Identification of Absorption Spectrum for IED Precursors Using Laser Photoacoustic Spectroscopy
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
- Benzene (C6H6)
- -
- Is a colorless liquid aromatic hydrocarbon, and is highly flammable. Benzene reacts with concentrated nitric acid in the presence of concentrated sulfuric acid at a temperature not exceeding 55 °C to give nitrobenzene, an intermediate for explosives [33].
- 2.
- Toluene (C7H8)
- -
- Is also a liquid aromatic hydrocarbon which in the nitration reaction reacts 25 times faster than benzene. Toluene is first nitrated with a solution of sulfuric acid and nitric acid and mononitrotoluene is created. After being separated, the mononitrotoluene is used to create dinitrotoluene. In the last phase, trinitrotoluene is obtained by nitration of dinitrotoluen using an anhydrous solution of nitric acid and oleum [34].
- 3.
- Acetone (C3H6O)
- -
- Is the simplest ketone. Using the commonly available household chemicals acetone and hydrogen peroxide, it is easy to synthesize a powerful explosive such as triacetone triperoxide (TATP). TAPT is obtained by mixing acetone with concentrated 30–50% hydrogen peroxide solution in an acidic environment (typically sulfuric acid). TAPT is the most used IED because of its readily available and inexpensive precursor materials coupled with its widely available instructions [35].
- 4.
- Ethylene glycol (C2H6O2)
- -
- Is a clear, colorless, odorless liquid, soluble in most organic solvents. Through nitration of ethylene glycol, ethylene glycol dinitrate can be obtained, which belongs to the category of nitrate ester liquid explosives and can be initiated through mechanical stimuli, friction, or heat [36].
4.2. Method
- -
- Quality factor Q = 16.1, calculated as the ratio between the resonance frequency and the frequency band, at 1/√2 of the maximum signal amplitudes;
- -
- Cell constant C = 4375 Pa·cm/W which describes the sensitivity of the PA resonator at a given resonance frequency;
- -
- The response capacity of the PA cell R = 350 cmV/W, calculated as the product of the cell constant and the sensitivity of the microphones.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- (U//FOUO) DHS Identifying Clandestine Biological, Chemical, Explosives, and Methamphetamine Laboratories. 2011. Available online: https://publicintelligence.net/ufouo-dhs-identifying-clandestine-biological-chemical-explosives-and-methamphetamine-laboratories/ (accessed on 13 August 2023).
- Bomb-Making Materials Awareness Program (BMAP). Available online: https://www.cisa.gov/resources-tools/programs/bomb-making-materials-awareness-program-bmap (accessed on 13 August 2023).
- Collett, G.; Ladyman, M.; Hazael, R.; Temple, T. The use of a predictive threat analysis to propose revisions to existing risk assessments for precursor chemicals used in the manufacture of home-made explosives (HME). Heliyon 2021, 7, e08343. [Google Scholar] [CrossRef]
- Regulation (EU) 98/2013 of the European Parliament and of the Council on the Marketing and Use of Explosives Precursors. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013R0098&qid=1629925675717 (accessed on 11 August 2023).
- Cooper, P.W.; Kurowski, S.R. Introduction to the Technology of Explosives; Wiley-VCH: Hoboken, NJ, USA, 1996. [Google Scholar]
- Reducing the Threat of Improvised Explosive Device Attacks by Restricting Access to Explosive Precursor Chemicals. 2018. Available online: https://nap.nationalacademies.org/catalog/24862/reducing-the-threat-of-improvised-explosive-device-attacks-by-restricting-access-to-explosive-precursor-chemicals (accessed on 13 August 2023).
- Munson, C.; Gottfried, J.; Lucia, F.; Mcnesby, K.; Miziolek, A. Laser-Based Detection Methods for Explosives. In Counterterrorist Detection Techniques of Explosives; Elsevier Science BV: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Blanco, A.; Pacheco-Londoño, L.C.; Peña-Quevedo, A.J.; Hernández-Rivera, S.P. UV Raman detection of 2,4-DNT in contact with sand particles. Proc. SPIE 2006, 6217, 621737. [Google Scholar]
- Manrique-Bastidas, C.A.; Mina, N.; Castro, M.E.; Hernandez-Rivera, S.P. Raman microspectroscopy and FTIR crystallization studies of 2,4,6-TNT in soil. Proc. SPIE 2005, 5794, 1358–1365. [Google Scholar]
- Zhao, Y.; Wang, Q.; Cui, X.; Teng, G.; Wei, K.; Liu, H. Laser-Induced Breakdown Spectroscopy for the Discrimination of Explosives Based on the ReliefF Algorithm and Support Vector Machines. Front. Phys. 2021, 9, 675135. [Google Scholar] [CrossRef]
- Leahy-Hoppa, M.R.; Fitch, M.J.; Osiander, R. Terahertz Spectroscopy Techniques for Explosives Detection. Anal. Bioanal. Chem. 2009, 395, 247–257. [Google Scholar] [CrossRef]
- Sharma, S.P.; Lahiri, S.C. Characterization and Identification of Explosives and Explosive Residues Using GC-MS, an FTIR Microscope, and HPTLC. J. Energetic Mater. 2005, 23, 239–264. [Google Scholar] [CrossRef]
- Buryakov, I.A. Detection of explosives by ion mobility spectrometry. J. Anal. Chem. 2011, 66, 674–694. [Google Scholar] [CrossRef]
- Li, J.S.; Yu, B.; Fischer, H.; Chen, W.; Yalin, A.P. Contributed review: Quantum cascade laser based photoacoustic detection of explosives. Rev. Sci. Instrum. 2015, 86, 031501. [Google Scholar] [CrossRef] [PubMed]
- Giubileo, G.; Puiu, A. Photoacoustic spectroscopy of standard explosives in the MIR region. Nucl. Instrum. Methods Phys. Res. A 2010, 623, 771–777. [Google Scholar] [CrossRef]
- Patel, C.K.N. Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical Warfare Agent and explosives. Eur. Phys. J. Spec. Top. 2008, 153, 1–18. [Google Scholar] [CrossRef]
- Giubileo, G.; Colao, F.; Puiu, A. Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data. Laser Phys. 2012, 22, 1033–1037. [Google Scholar] [CrossRef]
- Pellegrino, P.M.; Holthoff, E.L.; Farrell, M.E. (Eds.) Laser-Based Optical Detection of Explosives, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Smith, B.C. Infrared spectroscopy of polymers, IX: Pendant ester polymers and polycarbonates. Spectroscopy 2022, 37, 16–19. [Google Scholar] [CrossRef]
- Benzene. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C71432&Units=SI&Type=IR-SPEC&Index=0#IR-SPEC (accessed on 11 August 2023).
- Toluene. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C108883&Units=SI&Type=IR-SPEC&Index=0#IR-SPEC (accessed on 11 August 2023).
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., McKelvy, M.L., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2006. [Google Scholar] [CrossRef]
- Waschull, J.; Sumpf, B.; Heiner, Y.; Kronfeldt, H.D. Diode laser spectroscopy in the ν14 band of benzene. Infrared Phys. Technol. 1996, 37, 193–198. [Google Scholar] [CrossRef]
- Sydoryk, I.; Lim, A.; Jäger, W.; Tulip, J.; Parsons, M.T. Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure. Appl. Opt. 2010, 49, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Acetone. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Units=SI&Type=IR-SPEC&Index=0#IR-SPEC (accessed on 13 August 2023).
- Mitrayana; Apriyanto, D.K.; Satriawan, M. CO2 Laser Photoacoustic Spectrometer for Measuring Acetone in the Breath of Lung Cancer Patients. Biosensors 2020, 10, 55. [Google Scholar] [CrossRef]
- 1,2-Ethanediol. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C107211&Units=SI&Type=IR-SPEC&Index=0#IR-SPEC (accessed on 11 August 2023).
- Tran, B.; Okoniewski, R.; Bucciferro, A.; Jansing, R.; Aldous, K. Determination of Trace Amounts of Ethylene Glycol and its Analogs in Water Matrixes by Liquid Chromatography/Tandem Mass Spectrometry. J. AOAC Int. 2014, 97, 232–237. [Google Scholar] [CrossRef]
- Kira, O.; Linker, R.; Dubowski, Y. Detection and quantification of water-based aerosols using active open-path FTIR. Sci. Rep. 2016, 6, 25110. [Google Scholar] [CrossRef]
- Puiu, A.; Giubileo, G.; Cesaro, S.N.; Bencivenni, L. Comprehensive Infrared Study of Tetryl, Dinitrotoluene, and Trinitrotoluene Compounds. Appl. Spectrosc. 2015, 69, 1472–1486. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Bhar, G.; Thakur, S. Photoacoustic spectra and modes of vibration of TNT and RDX at CO2 laser wavelengths. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2002, 58, 3093–3102. [Google Scholar] [CrossRef]
- Chaudhary, A.K.; Bhar, G.C.; Das, S. Low-limit photo-acoustic detection of solid RDX and TNT explosives with carbon dioxide laser. J. Appl. Spectrosc. 2006, 73, 123–129. [Google Scholar] [CrossRef]
- Reaction of Benzene—Nitration, Sulphonation, Halogenation-Reactivity. Available online: https://www.pharmaguideline.com/2007/01/reactions-of-benzene-nitration-sulphonation.html (accessed on 13 August 2023).
- Nitration of Toluene-Mechanism and Examples. 2023. Available online: https://themasterchemistry.com/nitration-of-toluene-mechanism-and-examples/ (accessed on 13 August 2023).
- Rarata, G.; Vahčič, M.; Anderson, D.; Berglund, M.; Kyprianou, D.; Emma, G.; Diaconu, G. Hydrogen peroxide (H2O2): A review of its use in homemade explosives. High Energy Mater. 2019, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Fettaka, H.; Lefebvre, M. Ethylene Glycol Dinitrate (EGDN): From Commercial Precursors, Physicochemical and Detonation Characterization. Cent. Eur. J. Energetic Mater. 2015, 12, 287–305. [Google Scholar]
- Occupational Safety and Health Administration. Available online: https://www.osha.gov (accessed on 13 August 2023).
- Dumitras, D.C.; Banita, S.; Bratu, A.M.; Cernat, R.; Dutu, D.C.A.; Matei, C.; Patachia, M.; Petrus, M.; Popa, C. Ultrasensitive CO2 laser photoacoustic system. Infrared Phys. Technol. J. 2010, 53, 308–314. [Google Scholar] [CrossRef]
- Dumitras, D.C.; Bratu, A.M.; Popa, C. CO2 Laser Photoacoustic Spectroscopy: Principles. In Chapter I in CO2 Laser-Optimisation and Application; Dumitras, D.C., Ed.; Intech: Rijeka, Croatia, 2012; ISBN 979-953-307-712-2. [Google Scholar]
- Dumitras, D.C.; Bratu, A.M.; Popa, C. CO2 Laser Photoacoustic Spectroscopy: Instrumentation and Applications. In Chapter II in CO2 Laser-Optimisation and Application; Dumitras, D.C., Ed.; Intech: Rijeka, Croatia, 2012; ISBN 979-953-307-712-2. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratu, A.-M.; Petrus, M.; Popa, C. Identification of Absorption Spectrum for IED Precursors Using Laser Photoacoustic Spectroscopy. Molecules 2023, 28, 6908. https://doi.org/10.3390/molecules28196908
Bratu A-M, Petrus M, Popa C. Identification of Absorption Spectrum for IED Precursors Using Laser Photoacoustic Spectroscopy. Molecules. 2023; 28(19):6908. https://doi.org/10.3390/molecules28196908
Chicago/Turabian StyleBratu, Ana-Maria, Mioara Petrus, and Cristina Popa. 2023. "Identification of Absorption Spectrum for IED Precursors Using Laser Photoacoustic Spectroscopy" Molecules 28, no. 19: 6908. https://doi.org/10.3390/molecules28196908
APA StyleBratu, A. -M., Petrus, M., & Popa, C. (2023). Identification of Absorption Spectrum for IED Precursors Using Laser Photoacoustic Spectroscopy. Molecules, 28(19), 6908. https://doi.org/10.3390/molecules28196908