Two Polarity-Sensitive Fluorescent Probes Based on Curcumin Analogs for Visualizing Polarity Changes in Lipid Droplets
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photophysical Properties
2.2. LD-Specific Ability
2.3. Fluorescence Imaging of LDs Polarity Changes
2.4. Monitoring of LD Polarity Changes during Different Pathological Processes
3. Materials and Methods
3.1. Materials and Instruments
3.2. Synthesis and Characterization
- 7-(diethylamino)-3-((E)-((Z)-3-((E)-3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-hydroxyallylidene)-2-oxocyclohexylidene) methyl)-2H-chromen-2-one (CC-CH): Boron trioxide (1.05 g, 15 mmol) was added to a two-necked flask and then 8 mL anhydrous DMF was added under a nitrogen atmosphere. The temperature was raised to 120 °C and the mixture was stirred for 5 min. Then, 2-acetylcyclohexanone (133 mmL, 1 mmol), tributyl borate (0.54 mL, 2 mmol), compound 2 (522 mg, 2.1 mmol), and 1, 2, 3, 4-tetrahydroquinoline (0.1 mL) were successively added, and the resulting mixture was stirred at 120 °C for 5 h. The mixture was extracted with dichloromethane (DCM) 3 times. The combined organic layers were washed with ultrapure water 6 times and dried over MgSO4. Finally, a red solid (CC-CH) (289 mg, 48%) was obtained by silica gel column purification. 1H NMR (400 MHz, Chloroform-d) δ 17.03 (s, 1H), 7.77 (d, J = 15.2 Hz, 1H), 7.71 (s, 2H), 7.60–7.50 (m, 2H), 7.34–7.28 (m, 2H), 6.61 (d, J = 9.0 Hz, 2H), 6.50 (s, 2H), 3.49–3.39(m,8H), 2.70 (t, J = 6.1 Hz, 4H), 1.81 (t, J = 6.2 Hz, 2H), 1.29–1.18 (m,12H).13C NMR (151 MHz, CDCl3-d) δ 186.54, 176.76, 161.83, 160.23, 156.40, 156.08, 151.71, 150.90, 145.47, 141.75, 137.37, 134.23, 129.97, 129.46, 126.66, 122.21, 116.90, 115.29, 109.51, 109.39, 109.14, 109.02, 108.63, 97.18, 96.83, 45.03, 44.92, 27.79, 24.23, 22.83, 12.50. HRMS (ESI-MS, m/z): [M+H]+ calcd for C36H39N2O6, 595.2803; Found, 595.2801.
- 3,3′-((1E,3E,6E)-4-chloro-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(7(diethylamino)-2H-chromen-2-one) (CC-Cl): Boron trioxide (1.05 g, 15 mmol) was added to a two-necked flask and then 8 mL anhydrous DMF was added under a nitrogen atmosphere. The temperature was raised to 120 °C and the mixture was stirred for 5 min. Then, 3-Chloroacetylacetone (118 mmL, 1 mmol), tributyl borate (0.54 mL, 2 mmol), compound 2 (522 mg, 2.1 mmol), and 1, 2, 3, 4-tetrahydroquinoline (0.1 mL) were successively added, and the resulting mixture was stirred at 120 °C for 5 h. The mixture was extracted with dichloromethane (DCM) 3 times. The combined organic layers were washed with ultrapure water 6 times and dried over MgSO4. Finally, a red solid (CC-Cl) (332 mg, 56%) was obtained by silica gel column purification. 1H NMR (400 MHz, CDCl3-d) δ 16.55 (s, 1H), 7.90 (d, J = 15.5 Hz, 2H), 7.79 (s, 2H), 7.64 (d, J = 15.5 Hz, 2H), 7.33 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 9.0 Hz, 2H), 6.51 (s, 2H), 3.45 (q, J = 7.0 Hz, 8H), 1.26–1.22 (m, 12H).13C NMR (Not obtained due to insufficient solubility).HRMS (ESI-MS, m/z): [M+H]+ calcd for C33H34ClN2O6, 589.2100; Found, 589.2101.
3.3. Photophysical Properties Measurements
3.4. Biological Evaluation
3.4.1. Cell Cultures
3.4.2. Cytotoxicity Assay of CC-CH and CC-Cl
3.4.3. Cell Imaging at Different Incubation Times and Photostability Testing
3.4.4. Cellular Co-Localization Experiments
3.4.5. Visualization of LD Polarity Changes in HepG-2 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 2018, 20, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Thiam, A.R.; Farese, R.V., Jr.; Walther, T.C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 2013, 14, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Zadoorian, A.; Du, X.; Yang, H. Lipid droplet biogenesis and functions in health and disease. Nat. Rev. Endocrinol. 2023, 19, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Thiam, A.R.; Ikonen, E. Lipid Droplet Nucleation. Trends Cell Biol. 2021, 31, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Walther, T.C.; Chung, J.; Farese, R.V., Jr. Lipid Droplet Biogenesis. Annu. Rev. Cell Dev. Biol. 2017, 33, 491–510. [Google Scholar] [CrossRef]
- Bersuker, K.; Olzmann, J.A. Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation. Biochim. Biophys. Acta 2017, 1862, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Kory, N.; Farese, R.V., Jr.; Walther, T.C. Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. Trends Cell Biol. 2016, 26, 535–546. [Google Scholar] [CrossRef]
- Barbosa, A.D.; Siniossoglou, S. Function of lipid droplet-organelle interactions in lipid homeostasis. Biochim. Biophys. Acta 2017, 1864, 1459–1468. [Google Scholar] [CrossRef]
- Geltinger, F.; Schartel, L.; Wiederstein, M.; Tevini, J.; Aigner, E.; Felder, T.K.; Rinnerthaler, M. Friend or Foe: Lipid Droplets as Organelles for Protein and Lipid Storage in Cellular Stress Response, Aging and Disease. Molecules 2020, 25, 5053. [Google Scholar] [CrossRef]
- Herker, E.; Vieyres, G.; Beller, M.; Krahmer, N.; Bohnert, M. Lipid Droplet Contact Sites in Health and Disease. Trends Cell Biol. 2021, 31, 345–358. [Google Scholar] [CrossRef]
- Henne, W.M. The (social) lives, deaths, and biophysical phases of lipid droplets. Curr. Opin. Cell Biol. 2023, 82, 102178. [Google Scholar] [CrossRef] [PubMed]
- Seibert, J.T.; Najt, C.P.; Heden, T.D.; Mashek, D.G.; Chow, L.S. Muscle Lipid Droplets: Cellular Signaling to Exercise Physiology and Beyond. Trends Endocrinol. Metab. 2020, 31, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Chitraju, C.; Mejhert, N.; Haas, J.T.; Diaz-Ramirez, L.G.; Grueter, C.A.; Imbriglio, J.E.; Pinto, S.; Koliwad, S.K.; Walther, T.C.; Farese, R.V., Jr. Triglyceride Synthesis by DGAT1 Protects Adipocytes from Lipid-Induced ER Stress during Lipolysis. Cell Metab. 2017, 26, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Piccolis, M.; Bond, L.M.; Kampmann, M.; Pulimeno, P.; Chitraju, C.; Jayson, C.B.K.; Vaites, L.P.; Boland, S.; Lai, Z.W.; Gabriel, K.R.; et al. Probing the Global Cellular Responses to Lipotoxicity Caused by Saturated Fatty Acids. Mol. Cell 2019, 74, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.J.; Liao, P.-C.; Tan, G.; Vevea, J.D.; Sing, C.N.; Tsang, C.A.; McCaffery, J.M.; Boldogh, I.R.; Pon, L.A. Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, Saccharomyces cerevisiae. Autophagy 2020, 17, 2363–2383. [Google Scholar] [CrossRef]
- Henne, W.M.; Reese, M.L.; Goodman, J.M. The assembly of lipid droplets and their roles in challenged cells. EMBO J. 2018, 37, e98947. [Google Scholar] [CrossRef]
- Welte, M.A.; Gould, A.P. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta 2017, 1862, 1260–1272. [Google Scholar] [CrossRef]
- Pereira-Dutra, F.S.; Bozza, P.T. Lipid droplets diversity and functions in inflammation and immune response. Expert Rev. Proteom. 2021, 18, 809–825. [Google Scholar] [CrossRef]
- Pereira-Dutra, F.S.; Teixeira, L.; de Souza Costa, M.F.; Bozza, P.T. Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. J. Leukoc. Biol. 2019, 106, 563–580. [Google Scholar] [CrossRef]
- Getiye, Y.; Rice, T.A.; Phillips, B.D.; Carrillo, D.F.; He, G. Dysregulated lipolysis and lipophagy in lipid droplets of macrophages from high fat diet-fed obese mice. J. Cell. Mol. Med. 2022, 26, 4825–4836. [Google Scholar] [CrossRef]
- Park, C.Y.; Kim, D.; Seo, M.K.; Kim, J.; Choe, H.; Kim, J.-H.; Hong, J.P.; Lee, Y.J.; Heo, Y.; Kim, H.J.; et al. Dysregulation of Lipid Droplet Protein Expression in Adipose Tissues and Association with Metabolic Risk Factors in Adult Females with Obesity and Type 2 Diabetes. J. Nutr. 2023, 153, 691–702. [Google Scholar] [CrossRef]
- Goldberg, I.J.; Reue, K.; Abumrad, N.A.; Bickel, P.E.; Cohen, S.; Fisher, E.A.; Galis, Z.S.; Granneman, J.G.; Lewandowski, E.D.; Murphy, R.; et al. Deciphering the Role of Lipid Droplets in Cardiovascular Disease. Circulation 2018, 138, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, X.; Liu, G.; Zhang, C.; Zhang, X.; Shen, Q.; Sun, G.; Sun, X. Peroxiredomin-4 ameliorates lipotoxicity-induced oxidative stress and apoptosis in diabetic cardiomyopathy. Biomed. Pharmacother. 2021, 141, 111780. [Google Scholar] [CrossRef]
- Gluchowski, N.L.; Becuwe, M.; Walther, T.C.; Farese, R.V., Jr. Lipid droplets and liver disease: From basic biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Scorletti, E.; Carr, R.M. A new perspective on NAFLD: Focusing on lipid droplets. J. Hepatol. 2022, 76, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Shih, L.-M.; Tang, H.-Y.; Lynn, K.-S.; Huang, C.-Y.; Ho, H.-Y.; Cheng, M.-L. Stable Isotope-Labeled Lipidomics to Unravel the Heterogeneous Development Lipotoxicity. Molecules 2018, 23, 2862. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Cousins, R.S.; Liu, S.; Phelps, B.M.; Promes, J.A. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes. Ann. N. Y. Acad. Sci. 2019, 1461, 53–72. [Google Scholar] [CrossRef]
- Tong, X.; Dai, C.; Walker, J.T.; Nair, G.G.; Kennedy, A.; Carr, R.M.; Hebrok, M.; Powers, A.C.; Stein, R. Lipid Droplet Accumulation in Human Pancreatic Islets Is Dependent On Both Donor Age and Health. Diabetes 2020, 69, 342–354. [Google Scholar] [CrossRef]
- Tong, X.; Liu, S.; Stein, R.; Imai, Y. Lipid Droplets’ Role in the Regulation of β-Cell Function and β-Cell Demise in Type 2 Diabetes. Endocrinology 2022, 163, bqac007. [Google Scholar] [CrossRef]
- Farmer, B.C.; Walsh, A.E.; Kluemper, J.C.; Johnson, L.A. Lipid Droplets in Neurodegenerative Disorders. Front. Neurosci. 2020, 14, 742. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.-C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurosci. 2019, 15, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Petan, T.; Jarc, E.; Jusović, M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules 2018, 23, 1941. [Google Scholar] [CrossRef] [PubMed]
- Schwartsburd, P. Lipid droplets: Could they be involved in cancer growth and cancer–microenvironment communications? Cancer Commun. 2022, 42, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Sun, Y.; Geng, X.; Wang, J.; Guo, Y.; Qu, L.; Zhang, K.; Li, Z. High-fidelity carbon dots polarity probes: Revealing the heterogeneity of lipids in oncology. Light Sci. Appl. 2022, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Huang, R.; Chai, L.; Yang, H.; Wang, D.; Wei, Z.; Zhan, Z. Multimode evaluating the fluctuation of lipid droplets polarity in acute kidney injury and tumor models. Sensor. Actuat. B Chem. 2023, 380, 133343. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Koo, S.; Sun, Y.; Liu, Y.; Liu, X.; Pan, Y.; Zhang, Z.; Du, M.; Lu, S.; et al. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem. Rev. 2021, 122, 209–268. [Google Scholar] [CrossRef]
- Vahrmeijer, A.L.; Hutteman, M.; van der Vorst, J.R.; van de Velde, C.J.H.; Frangioni, J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518. [Google Scholar] [CrossRef]
- Fam, T.K.; Klymchenko, A.S.; Collot, M. Recent Advances in Fluorescent Probes for Lipid Droplets. Materials 2018, 11, 1768. [Google Scholar] [CrossRef]
- Tian, H., Jr.; Sedgwick, A.C.; Han, H.-H.; Sen, S.; Chen, G.-R.; Zang, Y.; Sessler, J.L.; James, T.D.; Li, J.; He, X.-P. Fluorescent probes for the imaging of lipid droplets in live cells. Coord. Chem. Rev. 2021, 427, 213577. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, W.; Li, X.; Ma, H. Recent advances in fluorescent probes for lipid droplets. Chem. Commun. 2022, 58, 1495–1509. [Google Scholar] [CrossRef]
- Xiao, H.; Li, P.; Tang, B. Recent progresses in fluorescent probes for detection of polarity. Coord. Chem. Rev. 2021, 427, 213582. [Google Scholar] [CrossRef]
- Sasaki, S.; Drummen, G.P.C.; Konishi, G.-I. Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J. Mater. Chem. C 2016, 4, 2731–2743. [Google Scholar] [CrossRef]
- Wang, C.; Chi, W.; Qiao, Q.; Tan, D.; Xu, Z.; Liu, X. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: From mechanisms to rational designs of bright and sensitive fluorophores. Chem. Soc. Rev. 2021, 50, 12656–12678. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Peng, M.; Ma, Y.; Guo, R.; Lin, W. Rational design of a lipid-droplet-polarity based fluorescent probe for potential cancer diagnosis. Chem. Commun. 2018, 54, 12093–12096. [Google Scholar] [CrossRef]
- Collot, M.; Bou, S.; Fam, T.K.; Richert, L.; Mély, Y.; Danglot, L.; Klymchenko, A.S. Probing Polarity and Heterogeneity of Lipid Droplets in Live Cells Using a Push–Pull Fluorophore. Anal. Chem. 2019, 91, 1928–1935. [Google Scholar] [CrossRef]
- Lin, B.; Li, Z.; Zan, Q.; Fan, L.; Shu, Y.; Wang, J. A fluorescent probe for lipid droplet polarity imaging with low viscosity crosstalk. Analyst 2023, 148, 3285–3294. [Google Scholar] [CrossRef]
- Pei, S.; Li, H.; Li, J.; Liu, Y.; Zhang, G.; Shi, L.; Liang, W.; Zhang, C.; Shuang, S.; Dong, C. Synthesis of a Red-Emitting Polarity-Sensitive Fluorescent Probe Based on ICT and Visualization for Lipid Droplet Dynamic Processes. ACS Biomater. Sci. Eng. 2023, 9, 3590–3596. [Google Scholar] [CrossRef]
- Peng, G.; Dai, J.; Zhou, R.; Liu, G.; Liu, X.; Yan, X.; Liu, F.; Sun, P.; Wang, C.; Lu, G. Highly Efficient Red/NIR-Emissive Fluorescent Probe with Polarity-Sensitive Character for Visualizing Cellular Lipid Droplets and Determining Their Polarity. Anal. Chem. 2022, 94, 12095–12102. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Zheng, X.; Jiang, M.; Guo, Y.; Sha, J.; Wu, J.; Ren, H.; Gao, H.; Wang, S.; et al. Lipid droplet targeting-guided hypoxic photodynamic therapy with curcumin analogs. Chem. Commun. 2023, 59, 4181–4184. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Zhou, X.; Mo, Z.; Li, Y.; Huang, L.; Yu, S.; Ge, L.; Hu, Y.; Shi, S.; Zhang, L.; Wang, L.; et al. Oleic acid reduces steroidogenesis by changing the lipid type stored in lipid droplets of ovarian granulosa cells. J. Anim. Sci. Biotechnol. 2022, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Kobayashi, T. Imaging cholesterol depletion at the plasma membrane by methyl-β-cyclodextrin. J. Lipid Res. 2021, 62, 100077. [Google Scholar] [CrossRef] [PubMed]
- Geyer, C.E.; Mes, L.; Newling, M.; den Dunnen, J.; Hoepel, W. Physiological and Pathological Inflammation Induced by Antibodies and Pentraxins. Cells 2021, 10, 1175. [Google Scholar] [CrossRef] [PubMed]
- McQuade, R.M.; Bandara, M.; Diwakarla, S.; Sahakian, L.; Han, M.N.; Al Thaalibi, M.; Di Natale, M.R.; Tan, M.; Harwood, K.H.; Schneider-Futschik, E.K.; et al. Gastrointestinal consequences of lipopolysaccharide-induced lung inflammation. Inflamm. Res. 2022, 72, 57–74. [Google Scholar] [CrossRef]
- Dierendonck, X.A.M.H.; Vrieling, F.; Smeehuijzen, L.; Deng, L.; Boogaard, J.P.; Croes, C.-A.; Temmerman, L.; Wetzels, S.; Biessen, E.; Kersten, S.; et al. Triglyceride breakdown from lipid droplets regulates the inflammatory response in macrophages. Proc. Natl. Acad. Sci. USA 2022, 119, e2114739119. [Google Scholar] [CrossRef]
- Rambold, A.S.; Cohen, S.; Lippincott-Schwartz, J. Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics. Dev. Cell 2015, 32, 678–692. [Google Scholar] [CrossRef]
- Szewczyk-Golec, K.; Czuczejko, J.; Tylzanowski, P.; Lecka, J. Strategies for Modulating Oxidative Stress under Diverse Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2018, 2018, 3987941. [Google Scholar] [CrossRef]
- Ransy, C.; Vaz, C.; Lombès, A.; Bouillaud, F. Use of H2O2 to Cause Oxidative Stress, the Catalase Issue. Int. J. Mol. Sci. 2020, 21, 9149. [Google Scholar] [CrossRef]
- Yin, H.; Xu, L.; Porter, N.A. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem. Rev. 2011, 111, 5944–5972. [Google Scholar] [CrossRef]
- Zhang, Y.; Teng, H.; Gao, Y.; Afzal, M.W.; Tian, J.; Chen, X.; Tang, H.; James, T.D.; Guo, Y. A general strategy for selective detection of hypochlorous acid based on triazolopyridine formation. Chin. Chem. Lett. 2020, 31, 2917–2920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, L.; Li, X.; Zheng, X.; Wu, J.; Ren, H.; Liu, W.; Wang, P. Two Polarity-Sensitive Fluorescent Probes Based on Curcumin Analogs for Visualizing Polarity Changes in Lipid Droplets. Molecules 2023, 28, 6626. https://doi.org/10.3390/molecules28186626
Shan L, Li X, Zheng X, Wu J, Ren H, Liu W, Wang P. Two Polarity-Sensitive Fluorescent Probes Based on Curcumin Analogs for Visualizing Polarity Changes in Lipid Droplets. Molecules. 2023; 28(18):6626. https://doi.org/10.3390/molecules28186626
Chicago/Turabian StyleShan, Lin, Xuewei Li, Xiuli Zheng, Jiasheng Wu, Haohui Ren, Weimin Liu, and Pengfei Wang. 2023. "Two Polarity-Sensitive Fluorescent Probes Based on Curcumin Analogs for Visualizing Polarity Changes in Lipid Droplets" Molecules 28, no. 18: 6626. https://doi.org/10.3390/molecules28186626
APA StyleShan, L., Li, X., Zheng, X., Wu, J., Ren, H., Liu, W., & Wang, P. (2023). Two Polarity-Sensitive Fluorescent Probes Based on Curcumin Analogs for Visualizing Polarity Changes in Lipid Droplets. Molecules, 28(18), 6626. https://doi.org/10.3390/molecules28186626