Analysis of Volatile Components in Dried Fruits and Branch Exudates of Schisandra chinensis with Different Fruit Colors Using GC-IMS Technology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Ion Migration Spectra of Schisandra chinensis Branch Sap and Dried Fruits of Different Colors
2.1.1. Ion Migration Spectra Analysis of White, Yellow, and Red Fruit Branch Sap
2.1.2. Ion Migration Spectra Analysis of White, Yellow, and Red Schisandra chinensis Dried Fruits
2.2. Qualitative Analysis of Volatile Chemical Substances in White, Yellow, and Red Fruit Branch Sap and Dried Fruits
2.3. Classification of Volatile Chemical Substances in Branch Sap and Dried Fruits
2.4. Principal Component Analysis and OPLS-DA Analysis of Samples
2.5. Analysis of OAV Values of Schisandra chinensis Branch Exudates and Dried Fruit and Screening of Key Flavor Substances
2.6. Discussion
3. Materials and Methods
3.1. Experimental Materials
3.2. Experimental Methods
3.2.1. Sample Pre-Treatment
3.2.2. GC-IMS Conditions
3.2.3. Data Processing Conditions
3.2.4. OAV Value Analysis
3.2.5. OPLS-DA Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liu, H.; Guo, J.; Wang, Z.; Chen, Y.; Wu, G.; Yang, B.; Kuang, H. Analysis of Terpenes, Aromatic and Aliphatic Compounds in Schisandra chinensis Essential Oil. Chem. Eng. 2016, 30, 27–29+32. [Google Scholar] [CrossRef]
- Olas, B. Cardioprotective Potential of Berries of Schisandra chinensis Turcz. (Baill.), Their Components and Food Products. Nutrients 2023, 15, 592. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xiao, Q.; Liu, J.; Mu, X.; Zhang, J.; Qi, Y.; Zhang, B.; Xiao, P.; Liu, H. Chemical Characterization and Potential Mechanism of the Anti-Asthmatic Activity of a Subfraction from Schisandra chinensis Fruit Extract. J. Agric. Food Chem. 2022, 70, 5015–5025. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Song, J.; Bi, J.; Meng, X.; Wu, X. Characterization of Volatile Profile from Ten Different Varieties of Chinese Jujubes by HS-SPME/GC–MS Coupled with E-Nose. Food Res. Int. 2018, 105, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhang, X.; Ren, F.; Yan, T.; Wu, B.; Bi, K.; Bi, W.; Jia, Y. Essential Oil of Schisandra chinensis Ameliorates Cognitive Decline in Mice by Alleviating Inflammation. Food Funct. 2019, 10, 5827–5842. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Yang, Y.; Peng, J.; Zhang, Y.; Wu, B.; He, B.; Jia, Y.; Yan, T. Schisandra chinensis (Turcz.) Baill. Essential Oil Exhibits Antidepressant-like Effects and against Brain Oxidative Stress through Nrf2/HO-1 Pathway Activation. Metab. Brain Dis. 2022, 37, 2261–2275. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.S.; Han, M.H.; Kim, G.-Y.; Kim, C.M.; Chung, H.Y.; Hwang, H.J.; Kim, B.W.; Choi, Y.H. Schisandrae Semen Essential Oil Attenuates Oxidative Stress-Induced Cell Damage in C2C12 Murine Skeletal Muscle Cells through Nrf2-Mediated Upregulation of HO-1. Int. J. Mol. Med. 2015, 35, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-W.; Kim, J.W.; Ku, S.K.; Kim, S.G.; Kim, K.Y.; Kim, G.-Y.; Hwang, H.J.; Kim, B.W.; Chung, H.Y.; Kim, C.M.; et al. Essential Oils Purified from Schisandrae Semen Inhibits Tumor Necrosis Factor-α-Induced Matrix Metalloproteinase-9 Activation and Migration of Human Aortic Smooth Muscle Cells. BMC Complement. Altern. Med. 2015, 15, 7. [Google Scholar] [CrossRef]
- Teng, H.; Lee, W.Y. Antibacterial and Antioxidant Activities and Chemical Compositions of Volatile Oils Extracted from Schisandra chinensis Baill. Seeds Using Simultaneous Distillation Extraction Method, and Comparison with Soxhlet and Microwave-Assisted Extraction. Biosci. Biotechnol. Biochem. 2014, 78, 79–85. [Google Scholar] [CrossRef]
- Xie, H.; Meng, L.; Guo, Y.; Xiao, H.; Jiang, L.; Zhang, Z.; Song, H.; Shi, X. Effects of Volatile Flavour Compound Variations on the Varying Aroma of Mangoes “Tainong” and “Hongyu” during Storage. Molecules 2023, 28, 3693. [Google Scholar] [CrossRef]
- Wen, J.; Wang, Y.; Cao, W.; He, Y.; Sun, Y.; Yuan, P.; Sun, B.; Yan, Y.; Qin, H.; Fan, S.; et al. Comprehensive Evaluation of Ten Actinidia Arguta Wines Based on Color, Organic Acids, Volatile Compounds, and Quantitative Descriptive Analysis. Foods 2023, 12, 3345. [Google Scholar] [CrossRef] [PubMed]
- Vautz, W.; Franzke, J.; Zampolli, S.; Elmi, I.; Liedtke, S. On the Potential of Ion Mobility Spectrometry Coupled to GC Pre-Separation—A Tutorial. Anal. Chim. Acta 2018, 1024, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hu, N.; Wang, H. Comparison of the Effects of Different Drying Methods on Volatile Substances in Goji Berries from Qaidam Based on GC-IMS. Res. Dev. Nat. Prod. 2022, 34, 1989–1998+2033. [Google Scholar] [CrossRef]
- Chai, S.; Miao, X.; Yao, G.; He, J. Establishment of GC-MS Fingerprint of Volatile Oil in Asarum from Different Origins and Its Chemical Pattern Recognition Study. Mod. Drugs Clin. 2023, 38, 71–76. [Google Scholar]
- Fang, C.; He, J.; Xiao, Q.; Chen, B.; Zhang, W. Development of the Volatile Fingerprint of Qu Aurantii Fructus by HS-GC-IMS. Molecules 2022, 27, 4537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, C.; Xu, P.; Li, X.; Wang, Z.; Zhao, Y.; Ai, J. Identification of SRAP Markers Related to Fruit Color in Schisandra chinensis. Biotechnology 2015, 25, 147–150. [Google Scholar] [CrossRef]
- Shao, S.; Xu, M.; Lin, Y.; Chen, X.; Fang, D.; Cai, J.; Wang, J.; Jin, S.; Ye, N. Analysis of Aroma Differences in Tieguanyin Oolong Tea from Different Origins Based on Electronic Nose and HS-SPME-GC-MS Technology. Food Sci. 2023, 44, 232–239. [Google Scholar]
- Yun, J.; Cui, C.; Zhang, S.; Zhu, J.; Peng, C.; Cai, H.; Yang, X.; Hou, R. Use of Headspace GC/MS Combined with Chemometric Analysis to Identify the Geographic Origins of Black Tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef]
- Wang, H.; Hua, J.; Jiang, Y.; Yang, Y.; Wang, J.; Yuan, H. Influence of Fixation Methods on the Chestnut-like Aroma of Green Tea and Dynamics of Key Aroma Substances. Food Res. Int. 2020, 136, 109479. [Google Scholar] [CrossRef]
- Capone, D.L.; Van Leeuwen, K.; Taylor, D.K.; Jeffery, D.W.; Pardon, K.H.; Elsey, G.M.; Sefton, M.A. Evolution and Occurrence of 1,8-Cineole (Eucalyptol) in Australian Wine. J. Agric. Food Chem. 2011, 59, 953–959. [Google Scholar] [CrossRef]
- Jovanović, O.P.; Zlatković, B.K.; Jovanović, S.Č.; Petrović, G.; Stojanović, G.S. Composition of Peucedanum Longifolium Waldst. & Kit. Essential Oil and Volatiles Obtained by Headspace. J. Essent. Oil Res. 2015, 27, 182–185. [Google Scholar] [CrossRef]
- Cao, W.; Shu, N.; Wen, J.; Yang, Y.; Jin, Y.; Lu, W. Characterization of the Key Aroma Volatile Compounds in Nine Different Grape Varieties Wine by Headspace Gas Chromatography–Ion Mobility Spectrometry (HS-GC-IMS), Odor Activity Values (OAV) and Sensory Analysis. Foods 2022, 11, 2767. [Google Scholar] [CrossRef]
No. | Compound | CAS# | Formula | Molecular Weight | Retention Index | tR (s) | Migration Time (ms) | Note |
---|---|---|---|---|---|---|---|---|
1 | α-Terpineol | C98555 | C10H18O | 154.3 | 1205.4 | 641.106 | 1.22046 | |
2 | γ-Terpinene | C99854 | C10H16 | 136.2 | 1054.0 | 423.305 | 1.2173 | |
3 | β-Ocimene | C13877913 | C10H16 | 136.2 | 1045.0 | 410.429 | 1.21073 | Monomer |
4 | β-Ocimene | C13877913 | C10H16 | 136.2 | 1044.5 | 409.742 | 1.24999 | Dimer |
5 | Limonene | C138863 | C10H16 | 136.2 | 1024.9 | 381.459 | 1.2184 | |
6 | α-Terpinene | C99865 | C10H16 | 136.2 | 1014.8 | 366.973 | 1.2173 | Monomer |
7 | α-Terpinene | C99865 | C10H16 | 136.2 | 1014.7 | 366.844 | 1.72557 | Dimer |
8 | α-Phellandrene | C99832 | C10H16 | 136.2 | 1005.1 | 352.997 | 1.22057 | Monomer |
9 | α-Phellandrene | C99832 | C10H16 | 136.2 | 1005.3 | 353.257 | 1.68616 | Dimer |
10 | Myrcene | C123353 | C10H16 | 136.2 | 995.7 | 340.021 | 1.21844 | Monomer |
11 | Myrcene | C123353 | C10H16 | 136.2 | 996.3 | 340.54 | 1.7223 | Dimer |
12 | β-Pinene | C127913 | C10H16 | 136.2 | 973.5 | 321.596 | 1.21738 | Monomer |
13 | β-Pinene | C127913 | C10H16 | 136.2 | 973.5 | 321.596 | 1.63939 | Dimer |
14 | Camphene | C79925 | C10H16 | 136.2 | 945.3 | 298.239 | 1.21419 | |
15 | α-Pinene | C80568 | C10H16 | 136.2 | 932.5 | 287.599 | 1.21738 | Monomer |
16 | α-Pinene | C80568 | C10H16 | 136.2 | 932.2 | 287.34 | 1.6649 | Dimer |
17 | Tricyclene | C508327 | C10H16 | 136.2 | 922.5 | 279.295 | 1.21632 | Monomer |
18 | Tricyclene | C508327 | C10H16 | 136.2 | 924.1 | 280.592 | 1.67234 | Dimer |
19 | 6-Methyl-5-hepten-2-one | C110930 | C8H14O | 126.2 | 988.9 | 334.35 | 1.1776 | |
20 | Acetoin | C513860 | C4H8O2 | 88.1 | 724.7 | 177.155 | 1.07174 | Monomer |
21 | Acetoin | C513860 | C4H8O2 | 88.1 | 724.7 | 177.155 | 1.33376 | Dimer |
22 | Acetone | C67641 | C3H6O | 58.1 | 447.9 | 108.943 | 1.11495 | |
23 | 2-Butanone | C78933 | C4H8O | 72.1 | 541.0 | 129.96 | 1.05779 | Monomer |
24 | 2-Butanone | C78933 | C4H8O | 72.1 | 541.0 | 129.96 | 1.24512 | Dimer |
25 | 2-Hexanone | C591786 | C6H12O | 100.2 | 776.5 | 197.058 | 1.18758 | |
26 | 4-Methyl-2-pentanone | C108101 | C6H12O | 100.2 | 722.8 | 176.431 | 1.17655 | Monomer |
27 | 4-Methyl-2-pentanone | C108101 | C6H12O | 100.2 | 722.3 | 176.25 | 1.47994 | Dimer |
28 | 2-Pentanone | C107879 | C5H10O | 86.1 | 665.2 | 158.011 | 1.12146 | Monomer |
29 | 2-Pentanone | C107879 | C5H10O | 86.1 | 669.1 | 158.902 | 1.36775 | Dimer |
30 | 3-Octanone | C106683 | C8H16O | 128.2 | 936.0 | 290.5 | 1.30341 | Monomer |
31 | 3-Octanone | C106683 | C8H16O | 128.2 | 937.3 | 291.569 | 1.71458 | Dimer |
32 | Cyclohexanone | C108941 | C6H10O | 98.1 | 897.9 | 258.855 | 1.15475 | Monomer |
33 | Cyclohexanone | C108941 | C6H10O | 98.1 | 898.4 | 259.264 | 1.45434 | Dimer |
34 | 3-Pentanone | C96220 | C5H10O | 86.1 | 629.9 | 150.028 | 1.35114 | |
35 | Nonanal | C124196 | C9H18O | 142.2 | 1109.8 | 503.569 | 1.48117 | |
36 | (E)-2-Heptenal | C18829555 | C7H12O | 112.2 | 112.2 | 307.472 | 1.25622 | |
37 | 5-Methylfurfural | C620020 | C6H6O2 | 110.1 | 965.2 | 314.693 | 1.12757 | |
38 | Heptanal | C111717 | C7H14O | 114.2 | 901.8 | 262.107 | 1.33019 | |
39 | Furfural | C98011 | C5H4O2 | 96.1 | 824.9 | 220.414 | 1.08181 | Monomer |
40 | Furfural | C98011 | C5H4O2 | 96.1 | 824.9 | 220.414 | 1.33019 | Dimer |
41 | Hexanal | C66251 | C6H12O | 100.2 | 787.7 | 201.762 | 1.25745 | Monomer |
42 | Hexanal | C66251 | C6H12O | 100.2 | 785.9 | 200.857 | 1.56268 | Dimer |
43 | (E)-2-Pentenal | C1576870 | C5H8O | 84.1 | 743.1 | 184.211 | 1.10576 | Monomer |
44 | (E)-2-Pentenal | C1576870 | C5H8O | 84.1 | 740.4 | 183.208 | 1.35645 | Dimer |
45 | Pentanal | C110623 | C5H10O | 86.1 | 679.5 | 161.233 | 1.18206 | Monomer |
46 | Pentanal | C110623 | C5H10O | 86.1 | 682.7 | 161.957 | 1.42202 | Dimer |
47 | Butanal | C123728 | C4H8O | 72.1 | 554.5 | 133.007 | 1.29147 | |
48 | Octanal | C124130 | C8H16O | 128.2 | 1005.0 | 352.965 | 1.41192 | |
49 | (E)-2-Hexenal | C6728263 | C6H10O | 98.1 | 849.4 | 232.684 | 1.17887 | Monomer |
50 | (E)-2-Hexenal | C6728263 | C6H10O | 98.1 | 834.7 | 225.319 | 1.52791 | Dimer |
51 | 2-Methylbutanal | C96173 | C5H10O | 86.1 | 641.9 | 152.737 | 1.15934 | Monomer |
52 | 2-Methylbutanal | C96173 | C5H10O | 86.1 | 635.4 | 151.282 | 1.3972 | Dimer |
53 | 3-Methyl-butanal | C590863 | C5H10O | 86.1 | 580.5 | 138.866 | 1.15386 | Monomer |
54 | 3-Methyl-butanal | C590863 | C5H10O | 86.1 | 576.1 | 137.877 | 1.39403 | Dimer |
55 | Benzaldehyde | C100527 | C7H6O | 106.1 | 959.5 | 309.982 | 1.14884 | |
56 | Linalool | C78706 | C10H18O | 154.3 | 1083.8 | 466.225 | 1.2173 | |
57 | 2-Furanmethanol | C98000 | C5H6O2 | 98.1 | 867.1 | 241.567 | 1.37689 | |
58 | 1-Butanol | C71363 | C4H10O | 74.1 | 643.4 | 153.091 | 1.17931 | |
59 | 1-Propanol | C71238 | C3H8O | 60.1 | 536.9 | 129.027 | 1.2455 | |
60 | Methanol | C67561 | CH4O | 32.0 | 370.2 | 91.393 | 0.9844 | |
61 | Linalool oxide | C60047178 | C10H18O2 | 170.3 | 1069.3 | 445.374 | 1.2601 | |
62 | 1-Pentanol | C71410 | C5H12O | 88.1 | 756.0 | 189.171 | 1.51258 | |
63 | 2-Propanol | C67630 | C3H8O | 60.1 | 455.6 | 110.664 | 1.22879 | |
64 | Ethanol | C64175 | C2H6O | 46.1 | 401.5 | 98.449 | 1.04508 | |
65 | 2-Ethylhexanol | C104767 | C8H18O | 130.2 | 1031.3 | 390.652 | 1.4199 | |
66 | Methionol | C505102 | C4H10OS | 106.2 | 996.0 | 340.217 | 1.08499 | |
67 | 2-Methyl-1-butanol | C137326 | C5H12O | 88.1 | 759.6 | 190.57 | 1.23167 | |
68 | Geranyl acetate | C105873 | C12H20O2 | 196.3 | 1448.3 | 990.472 | 1.21909 | |
69 | Phenylethyl acetate | C103457 | C10H12O2 | 164.2 | 1327.5 | 816.675 | 1.3188 | |
70 | Bornyl acetate | C76493 | C12H20O2 | 196.3 | 1289.3 | 761.699 | 1.21909 | |
71 | Methyl butanoate | C623427 | C5H10O2 | 102.1 | 738.3 | 182.402 | 1.14989 | |
72 | Ethyl Acetate | C141786 | C4H8O2 | 88.1 | 564.9 | 135.36 | 1.09381 | Monomer |
73 | Ethyl Acetate | C141786 | C4H8O2 | 88.1 | 570.5 | 136.626 | 1.33468 | Dimer |
74 | Butyl acetate | C123864 | C6H12O2 | 116.2 | 800.7 | 208.276 | 1.23539 | |
75 | Ethyl 2-methylbutanoate | C7452791 | C7H14O2 | 130.2 | 837.1 | 226.551 | 1.23473 | |
76 | 1,8-Cineole | C470826 | C10H18O | 154.3 | 1026.4 | 383.613 | 1.30141 | Monomer |
77 | 1,8-Cineole | C470826 | C10H18O | 154.3 | 1026.0 | 383.045 | 1.72693 | Dimer |
78 | 2-Acetylfuran | C1192627 | C6H6O2 | 110.1 | 912.0 | 270.566 | 1.11566 | Monomer |
79 | 2-Acetylfuran | C1192627 | C6H6O2 | 110.1 | 912.5 | 270.998 | 1.43948 | Dimer |
80 | Dimethyl sulfide | C75183 | C2H6S | 62.1 | 475.2 | 115.095 | 0.95774 | |
81 | 2-Methylbutanoic acid | C116530 | C5H10O2 | 102.1 | 901.4 | 261.801 | 1.20302 | |
82 | Isobutyric acid | C79312 | C4H8O2 | 88.1 | 757.0 | 189.581 | 1.16251 | |
83 | Pentanoic acid | C109524 | C5H10O2 | 102.1 | 888.2 | 252.17 | 1.23071 |
No. | Compound (Juice) | p | VIP | No. | Compound (Fruit) | p | VIP |
---|---|---|---|---|---|---|---|
1 | α-Phellandrene | 0.0039 | 1.115 | 1 | α-Terpineol | 0.0112 | 1.040 |
2 | Acetone | 0.0000 | 1.193 | 2 | γ-Terpinene | 0.0000 | 1.058 |
3 | 2-Butanone | 0.0000 | 1.181 | 3 | β-Ocimene | 0.0000 | 1.068 |
4 | 2-Hexanone | 0.0000 | 1.189 | 4 | Limonene | 0.0000 | 1.061 |
5 | 4-Methyl-2-pentanone | 0.0029 | 1.150 | 5 | α-Terpinene | 0.0000 | 1.061 |
6 | 2-Pentanone | 0.0000 | 1.180 | 6 | α-Phellandrene | 0.0000 | 1.061 |
7 | 3-Octanone | 0.0001 | 1.178 | 7 | Myrcene | 0.0000 | 1.069 |
8 | Cyclohexanone | 0.0325 | 1.072 | 8 | β-Pinene | 0.0000 | 1.070 |
9 | 3-Pentanone | 0.0000 | 1.173 | 9 | Camphene | 0.0001 | 1.032 |
10 | Nonanal | 0.0000 | 1.182 | 10 | α-Pinene | 0.0000 | 1.051 |
11 | Heptanal | 0.0000 | 1.153 | 11 | Tricyclene | 0.0000 | 1.061 |
12 | Hexanal | 0.0000 | 1.167 | 12 | 6-Methyl-5-hepten-2-one | 0.0007 | 1.034 |
13 | Pentanal | 0.0014 | 1.113 | 13 | Acetoin | 0.0000 | 1.098 |
14 | Butanal | 0.0000 | 1.184 | 14 | 2-Butanone | 0.0105 | 1.040 |
15 | Octanal | 0.0063 | 1.124 | 15 | 2-Pentanone | 0.0010 | 1.067 |
16 | 2-Methylbutanal | 0.0000 | 1.174 | 16 | 3-Octanone | 0.0000 | 1.067 |
17 | 3-Methyl-butanal | 0.0000 | 1.185 | 17 | Cyclohexanone | 0.0002 | 1.154 |
18 | 1-Butanol | 0.0046 | 1.066 | 18 | (E)-2-Heptenal | 0.0000 | 1.159 |
19 | 1-Propanol | 0.0000 | 1.186 | 19 | 5-Methylfurfural | 0.0000 | 1.158 |
20 | Methanol | 0.0213 | 1.051 | 20 | Heptanal | 0.0000 | 1.147 |
21 | 2-Propanol | 0.0000 | 1.185 | 21 | Furfural | 0.0001 | 1.080 |
22 | Ethanol | 0.0000 | 1.219 | 22 | Hexanal | 0.0037 | 1.087 |
23 | 2-Ethylhexanol | 0.0000 | 1.234 | 23 | (E)-2-Pentenal | 0.0000 | 1.132 |
24 | 2-Methyl-1-butanol | 0.0002 | 1.175 | 24 | (E)-2-Hexenal | 0.0000 | 1.153 |
25 | Methyl butanoate | 0.0000 | 1.178 | 25 | 3-Methyl-butanal | 0.0034 | 1.000 |
26 | Ethyl Acetate | 0.0000 | 1.173 | 26 | Benzaldehyde | 0.0000 | 1.125 |
27 | Butyl acetate | 0.0003 | 1.174 | 27 | Linalool | 0.0000 | 1.058 |
28 | Ethyl 2-methylbutanoate | 0.0064 | 1.127 | 28 | 2-Furanmethanol | 0.0044 | 1.046 |
29 | Dimethyl sulfide | 0.0000 | 1.173 | 29 | 1-Butanol | 0.0043 | 1.100 |
30 | Isobutyric acid | 0.0076 | 1.008 | 30 | Methanol | 0.0030 | 1.121 |
31 | 31 | 1-Pentanol | 0.0000 | 1.101 | |||
32 | 32 | Ethanol | 0.0245 | 1.012 | |||
33 | 33 | Methionol | 0.0000 | 1.049 | |||
34 | 34 | 2-Methyl-1-butanol | 0.0001 | 1.123 | |||
35 | 35 | Geranyl acetate | 0.0021 | 1.029 | |||
36 | 36 | Phenylethyl acetate | 0.0016 | 1.018 | |||
37 | 37 | Butyl acetate | 0.0029 | 1.058 | |||
38 | 38 | 2-Acetylfuran | 0.0003 | 1.153 | |||
39 | 39 | Dimethyl sulfide | 0.0046 | 1.014 | |||
40 | 40 | 2-Methylbutanoic acid | 0.0000 | 1.059 |
Compound | W1 | W2 | W3 | W4 | W5 | W6 |
---|---|---|---|---|---|---|
β-Ocimene | 1.03 ± 0.45 | 1.49 ± 0.19 | 1.37 ± 0.20 | 45.79 ± 0.99 | 55.01 ± 1.03 | 11.73 ± 1.65 |
Limonene | 0.05 ± 0.02 | 0.07 ± 0.01 | 0.06 ± 0.01 | 2.12 ± 0.06 | 2.80 ± 0.01 | 0.89 ± 0.04 |
Myrcene | 0.30 ± 0.12 | 0.38 ± 0.02 | 0.37 ± 0.02 | 8.69 ± 0.22 | 13.03 ± 0.27 | 5.59 ± 0.38 |
β-Pinene | 0.60 ± 0.13 | 0.82 ± 0.07 | 0.71 ± 0.07 | 16.59 ± 0.30 | 16.54 ± 0.09 | 9.00 ± 1.04 |
α-Pinene | 0.22 ± 0.05 | 0.23 ± 0.03 | 0.20 ± 0.03 | 8.40 ± 0.36 | 10.16 ± 0.02 | 4.40 ± 0.82 |
6-Methyl-5-hepten-2-one | 1.83 ± 0.24 | 1.98 ± 0.13 | 1.82 ± 0.08 | 38.78 ± 1.78 | 31.09 ± 0.22 | 40.29 ± 1.98 |
Acetone | 0.70 ± 0.01 | 1.00 ± 0.06 | 0.31 ± 0.00 | 1.80 ± 0.12 | 1.86 ± 0.07 | 1.64 ± 0.02 |
3-Octanone | 57.57 ± 2.57 | 59.15 ± 4.45 | 33.79 ± 0.85 | 16.73 ± 2.97 | 37.75 ± 0.82 | 6.01 ± 0.81 |
Nonanal | 30.62 ± 4.34 | 33.94 ± 4.35 | 78.67 ± 1.49 | 69.44 ± 3.66 | 69.73 ± 2.50 | 74.09 ± 3.53 |
(E)-2-Hexenal | 56.61 ± 30.14 | 30.24 ± 2.03 | 30.49 ± 3.33 | 929.23 ± 98.24 | 423.44 ± 40.04 | 221.68 ± 15.89 |
2-Methylbutanal | 1.32 ± 0.02 | 1.11 ± 0.01 | 1.93 ± 0.01 | 2.65 ± 0.42 | 2.96 ± 0.17 | 2.12 ± 0.05 |
3-Methyl-butanal | 3132.27 ± 20.20 | 2364.55 ± 111.13 | 523.32 ± 8.24 | 609.15 ± 84.54 | 453.54 ± 12.10 | 785.83 ± 85.75 |
Linalool | 39.76 ± 5.15 | 41.38 ± 0.77 | 36.48 ± 2.82 | 291.66 ± 19.67 | 351.46 ± 16.55 | 76.44 ± 7.13 |
1-Butanol | 0.66 ± 0.01 | 0.52 ± 0.04 | 0.61 ± 0.04 | 1.42 ± 0.18 | 0.94 ± 0.03 | 1.06 ± 0.06 |
1-Propanol | 1.57 ± 0.01 | 1.38 ± 0.10 | 0.64 ± 0.00 | 1.71 ± 0.15 | 1.93 ± 0.19 | 1.56 ± 0.10 |
Ethanol | 1.19 ± 0.02 | 1.96 ± 0.09 | 1.17 ± 0.01 | 0.58 ± 0.05 | 0.96 ± 0.10 | 0.93 ± 0.20 |
Phenylethyl acetate | 12.30 ± 2.99 | 14.39 ± 0.84 | 14.59 ± 1.40 | 27.10 ± 3.52 | 46.46 ± 8.64 | 16.88 ± 1.57 |
Methyl butanoate | 1.63 ± 0.05 | 1.36 ± 0.07 | 1.05 ± 0.03 | 3.37 ± 0.52 | 2.55 ± 0.20 | 2.73 ± 0.09 |
Butyl acetate | 2.32 ± 0.17 | 2.76 ± 0.05 | 3.10 ± 0.06 | 1.18 ± 0.13 | 1.62 ± 0.29 | 2.25 ± 0.21 |
1,8-Cineole | 11.22 ± 2.91 | 14.33 ± 1.45 | 13.03 ± 1.37 | 326.88 ± 1.64 | 361.18 ± 24.93 | 289.20 ± 12.48 |
Dimethyl sulfide | 107.89 ± 0.51 | 102.60 ± 4.19 | 67.71 ± 1.84 | 241.33 ± 3.31 | 196.30 ± 77.59 | 48.91 ± 3.98 |
2-Methylbutanoic acid | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 2.34 ± 0.04 | 3.55 ± 0.20 | 1.47 ± 0.24 |
Isobutyric acid | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.61 ± 0.34 | 1.23 ± 0.19 | 2.10 ± 0.33 |
Pentanoic acid | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 28.00 ± 1.81 | 53.09 ± 13.00 | 68.39 ± 14.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Lu, W.; Tian, T.; Shu, N.; Yang, Y.; Fan, S.; Han, X.; Ge, Y.; Xu, P. Analysis of Volatile Components in Dried Fruits and Branch Exudates of Schisandra chinensis with Different Fruit Colors Using GC-IMS Technology. Molecules 2023, 28, 6865. https://doi.org/10.3390/molecules28196865
Yan Y, Lu W, Tian T, Shu N, Yang Y, Fan S, Han X, Ge Y, Xu P. Analysis of Volatile Components in Dried Fruits and Branch Exudates of Schisandra chinensis with Different Fruit Colors Using GC-IMS Technology. Molecules. 2023; 28(19):6865. https://doi.org/10.3390/molecules28196865
Chicago/Turabian StyleYan, Yiping, Wenpeng Lu, Taiping Tian, Nan Shu, Yiming Yang, Shutian Fan, Xianyan Han, Yunhua Ge, and Peilei Xu. 2023. "Analysis of Volatile Components in Dried Fruits and Branch Exudates of Schisandra chinensis with Different Fruit Colors Using GC-IMS Technology" Molecules 28, no. 19: 6865. https://doi.org/10.3390/molecules28196865
APA StyleYan, Y., Lu, W., Tian, T., Shu, N., Yang, Y., Fan, S., Han, X., Ge, Y., & Xu, P. (2023). Analysis of Volatile Components in Dried Fruits and Branch Exudates of Schisandra chinensis with Different Fruit Colors Using GC-IMS Technology. Molecules, 28(19), 6865. https://doi.org/10.3390/molecules28196865