Phenolic Compounds and Capsaicinoids in Three Capsicum annuum Varieties: From Analytical Characterization to In Silico Hypotheses on Biological Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative and Quantitative Analysis of Phenolic Compounds and Capsaicinoids in Pepper Fruit Extracts
2.2. Human TRPV1 Model
2.3. Docking Results
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Plant Materials and Sample Treatment
3.3. Analysis of Total Phenolic Content
3.4. Analysis of Phenolic Compounds and Capsaicinoids Using Reversed-Phase High Performance Liquid Chromatography–Ultraviolet (RP-HPLC–UV) and HPLC-Electrospray Ionization Ion Trap Mass Spectrometry (HPLC-ESI-ITMS)
3.5. Quantification of Capsaicinoids
3.6. TRPV1 Model Construction
3.7. Docking Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Qin, C.; Yu, C.; Shen, Y.; Fang, X.; Chen, L.; Min, J.; Cheng, J.; Zhao, S.; Xu, M.; Luo, Y.; et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl. Acad. Sci. USA 2014, 111, 5135–5140. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 August 2023).
- Colonna, V.; D’Agostino, N.; Garrison, E.; Albrechtsen, A.; Meisner, J.; Facchiano, A.; Cardi, T.; Tripodi, P. Genomic diversity and novel genome-wide association with fruit morphology in Capsicum, from 746k polymorphic sites. Sci. Rep. 2019, 9, 10067. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, Y.; Liu, J.; Ma, R.; Miao, Y.; Chen, W.; Zheng, J.; Pang, X.; Wan, H. Pigment Biosynthesis and Molecular Genetics of Fruit Color in Pepper. Plants 2023, 12, 2156. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding. Phytochemistry 2011, 72, 1358–1370. [Google Scholar] [CrossRef]
- Guzmán, I.; Bosland, P.W. A Matter of Taste: Capsaicinoid Diversity in Chile Peppers and the Importance to Human Food Preference. In Capsaicin and Its Human Therapeutic Development; Mozsik, G., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Lozada, D.N.; Pulicherla, S.R.; Holguin, F.O. Widely Targeted Metabolomics Reveals Metabolite Diversity in Jalapeño and Serrano Chile Peppers (Capsicum annuum L.). Metabolites 2023, 13, 288. [Google Scholar] [CrossRef] [PubMed]
- Zamljen, T.; Jakopič, J.; Hudina, M.; Veberič, R.; Slatnar, A. Influence of intra and inter species variation in chilies (Capsicum spp.) on metabolite composition of three fruit segments. Sci. Rep. 2021, 11, 4932. [Google Scholar] [CrossRef]
- Bosland, P.W.; Votava, E.J. Peppers: Vegetable and Spice Capsicums, 2nd ed.; Crop Production Science in Horticulture Series; CABI: Oxfordshire, UK, 2012. [Google Scholar]
- Sora, G.T.S.; Haminiuk, C.W.I.; da Silva, M.V.; Zielinski, A.A.F.; Gonçalves, G.A.; Bracht, A.; Peralta, R.M. A comparative study of the capsaicinoid and phenolic contents and in vitro antioxidant activities of the peppers of the genus Capsicum: An application of chemometrics. J. Food Sci. Technol. 2015, 52, 8086–8094. [Google Scholar] [CrossRef]
- Herrero, M.; Castro-Puyana, M.; Ibáñez, E.; Cifuentes, A. Compositional Analysis of Foods. In Liquid Chromatography: Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 359–380. [Google Scholar] [CrossRef]
- Ziółkiewicz, A.; Kasprzak-Drozd, K.; Rusinek, R.; Markut-Miotła, E.; Oniszczuk, A. The Influence of Polyphenols on Atherosclerosis Development. Int. J. Mol. Sci. 2023, 24, 7146. [Google Scholar] [CrossRef]
- Ha, S.H.; Kim, J.B.; Park, J.S.; Lee, S.W.; Cho, K.J. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: Deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J. Exp. Bot. 2007, 58, 3135–3144. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, P.; Cheema, A.; Paliyath, G. Solanaceous Fruits Including Tomato, Eggplant, and Peppers. In Encyclopedia of Food and Health, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 24–32. [Google Scholar] [CrossRef]
- Spiller, F.; Alves, M.K.; Vieria, S.; Carvalho, T.A.; Leita, C.E.; Lunardelli, A. Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan and antigen-induced inflammation. J. Pharm. Pharmacol. 2008, 60, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Careaga, M.; Fernandez, E.; Dorantes, L.; Mota, L.; Jaramillo, M.E.; Hernandez-Sanchez, H. Antibacterial activity of Capsicum extract against Salmonella typhirium and Pseudomonas aeruginosa inoculated in raw beef meat. Int. J. Food Microbiol. 2003, 83, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Parrilla, E.; De La Rosa, L.A.; Amarowicz, R.; Shahidi, F. Antioxidant activity of fresh and processed Jalapeno and Serrano peppers. J. Agric. Food Chem. 2011, 59, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Rocha, J.B.T. Polyphenols in red pepper [(Capsicum annuum var aviculare (Tepin)] and their protective effect on some pro-oxidant induced lipid peroxidation in brain and liver. Eur. Food Res. Technol. 2007, 225, 239–247. [Google Scholar] [CrossRef]
- Oney-Montalvo, J.E.; Avilés-Betanzos, K.A.; Ramírez-Rivera, E.d.J.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Polyphenols Content in Capsicum chinense Fruits at Different Harvest Times and Their Correlation with the Antioxidant Activity. Plants 2020, 9, 1394. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Esparza, L.M.; Mora, Z.V.-d.l.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell Peppers (Capsicum annum L.) Losses and Wastes: Source for Food and Pharmaceutical Applications. Molecules 2021, 26, 5341. [Google Scholar] [CrossRef]
- Paran, I.; Ben-Chaim, A.; Kang, B.C.; Jahn, M. Capsicums. In Genome Mapping and Molecular Breeding in Plants; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 5, pp. 209–226. [Google Scholar]
- Arce-Rodríguez, M.L.; Ochoa-Alejo, N. Biochemistry and molecular biology of capsaicinoid biosynthesis: Recent advances and perspectives. Plant Cell Rep. 2019, 38, 1017–1030. [Google Scholar] [CrossRef]
- Giuffrida, D.; Dugo, P.; Torre, G.; Bignardi, C.; Cavazza, A.; Corradini, C.; Dugo, G. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem. 2013, 140, 794–802. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.R.; Tikunov, Y.; De Vos, R.C.; Pelgrom, K.T.; Maharijaya, A.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity. Metabolomics 2013, 9, 130–144. [Google Scholar] [CrossRef]
- Alonso-Villegas, R.; González-Amaro, R.M.; Figueroa Hernández, C.Y.; Rodríguez-Buenfil, I.M. The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition. Molecules 2023, 28, 4239. [Google Scholar] [CrossRef]
- Ferreira, L.G.B.; Faria, J.V.; Dos Santos, J.P.S.; Faria, R.X. Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur. J. Pharmacol. 2020, 887, 173356. [Google Scholar] [CrossRef]
- Tóth, A.; Czikora, A.; Pásztor, E.T.; Dienes, B.; Bai, P.; Csernoch, L.; Rutkai, I.; Csató, V.; Mányiné, I.S.; Pórszász, R.; et al. Vanilloid receptor-1 (TRPV1) expression and function in the vasculature of the rat. J. Histochem. Cytochem. 2014, 62, 129–144. [Google Scholar] [CrossRef]
- Omari, S.A.; Adams, M.J.; Geraghty, D.P. TRPV1 Channels in Immune Cells and Hematological Malignancies. Adv. Pharmacol. 2017, 79, 173–198. [Google Scholar] [CrossRef]
- Yang, F.; Zheng, J. Understand spiciness: Mechanism of TRPV1 channel activation by capsaicin. Protein Cell. 2017, 8, 169–177. [Google Scholar] [CrossRef]
- Nie, Y.; Feng, F.; Luo, W.; Sanders, A.J.; Zhang, Y.; Liang, J.; Chen, C.; Feng, W.; Gu, W.; Liao, W.; et al. Overexpressed transient receptor potential vanilloid 1 (TRPV1) in lung adenocarcinoma harbours a new opportunity for therapeutic targeting. Cancer Gene Ther. 2022, 29, 1405–1417. [Google Scholar] [CrossRef]
- Mudrić, S.Ž.; Gašić, U.M.; Dramićanin, A.M.; Ćirić, I.Ž.; Milojković-Opsenica, D.M.; Popović-Đorđević, J.B.; Momirović, N.M.; Tešić, Ž.L. The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food Chem. 2017, 217, 705–715. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Jakopic, J.; Cunja, V.; Veberic, R.; Munda, A.; Stampar, F. Phenolic compounds as defence response of pepper fruits to Colletotrichum coccodes. Physiol. Mol. Plant Pathol. 2013, 84, 138–145. [Google Scholar] [CrossRef]
- Guclu, G.; Keser, D.; Kelebek, H.; Keskin, M.; Emre Sekerli, Y.; Soysal, Y.; Selli, S. Impact of production and drying methods on the volatile and phenolic characteristics of fresh and powdered sweet red peppers. Food Chem. 2021, 338, 128129. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Acquavia, M.A.; Cataldi, T.R.I.; Onzo, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri, A.; Bianco, G. Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI(-)-MS/MS and polarity prediction in reversed-phase separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ramírez, Y.D.R.; Martínez-Ávila, G.C.G.; González-Hernández, V.A.; Castro-López, C.; Torres-Castillo, J.A. Free Radical-Scavenging Capacities, Phenolics and Capsaicinoids in Wild Piquin Chili (Capsicum annuum var. Glabriusculum). Molecules 2018, 16, 2655. [Google Scholar] [CrossRef]
- Elkhedir, A.E.; Iqbal, A.; Zogona, D.; Mohammed, H.H.; Murtaza, A.; Xu, X. Apigenin glycosides from green pepper enhance longevity and stress resistance in Caenorhabditis elegans. Nutr. Res. 2022, 102, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Miyase, T.; Ueno, A.; Takizawa, N.; Kobayashi, H.; Oguchi, H. Ionone and lignan glycosides from Epimedium diphyllum. Phytochemistry 1989, 28, 3483–3485. [Google Scholar] [CrossRef]
- Iorizzi, M.; Lanzotti, V.; De Marino, S.; Zollo, F.; Blanco-Molina, M.; Macho, A.; Muñoz, E. New glycosides from Capsicum annuum L. var. acuminatum. Isolation, structure determination, and biological activity. J. Agric. Food Chem. 2001, 49, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Pool, E.; Ramos-Díaz, A.L.; Lizardi-Jiménez, M.A.; Pech-Cohuo, S.; Ayora-Talavera, T.; Cuevas-Bernardino, J.C.; García-Cruz, U.; Pacheco, N. Effect of solvent polarity on the Ultrasound Assisted extraction and antioxidant activity of phenolic compounds from habanero pepper leaves (Capsicum chinense) and its identification by UPLC-PDA-ESI-MS/MS. Ultrason. Sonochem. 2021, 76, 105658. [Google Scholar] [CrossRef] [PubMed]
- Assefa, S.T.; Yang, E.-Y.; Asamenew, G.; Kim, H.-W.; Cho, M.-C.; Lee, J. Identification of α-Glucosidase Inhibitors from Leaf Extract of Pepper (Capsicum spp.) through Metabolomic Analysis. Metabolites 2021, 11, 649. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D.; Facchiano, A.; Moccia, S.; Meola, A.M.I.; Russo, G.L.; Spagnuolo, C. Molecular Docking of Natural Compounds for Potential Inhibition of AhR. Foods 2023, 12, 1953. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, E.; Julius, D.; Julius, D.; Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 2016, 534, 347–351. [Google Scholar] [CrossRef]
- Kwon, D.H.; Zhang, F.; Suo, Y.; Bouvette, J.; Borgnia, M.J.; Le, S.-Y. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 2021, 28, 554–563. [Google Scholar] [CrossRef]
- Neuberger, A.; Oda, M.; Nikolaev, Y.A.; Nadezhdin, K.D.; Gracheva, E.O.; Bagriantsev, S.N.; Sobolevsky, A.I. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nat. Commun. 2023, 14, 2451. [Google Scholar] [CrossRef]
- Pradhananga, S.; Shim, W.-S. Caffeic acid exhibits anti-pruritic effects by inhibition of multiple itch transmission pathways in mice. Eur. J. Pharmacol. 2015, 762, 313–321. [Google Scholar] [CrossRef]
- Wang, F.; Xue, Y.; Fu, L.; Wang, Y.; He, M.; Zhao, L.; Liao, X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5322–5348. [Google Scholar] [CrossRef]
- Vahidi Ferdowsi, P.; Ahuja, K.D.K.; Beckett, J.M.; Myers, S. TRPV1 Activation by Capsaicin Mediates Glucose Oxidation and ATP Production Independent of Insulin Signalling in Mouse Skeletal Muscle Cells. Cells 2021, 10, 1560. [Google Scholar] [CrossRef] [PubMed]
- Hayman, M.; Kam, P.C.A. Capsaicin: A review of its pharmacology and clinical applications. Curr. Anaesth. Crit. Care 2008, 19, 338–343. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using Modeller; Current Protocols in Bioinformatics 54; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 5.6.1–5.6.37. [Google Scholar]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011, 27, 343–350. [Google Scholar] [CrossRef]
- Laskowski, R.A.M.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for ligand-receptor docking. Curr. Protoc. Bioinform. 2008, 24, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Phenols Content (gGAE/Kg DW) |
---|---|
GP | 3.58 ± 0.02 |
RP1 | 5.24 ± 0.16 |
RP2 | 7.55 ± 0.05 |
RP3 | 8.91 ± 0.05 |
Peak | [M-H]− m/z | MS/MS m/z | Identified Compound | GP | RP1 | RP2 | RP3 |
---|---|---|---|---|---|---|---|
Phenolic compounds | |||||||
1 | 341 | 179 | Caffeic acid hexoside | x | x | x | x |
2 | 337 | 191 | Coumaroylquinic acid | x | x | x | |
3 | 325 | 163, 119 | Coumaric acid hexoside | x | x | x | x |
4 | 353 | 191, 179, 173 | 3-O-caffeoylquinic acid | x | x | x | x |
5 | 355 | 337, 309, 265, 235, 217, 193, 175, 163 | Ferulic acid hexoside | x | x | x | x |
6 | 385 | 223, 205, 191 | Sinapic acid hexoside | x | x | x | x |
7 | 741 | 579, 285 | Luteolin 7-(2″-pentosyl-4″-O-hexosyl)hexoside | x | x | ||
8 | 355 | 337, 309, 265, 235, 217, 193, 175, 163 | Ferulic acid hexoside | x | x | ||
9 | 579 | 561, 489, 459, 399, 369 | Luteolin C-pentosyl-C-hexoside Isomer 1 | x | x | x | x |
10 | 593 | 575, 503, 473, 383, 353 | Apigenin 6,8-di-C-glucoside (Vicenin-2) | x | x | x | x |
11 | 579 | 561, 489, 459, 399, 369 | Luteolin C-pentosyl-C-hexoside Isomer 2 | x | x | ||
12 | 563 | 473, 443, 383, 353, 325, 297 | Apigenin C-pentosyl-C-hexoside | x | x | x | x |
13 | 563 | 473, 443, 383, 353, 325, 297 | Apigenin 6-C-arabinoside-8-C-glucoside (Isoschaftoside) | x | x | x | x |
14 | 563 | 473, 443, 383, 353, 325, 297 | Apigenin 6-C-glucoside-8-C-arabinoside (Schaftoside) | x | x | x | x |
15 | 521 | 359, 341, 329 | Icariside E5 | x | x | x | x |
16 | 431 | 269, 225, 151, 149 | Apigenin-O-hexoside | x | |||
17 | 609 | 463, 447, 343, 301 | Quercetin-O-rhamnosyl-O-hexoside | x | x | x | |
18 | 579 | 447, 285 | Luteolin-O-(apiosyl)hexoside | x | x | x | x |
19 | 463 | 301, 255, 179, 151 | Quercetin-O-hexoside | x | x | ||
20 | 593 | 285 | Luteolin deoxyhexosylhexoside | x | |||
21 | 563 | 269, 225 | Apigenin 7-O-(2″-O-apiosyl)glucoside (Apiin) | x | |||
22 | 447 | 429, 369, 357, 327, 299, 285, 255 | Luteolin-C-hexoside | x | |||
23 | 447 | 301, 179, 151 | Quercetin-3-O-rhamnoside (Quercitrin) | x | x | x | |
24 | 433 | 301, 271, 151 | Quercetin-O-pentoside | x | |||
25 | 621 665 | 579, 561, 489, 447, 285 621, 579, 489, 285 | Luteolin-O-(apiosyl-acetyl)hexoside Luteolin-O-(apiosyl-malonyl)hexoside | x | x | x | x |
26 | 649 | 605, 563, 269 | Apigenin 7-O-(malonylapiosyl) hexoside | x | |||
Capsacinoids | |||||||
27 | 292 | 277, 156 | Nordihydrocapsaicin | x | x | x | |
28 | 304 | 289, 168 | Capsaicin | x | x | x | |
29 | 306 | 291, 170 | Dihydrocapsaicin | x | x | x | |
30 | 318 | 303, 182 | Homocapsaicin | x | x | x | |
31 | 320 | 305, 184 | Homodihydrocapsaicin | x | x | x | |
Other compounds | |||||||
32 | 191 | 173, 171, 155, 127, 111, 109 | Quinic acid | x | x | x | x |
33 | 164 | 147 | Phenylalanine | x | x | x | x |
34 | 203 | 185, 159, 116 | Tryptophan | x | x | x | x |
RP1 | RP2 | RP3 | |
---|---|---|---|
Nordihydrocapsaicin | 1.12 ± 0.02 | 0.28 ± 0.00 | 9.59 ± 0.12 |
Capsaicin | 4.85 ± 0.09 | 2.62 ± 0.07 | 16.76 ± 0.14 |
Dihydrocapsaicin | 4.12 ± 0.17 | 1.65 ± 0.07 | 12.36 ± 0.17 |
Homocapsaicin | 0.15 ± 0.01 | 0.07 ± 0.00 | 1.00 ± 0.03 |
Homodihydrocapsaicin | 0.26 ± 0.01 | 0.10 ± 0.00 | 1.04 ± 0.08 |
Total Capsaicinoids | 10.51 ± 0.28 | 4.72 ± 0.14 | 40.75 ± 0.54 |
Receptor | Ligand | Lowest Binding Energy (Kcal/mol) | Ki | No. in Cluster | Interacting Residues |
---|---|---|---|---|---|
Agonist-bound conformation | Capsaicin | −7.33 | 4.21 uM | 62 | Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557-Glu570-Ile573-Phe591(D)-Ala666(D)-Leu670(D) |
Dihydrocapsaicin | −6.76 | 11.14 uM | 44 | Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Leu553-Arg557-Ala566-Ile569-Glu570-Ile573-Phe591(D)-Leu670(D) | |
Nordihydro-capsaicin | −6.7 | 12.26 uM | 7 | Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Tyr554-Arg557-Ala566-Glu570-Phe591(D)-Leu670(D) | |
−6.36 | 21.86 uM | 31 | Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Leu553-Tyr554-Arg557-Ala566-Ile569-Glu570-Ile573-Phe591(D) | ||
Homocapsaicin | −7.14 | 5.82 uM | 15 | Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Tyr554-Arg557-Ala566-Il569-Glu570-Ile573-Phe591(D)-Leu663(D)-Ala666(D)-Leu670(D) | |
−6.69 | 12.50 uM | 12 | Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Tyr554-Arg557-Glu570-Ile573-Phe591(D)-Leu670(D) | ||
Homodihydro-capsaicin | −5.97 | 11.09 uM | 30 | Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557-Glu570-Ile573-Phe591(D)-Leu663(D)-Ala666(D)-Leu670(D) | |
Caffeic acid hexoside | −6.31 | 23.55 uM | 27 | Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557-Ala566-Glu570-Phe591(D) | |
−5.97 | 42.38 uM | 29 | Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557-Phe587(D)-Phe591(D)-Leu670(D) | ||
Icariside E5 | −4.88 | 266.06 uM | 2 | Phe507-Tyr511-Leu515-Leu518-Phe543-Ala546-Leu547-Thr550-Arg557-Ala566-Ile569-Glu570-Ile573-Phe591(D) | |
Caffeic acid | −5.09 | 186.59 uM | 49 | Tyr511-Leu515-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557 | |
SB-366791 | −7.25 | 4.87 uM | 97 | Tyr511-Leu547-Thr550-Arg557-Ala566-Ile569-Glu570-Ile573-Phe591(D)-Leu670(D) | |
Antagonist-bound conformation | caffeic acid | −5.94 | 23.65 uM | 75 | Ser512-Leu515-Thr550-Asn551-Leu553-Tyr554-Arg557-Ala566-Val567-Glu570-Gln701 |
−4.83 | 289.79 uM | 1 | Leu515-Leu547-Thr550-Leu553-Ala566-Ile569-Glu570-Leu670(B) | ||
capsaicin | −8.2 | 189.50 nM | 25 | Leu515-Phe543-Ala546-Leu547-Thr550-Leu553-Tyr554-Thr556-Arg557-Ala566-Val567-Glu570-Phe591-Gln701-Leu670(B) | |
−7.77 | 704.99 nM | 48 | Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Glu570-Leu663(B)-Ala666(B)-Phe591(B)-Leu670(B) | ||
caffeic acid hexoside | −6.43 | 1.79 uM | 16 | Tyr511-Leu515-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557-Ala566-Val567-Ile569-Glu570-Ile573-Gln701-Leu670(B) | |
−5.61 | 21.30 uM | 24 | Tyr511-Ser512-Leu515-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Ala566-Ile569-Glu570-Phe587(B)-Phe591(B) | ||
−5.53 | 22.72 uM | 32 | Tyr511-Ser512-Leu515-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557-Ala566-Phe587(B)-Phe591(B)-Leu670(B) | ||
−5.48 | 52.79 uM | 6 | Tyr511-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Ile569-Glu570-Ile573-Phe587(B)-Phe591(B)-Ala666(B)-Leu670(B) | ||
Homocapsaicin | −7.96 | 1.35 uM | 29 | Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Arg557-Ile569-Glu570-Phe587(B)-Phe591(B)-Leu663(B)-Ala666(B)-Leu670(B) | |
Nordihydro-capsaicin | −6.59 | 4.91 uM | 38 | Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Ala566-Ile569-Glu570-Phe591(B)-Leu663(B)-Leu670(B) | |
Homodihydro-capsaicin | −6.58 | 4.44 uM | 39 | Tyr511-Ser512-Phe522-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Ile569-Glu570-Ile573-Phe587(B)-Phe591(B)-Leu670(B) | |
Dihydrocapsaicin | −6.62 | 2.53 uM | 47 | Tyr511-Ser512-Leu515-Phe543-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Ile569-Glu570-Ile573-Phe587(B)-Phe591(B)-Ala666(B)-Leu670(B) | |
SB-366791 | −8.12 | 923.53 nM | 100 | Tyr511-Ser512-Leu515-Phe516-Ala546-Leu547-Thr550-Asn551-Leu553-Tyr554-Ile573-Phe591(B) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, D.; Facchiano, A.; Minasi, P.; D’Agostino, N.; Parisi, M.; Carbone, V. Phenolic Compounds and Capsaicinoids in Three Capsicum annuum Varieties: From Analytical Characterization to In Silico Hypotheses on Biological Activity. Molecules 2023, 28, 6772. https://doi.org/10.3390/molecules28196772
Giordano D, Facchiano A, Minasi P, D’Agostino N, Parisi M, Carbone V. Phenolic Compounds and Capsaicinoids in Three Capsicum annuum Varieties: From Analytical Characterization to In Silico Hypotheses on Biological Activity. Molecules. 2023; 28(19):6772. https://doi.org/10.3390/molecules28196772
Chicago/Turabian StyleGiordano, Deborah, Angelo Facchiano, Paola Minasi, Nunzio D’Agostino, Mario Parisi, and Virginia Carbone. 2023. "Phenolic Compounds and Capsaicinoids in Three Capsicum annuum Varieties: From Analytical Characterization to In Silico Hypotheses on Biological Activity" Molecules 28, no. 19: 6772. https://doi.org/10.3390/molecules28196772
APA StyleGiordano, D., Facchiano, A., Minasi, P., D’Agostino, N., Parisi, M., & Carbone, V. (2023). Phenolic Compounds and Capsaicinoids in Three Capsicum annuum Varieties: From Analytical Characterization to In Silico Hypotheses on Biological Activity. Molecules, 28(19), 6772. https://doi.org/10.3390/molecules28196772