | 8.15 | 3.91 | [17] |
15NO3− | 0–200 (mg·L−1) | Water deduction | 0.998 | 4.76 | / | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Ma, F.; Wei, C.; Gan, F.; Du, C. Rapid Determination of Nitrate Nitrogen Isotope in Water Using Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy (FTIR-ATR) Coupled with Deconvolution Algorithm. Molecules 2023, 28, 567. https://doi.org/10.3390/molecules28020567
Wu K, Ma F, Wei C, Gan F, Du C. Rapid Determination of Nitrate Nitrogen Isotope in Water Using Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy (FTIR-ATR) Coupled with Deconvolution Algorithm. Molecules. 2023; 28(2):567. https://doi.org/10.3390/molecules28020567
Chicago/Turabian StyleWu, Ke, Fei Ma, Cuilan Wei, Fangqun Gan, and Changwen Du. 2023. "Rapid Determination of Nitrate Nitrogen Isotope in Water Using Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy (FTIR-ATR) Coupled with Deconvolution Algorithm" Molecules 28, no. 2: 567. https://doi.org/10.3390/molecules28020567
APA StyleWu, K., Ma, F., Wei, C., Gan, F., & Du, C. (2023). Rapid Determination of Nitrate Nitrogen Isotope in Water Using Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy (FTIR-ATR) Coupled with Deconvolution Algorithm. Molecules, 28(2), 567. https://doi.org/10.3390/molecules28020567