Two-Dimensional Iron Phosphorus Trisulfide as a High-Capacity Cathode for Lithium Primary Battery
Abstract
:1. Introduction
2. Results
2.1. Synthesis of FePS3 Nanoflakes
2.2. Characterisation of FePS3 Nanoflakes
2.3. Cathode Properties of FePS3 Material
2.4. Post-mortem Analyses of FePS3 Material
3. Discussion
3.1. Reasons for the Additional Capacity
3.2. Electrolyte Decomposition
3.3. Three-Stage Discharge Mechanism in FePS3 Systems
3.4. Performance of FePS3 in LPB
4. Materials and Methods
4.1. Experimental Section
4.2. Preparation of FePS3 Electrode
4.3. Characterization Techniques
4.4. Electrochemical Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cao, W.; Zhang, J.; Li, H. Batteries with high theoretical energy densities. Energy Storage Mater. 2020, 26, 46–55. [Google Scholar] [CrossRef]
- Liu, Y.; Su, M.Y.; Gu, Z.Y.; Zhang, K.Y.; Wang, X.T.; Du, M.; Guo, J.Z.; Wu, X.L. Advanced Lithium Primary Batteries: Key Materials, Research Progresses and Challenges. Chem. Rec. 2022, 22, e202200081. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Bai, P.; Chen, Z.; Su, H.; Yang, J.; Xu, K.; Xu, Y. A Lithium-Organic Primary Battery. Small 2020, 16, 1906462. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, P.; Tang, Z.; Liu, J.; Zhang, S.; Zhou, Y.; Tian, X. FEC Additive for Improved SEI Film and Electrochemical Performance of the Lithium Primary Battery. Energies 2021, 14, 7467. [Google Scholar] [CrossRef]
- Li, L.; Zhu, L.; Pan, Y.; Lei, W.; Ma, Z.; Li, Z.; Cheng, J.; Zhou, J. Integrated polyaniline-coated CFx cathode materials with enhanced electrochemical capabilities for Li/CFx primary battery. Int. J. Electrochem. Sci. 2016, 11, 6838–6847. [Google Scholar] [CrossRef]
- Damien, D.; Sudeep, P.; Narayanan, T.; Anantharaman, M.; Ajayan, P.; Shaijumon, M. Fluorinated graphene based electrodes for high performance primary lithium batteries. RSC Adv. 2013, 3, 25702–25706. [Google Scholar] [CrossRef]
- Wanigarathna, D.J.; Gao, J.; Takanami, T.; Zhang, Q.; Liu, B. Adsorption separation of R-22, R-32 and R-125 fluorocarbons using 4A molecular sieve zeolite. Chem. Sel. 2016, 1, 3718–3722. [Google Scholar] [CrossRef]
- Yang, X.-X.; Zhang, G.-J.; Bai, B.-S.; Li, Y.; Li, Y.-X.; Yang, Y.; Jian, X.; Wang, X.-W. Fluorinated graphite nanosheets for ultrahigh-capacity lithium primary batteries. Rare Met. 2021, 40, 1708–1718. [Google Scholar] [CrossRef]
- Sun, L.; Peng, C.; Kong, L.; Li, Y.; Feng, W. Interface-Structure-Modulated CuF2/CFx Composites for High-Performance Lithium Primary Batteries. Energy Environ. Mater. 2022. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Liu, C.; Wang, S.; Zhou, P.; Zhou, T.; Miao, Z.; Xing, W.; Zhuo, S.; Zhou, J. Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: Effect of graphitization of carbon nanotubes. J. Mater. Chem. 2019, 7, 7128–7137. [Google Scholar] [CrossRef]
- Lisbona, D.; Snee, T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf. Environ. Prot. 2011, 89, 434–442. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, S.; Ji, W.; Tao, Z.; Chen, J. α-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 2008, 130, 5361–5367. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Merritt, D.R.; Howard, W.G.; Schmidt, C.L.; Skarstad, P.M. Hybrid cathode lithium batteries for implantable medical applications. J. Power Sources 2006, 162, 837–840. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, M.; Wang, S.; Na, J.; Bund, A.; Nanjundan, A.K.; Yamauchi, Y. Ultralong storage life of Li/MnO2 primary batteries using MnO2-(CFx) n with C–F semi-ionic bond as cathode materials. Electrochim. Acta 2019, 320, 134618. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Y.; Liu, Y.; Li, H.; Dai, Z. Elemental two-dimensional materials for Li/Na-ion battery anode applications. Chem. Rec. 2022, 22, e202200123. [Google Scholar] [CrossRef]
- Nithya, C.; Gopukumar, S. Nanostructured transition metal chalcogenides for rechargeable batteries. In Nanobatteries and Nanogenerators; Elsevier: Amsterdam, The Netherlands, 2021; pp. 383–431. [Google Scholar]
- Wang, F.; Shifa, T.A.; Yu, P.; He, P.; Liu, Y.; Wang, F.; Wang, Z.; Zhan, X.; Lou, X.; Xia, F. New frontiers on van der Waals layered metal phosphorous trichalcogenides. Adv. Funct. Mater. 2018, 28, 1802151. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Tian, Y.; Sakthivel, T.; Liu, H.; Guo, S.; Zeng, H.; Dai, Z. Synergizing Hydrogen spillover and deprotonation by internal polarization field in a MoS2/NiPS3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 2022, 34, 2203615. [Google Scholar] [CrossRef]
- Jana, R.; Chowdhury, C.; Datta, A. Transition-Metal Phosphorus Trisulfides and its Vacancy Defects: Emergence of a New Class of Anode Material for Li-Ion Batteries. ChemSusChem 2020, 13, 3855–3864. [Google Scholar] [CrossRef]
- Kuzminskii, Y.V.; Voronin, B.; Redin, N. Iron and nickel phosphorus trisulfides as electroactive materials for primary lithium batteries. J. Power Sources 1995, 55, 133–141. [Google Scholar] [CrossRef]
- Liu, C.; Neale, Z.G.; Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109–123. [Google Scholar] [CrossRef]
- Fujii, Y.; Miura, A.; Rosero-Navarro, N.C.; Higuchi, M.; Tadanaga, K. FePS3 electrodes in all-solid-state lithium secondary batteries using sulfide-based solid electrolytes. Electrochim. Acta 2017, 241, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Gusmão, R.; Sofer, Z.; Pumera, M. Metal phosphorous trichalcogenides (MPCh3): From synthesis to contemporary energy challenges. Angew. Chem. Int. Ed. Engl. 2019, 58, 9326–9337. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, F.; Xue, Q.; Zhang, Y.; Yin, S.; Chen, Y. Salt-Templated Construction of Ultrathin Cobalt Doped Iron Thiophosphite Nanosheets toward Electrochemical Ammonia Synthesis. Small 2019, 15, 1903500. [Google Scholar] [CrossRef] [PubMed]
- Kargar, F.; Coleman, E.A.; Ghosh, S.; Lee, J.; Gomez, M.J.; Liu, Y.; Magana, A.S.; Barani, Z.; Mohammadzadeh, A.; Debnath, B. Phonon and thermal properties of quasi-two-dimensional FePS3 and MnPS3 antiferromagnetic semiconductors. ACS Nano 2020, 14, 2424–2435. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-U.; Lee, S.; Ryoo, J.H.; Kang, S.; Kim, T.Y.; Kim, P.; Park, C.-H.; Park, J.-G.; Cheong, H. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 2016, 16, 7433–7438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, D.E.; Jones, J.P.; Shevade, A.V.; Bugga, R.V. Transition Metal Phosphorous Trisulfides as Cathode Mate-rials in High Temperatures Batteries. J. Electrochem. Soc. 2020, 167, 110512. [Google Scholar] [CrossRef]
- Fan, C.-Y.; Zhang, X.-H.; Shi, Y.-H.; Xu, H.-Y.; Zhang, J.-P.; Wu, X.-L. 2D few-layer iron phosphosulfide: A self-buffer heterophase structure induced by irreversible breakage of p–s bonds for high-performance lithium/sodium storage. J. Mater. Chem. 2019, 7, 1529–1538. [Google Scholar] [CrossRef]
- Khumalo, F.; Hughes, H. Reflectance spectra of some FeP S 3-type layer compounds in the vacuum ultraviolet. Phys. Rev. Lett. B 1981, 23, 5375. [Google Scholar] [CrossRef]
- Vilá, R.A.; Huang, W.; Cui, Y. Nickel impurities in the solid-electrolyte interphase of lithium-metal anodes revealed by cryogenic electron microscopy. Cell Rep. Phys. Sci. 2020, 1, 100188. [Google Scholar] [CrossRef]
- Wang, C.; Xing, L.; Vatamanu, J.; Chen, Z.; Lan, G.; Li, W.; Xu, K. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. Nat. Commun. 2019, 10, 3423. [Google Scholar] [CrossRef]
- Park, J.; Ku, K.; Son, S.-B.; Gim, J.; Kim, Y.; Lee, E.; Johnson, C. Effect of Electrolytes on the Cathode-Electrolyte Interfacial Stability of Fe-Based Layered Cathodes for Sodium-Ion Batteries. J. Electrochem. Soc. 2022, 169, 030536. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, H.; Wu, B.; Wang, M.; Li, X.; Zhang, H. Lithium sulfur primary battery with super high energy density: Based on the cauliflower-like structured C/S cathode. Sci. Rep. 2015, 5, 14949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandari, A.; Bhattacharya, J.; Pala, R.G.S. Adsorption preference of HF over ethylene carbonate leads to dominant presence of fluoride products in LiFePO4 cathode–electrolyte interface in Li-ion batteries. J. Phys. Chem. C. 2020, 124, 9170–9177. [Google Scholar] [CrossRef]
- Wang, E.; Niu, Y.; Yin, Y.-X.; Guo, Y.-G. Manipulating electrode/electrolyte interphases of sodium-ion batteries: Strategies and perspectives. ACS Mater. Lett. 2020, 3, 18–41. [Google Scholar] [CrossRef]
- Huang, Q.; Turcheniuk, K.; Ren, X.; Magasinski, A.; Song, A.-Y.; Xiao, Y.; Kim, D.; Yushin, G. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 2019, 18, 1343–1349. [Google Scholar] [CrossRef]
- Wei, Z.; Cheng, J.; Wang, R.; Li, Y.; Ren, Y. From spent Zn–MnO2 primary batteries to rechargeable Zn–MnO2 batteries: A novel directly recycling route with high battery performance. J. Environ. Manag. 2021, 298, 113473. [Google Scholar] [CrossRef]
- Freitas, M.; Pegoretti, V.; Pietre, M. Recycling manganese from spent Zn-MnO2 primary batteries. J. Power Sources 2007, 164, 947–952. [Google Scholar] [CrossRef]
- Roy, J.J.; Rarotra, S.; Krikstolaityte, V.; Zhuoran, K.W.; Cindy, Y.D.I.; Tan, X.Y.; Carboni, M.; Meyer, D.; Yan, Q.; Srinivasan, M. Green recycling methods to treat lithium-ion batteries E-waste: A circular approach to sustainability. Adv. Mater. 2022, 34, 2103346. [Google Scholar] [CrossRef]
- Moerke, C.; Wolff, A.; Ince, H.; Ortak, J.; Öner, A. New strategies for energy supply of cardiac implantable devices. Herzschrittmacherther. Elektrophysiol. 2022, 33, 224–231. [Google Scholar] [CrossRef]
- Liang, S.; Zhou, J.; Pan, A.; Li, Y.; Chen, T.; Tian, Z.; Ding, H. Facile synthesis of β-AgVO3 nanorods as cathode for primary lithium batteries. Mater. Lett. 2012, 74, 176–179. [Google Scholar] [CrossRef]
- Thakur, P.; Puthirath, A.B.; Ajayan, P.M.; Narayanan, T.N. Iron carbide decorated carbon nanosphere-sheet hybrid based rechargeable high-capacity non-aqueous Li–O2 batteries. Carbon 2022, 196, 320–326. [Google Scholar] [CrossRef]
- Sun, C.; Feng, Y.; Li, Y.; Qin, C.; Zhang, Q.; Feng, W. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 2014, 6, 2634–2641. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.A.; Breitung, B.; Fichtner, M. Improving the energy density and power density of CF x by mechanical milling: A primary lithium battery electrode. ACS Appl. Mater. Interfaces 2013, 5, 11207–11211. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wang, X.; Chen, D.; Chang, Q.; Xie, S.; Ma, Z.; Lei, W.; Pan, J.; Pan, Y.; Huang, J. Ultrafast Li/fluorinated graphene primary batteries with high energy density and power density. ACS Appl. Mater. Interfaces 2021, 13, 18809–18820. [Google Scholar] [CrossRef] [PubMed]
- Bonino, F.; Morzilli, S.; Scrosati, B. Electrochemical behaviour of metal sulphides as cathodes in primary lithium batteries. J. Power Sources 1985, 14, 65–69. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Wang, S.; Zhou, P.; Zhao, Z.; Li, X.; Zhou, J.; Zhuo, S. Fluorinated nanographite as a cathode material for lithium primary batteries. ChemElectroChem 2019, 6, 2201–2207. [Google Scholar] [CrossRef]
- Li, Q.; Xue, W.; Sun, X.; Yu, X.; Li, H.; Chen, L. Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries. Energy Storage Mater. 2021, 38, 482–488. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, P.; Bai, P.; Su, H.; Yang, J.; Liu, Y.; Xu, Y.; Geng, Y. A poorly soluble organic electrode material for high energy density lithium primary batteries based on a multi-electron reduction. Chem. Comm. 2021, 57, 10791–10794. [Google Scholar] [CrossRef]
- Peng, S.; Yan, S.; Wang, N.; Nan, W.; Wang, J.; Chen, X.; Wang, C.; Qi, X.; Dai, S. Fluorinated graphene/sulfur hybrid cathode for high energy and high power density lithium primary batteries. RSC Adv. 2018, 8, 12701–12707. [Google Scholar] [CrossRef] [Green Version]
- Hany, P.; Yazami, R.; Hamwi, A. Low-temperature carbon fluoride for high power density lithium primary batteries. J. Power Sources 1997, 68, 708–710. [Google Scholar] [CrossRef]
- Yue, H.; Zhang, W.; Liu, H.; Liu, Z.; Zhong, G.; Yang, Y. Synthesis and characterization of fluorinated carbon nanotubes for lithium primary batteries with high power density. Nanotechnology 2013, 24, 424003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Li, Y.; Feng, Y.; Feng, W. Polythiophene/graphite fluoride composites cathode for high power and energy densities lithium primary batteries. Synth. Met. 2016, 220, 560–566. [Google Scholar] [CrossRef]
- Bi, X.; Li, Y.; Qiu, Z.; Liu, C.; Zhou, T.; Zhuo, S.; Zhou, J. Fluorinated graphene prepared by direct fluorination of N, O-doped graphene aerogel at different temperatures for lithium primary batteries. Materials 2018, 11, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licht, S.; Wang, B. Nonaqueous phase Fe (VI) electrochemical storage and discharge of super-iron/lithium primary batteries. Electrochem. Solid-State Lett. 2000, 3, 209. [Google Scholar] [CrossRef]
- Lee, J.-W.; Popov, B.N. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries. J. Power Sources 2006, 161, 565–572. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenus, S.; Thakur, P.; Samantaray, S.S.; Narayanan, T.N.; Dai, Z. Two-Dimensional Iron Phosphorus Trisulfide as a High-Capacity Cathode for Lithium Primary Battery. Molecules 2023, 28, 537. https://doi.org/10.3390/molecules28020537
Lenus S, Thakur P, Samantaray SS, Narayanan TN, Dai Z. Two-Dimensional Iron Phosphorus Trisulfide as a High-Capacity Cathode for Lithium Primary Battery. Molecules. 2023; 28(2):537. https://doi.org/10.3390/molecules28020537
Chicago/Turabian StyleLenus, Syama, Pallavi Thakur, Sai Smruti Samantaray, Tharangattu N. Narayanan, and Zhengfei Dai. 2023. "Two-Dimensional Iron Phosphorus Trisulfide as a High-Capacity Cathode for Lithium Primary Battery" Molecules 28, no. 2: 537. https://doi.org/10.3390/molecules28020537
APA StyleLenus, S., Thakur, P., Samantaray, S. S., Narayanan, T. N., & Dai, Z. (2023). Two-Dimensional Iron Phosphorus Trisulfide as a High-Capacity Cathode for Lithium Primary Battery. Molecules, 28(2), 537. https://doi.org/10.3390/molecules28020537