Effects of Different Irrigation Regimes, Nitrogen Levels and Storage Conditions on Volatiles of ‘Gala’ Apple
Abstract
:1. Introduction
2. Results
2.1. Apple Volatiles at Harvest Time (T0) from Orchards Plots Grown under Control Conditions
2.2. Apple Volatiles at T0 and T8 from Orchards Plots Grown under All Conditions
2.3. Apple Volatiles Emanation Index in T0 and T8
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Isolation and Analysis of Apple Volatiles
4.2.1. Headspace Solid Phase Microextraction (HS-SPME)
4.2.2. Analysis and Quantification of Apple Volatiles
4.2.3. Apple Volatile Emanation Index
4.2.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Almeida, D.P.F.; Gião, M.S.; Pintado, M.; Gomes, M.H. Bioactive Phytochemicals in Apple Cultivars from the Portuguese Protected Geographical Indication “Maçã de Alcobaça”: Basis for Market Segmentation. Int. J. Food Prop. 2017, 20, 2206–2214. [Google Scholar] [CrossRef]
- White, A.G. The ‘Gala’ Apple. Fruit Var. J. 1991, 45, 2–3. [Google Scholar]
- Both, V.; Thewes, F.R.; Brackmann, A.; De Oliveira Anese, R.; De Freitas Ferreira, D.; Wagner, R. Effects of Dynamic Controlled Atmosphere by Respiratory Quotient on Some Quality Parameters and Volatile Profile of ‘Royal Gala’ Apple after Long-Term Storage. Food Chem. 2017, 215, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.; Osborne, J.; Fargione, M. Pruning, Fertilization, Chemical Thinning and Irrigation Affect ‘Gala’ Apple Fruit Size and Crop Value. Acta Hortic. 2008, 772, 135–141. [Google Scholar] [CrossRef]
- Cao, M.; Wang, D.; Qiu, L.; Ren, X.; Ma, H. Shelf Life Prediction of ‘Royal Gala’ Apples Based on Quality Attributes and Storage Temperature. Hortic. Sci. Technol. 2021, 39, 343–355. [Google Scholar] [CrossRef]
- Nieto, L.G.; Reig, G.; Lordan, J.; Sazo, M.M.; Hoying, S.A.; Fargione, M.J.; Reginato, G.H.; Donahue, D.J.; Francescatto, P.; Biasuz, E.C.; et al. Long-Term Effects of Rootstock and Tree Type on the Economic Profitability of ‘Gala’, ‘Fuji’ and ‘Honeycrisp’ Orchards Performance. Sci. Hortic. 2023, 318, 112129. [Google Scholar] [CrossRef]
- Ntshidi, Z.; Dzikiti, S.; Mazvimavi, D.; Mobe, N.T. Effect of Different Irrigation Systems on Water Use Partitioning and Plant Water Relations of Apple Trees Growing on Deep Sandy Soils in the Mediterranean Climatic Conditions, South Africa. Sci. Hortic. 2023, 317, 112066. [Google Scholar] [CrossRef]
- Yang, A.; Yang, L.; Cheng, C.; Xie, B.; Zhang, Y.; Li, X.; Li, Y.; Li, Z. Effect of Different Ratios of Cow Manure and Chemical Fertilizers on Fruit Quality of Gala Apples. Agronomy 2022, 12, 2735. [Google Scholar] [CrossRef]
- Lavic, D.; Radovic, M.; Aliman, J.; Badzak, N.; Kulina, M.; Hadziabulic, A.; İLhan, G.; Mureşan, C.; Marc, R.A. Influence of Cultivar and Fertilization Treatment on Bioactive Content of Some Apple (Malus Domestica Borkh.) Cultivars. Turk. J. Agric. For. 2023, 47, 345–356. [Google Scholar] [CrossRef]
- Tao, H.; Sun, H.; Wang, Y.; Wang, X.; Guo, Y. Effects of Water Stress on Quality and Sugar Metabolism in ‘Gala’ Apple Fruit. Hortic. Plant J. 2023, 9, 60–72. [Google Scholar] [CrossRef]
- Quiroz, S.; Holzapfel, E.; Bastías, R.M.; Jara, J. Irrigation Management Based on Theoretical Requirements Reduces Water Consumption in Apple (Malus Domestica Borkh.) Orchards without Effects on Fruit Yield and Components. Water 2022, 14, 3441. [Google Scholar] [CrossRef]
- Young, H.; Gilbert, J.M.; Murray, S.H.; Ball, R.D. Causal Effects of Aroma Compounds on Royal Gala Apple Flavours. J. Sci. Food Agric. 1996, 71, 329–336. [Google Scholar] [CrossRef]
- Young, H.; Rossiter, K.; Wang, M.; Miller, M. Characterization of Royal Gala Apple Aroma Using Electronic Nose Technology Potential Maturity Indicator. J. Agric. Food Chem. 1999, 47, 5173–5177. [Google Scholar] [CrossRef] [PubMed]
- Saftner, R.A. The Potential of Fruit Coating and Film Treatments for Improving the Storage and Shelf-Life Qualities of ‘Gala’ and ‘Golden Delicious’ Apples. J. Am. Soc. Hortic. Sci. 1999, 124, 682–689. [Google Scholar] [CrossRef]
- Saftner, R.A.; Abbott, J.A.; Conway, W.S.; Barden, C.L.; Vinyard, B.T. Instrumental and Sensory Quality Characteristics of “Gala” Apples in Response to Prestorage Heat, Controlled Atmosphere, and Air Storage. J. Am. Soc. Hortic. Sci. 2002, 127, 1006–1012. [Google Scholar] [CrossRef]
- Lo Scalzo, R.; Lupi, D.; Giudetti, G.; Testoni, A. Evolution of Volatile Composition of Whole Apple Fruit Cv “Gala” after Storage. Acta Hortic. 2003, 600, 555–562. [Google Scholar] [CrossRef]
- Lara, I.; Echeverría, G.; Graell, J.; López, M.L. Volatile Emission after Controlled Atmosphere Storage of Mondial Gala Apples (Malus Domestica): Relationship to Some Involved Enzyme Activities. J. Agric. Food Chem. 2007, 55, 6087–6095. [Google Scholar] [CrossRef]
- Mattheis, J.P.; Buchanan, D.A.; Fellman, J.K. Volatile Compounds Emitted by ‘Gala’ Apples Following Dynamic Atmosphere Storage. J. Am. Soc. Hortic. Sci. 1998, 123, 426–432. [Google Scholar] [CrossRef]
- Lee, J.; Mattheis, J.P.; Rudell, D.R. High Storage Humidity Affects Fruit Quality Attributes and Incidence of Fruit Cracking in Cold-Stored ‘Royal Gala’ Apples. HortScience 2019, 54, 149–154. [Google Scholar] [CrossRef]
- Plotto, A.; McDaniel, M.R.; Mattheis, J.P. Characterization of ‘Gala’ Apple Aroma and Flavor: Differences between Controlled Atmosphere and Air Storage. J. Am. Soc. Hortic. Sci. 1999, 124, 416–423. [Google Scholar] [CrossRef]
- Fan, X.; Argenta, L.; Mattheis, J. Impacts of Ionizing Radiation on Volatile Production by Ripening Gala Apple Fruit. J. Agric. Food Chem. 2001, 49, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Young, J.C.; Chu, C.L.G.; Lu, X.; Zhu, H. Ester Variability in Apple Varieties As Determined by Solid-Phase Microextraction and Gas Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 8086–8093. [Google Scholar] [CrossRef] [PubMed]
- Mattheis, J.P.; Buchanan, D.A.; Fellman, J.K. Volatile Emitted by ’Royal Gala’ Apples Following Sequential Atmosphere Storage. Acta Hortic. 1998, 464, 201–205. [Google Scholar] [CrossRef]
- Mattheis, J.P.; Fan, X.; Argenta, L.C. Interactive Responses of Gala Apple Fruit Volatile Production to Controlled Atmosphere Storage and Chemical Inhibition of Ethylene Action. J. Agric. Food Chem. 2005, 53, 4510–4516. [Google Scholar] [CrossRef] [PubMed]
- Brackmann, A.; Giehl, R.F.H.; Pinto, J.A.V.; Steffens, C.A.; Sestari, I. Qualidade de maçãs ‘Gala’ armazenadas em atmosfera controlada dinâmica e estática com renovação do ar. Ciência Rural 2005, 35, 465–467. [Google Scholar] [CrossRef]
- Anese, R.D.O.; Thewes, F.R.; Brackmann, A.; Schultz, E.E.; Wagner, R.; Klein, B.; Berghetti, M.R.P.; Wendt, L.M. Growth Regulators on Quality Traits and Volatile Organic Compounds Profile of ‘Royal Gala’ Apple at Harvest and after Dynamic Controlled Atmosphere Storage. Postharvest Biol. Technol. 2020, 164, 111158. [Google Scholar] [CrossRef]
- Schultz, E.E.; Thewes, F.R.; Wendt, L.M.; Brackmann, A.; Both, V.; Ludwig, V.; Thewes, F.R.; Soldateli, F.J.; Wagner, R. Extremely Low Oxygen with Different Hysteresis and Dynamic Controlled Atmosphere Storage: Impact on Overall Quality and Volatile Profile of ‘Maxi Gala’ Apple. Postharvest Biol. Technol. 2023, 205, 112527. [Google Scholar] [CrossRef]
- Espley, R.V.; Leif, D.; Plunkett, B.; McGhie, T.; Henry-Kirk, R.; Hall, M.; Johnston, J.W.; Punter, M.P.; Boldingh, H.; Nardozza, S.; et al. Red to Brown: An Elevated Anthocyanic Response in Apple Drives Ethylene to Advance Maturity and Fruit Flesh Browning. Front. Plant Sci. 2019, 10, 1248. [Google Scholar] [CrossRef]
- Lee, J.; Mattheis, J.P.; Rudell, D.R. Storage Temperature and 1-Methylcyclopropene Treatment Affect Storage Disorders and Physiological Attributes of ‘Royal Gala’ Apples. HortScience 2016, 51, 84–93. [Google Scholar] [CrossRef]
- Klein, B.; Ribeiro, Q.M.; Thewes, F.R.; Anese, R.D.O.; Oliveira, F.D.C.D.; dos Santos, I.D.; Ribeiro, S.R.; Donadel, J.Z.; Brackmann, A.; Barin, J.S.; et al. The Isolated or Combined Effects of Dynamic Controlled Atmosphere (DCA) and 1-MCP on the Chemical Composition of Cuticular Wax and Metabolism of ‘Maxi Gala’ Apples after Long-Term Storage. Food Res. Int. 2021, 140, 109900. [Google Scholar] [CrossRef]
- Weber, A.; Soldateli, F.J.; Thewes, F.R.; Both, V.; Brackmann, A. Dynamic Controlled Atmosphere Isolated or Associated with 1-MCP and Elevated Storage Temperature Affect the Overall Quality and Anaerobic Metabolism of ‘Royal Gala’ Apples. Erwerbs-Obstbau 2023, 1–13. [Google Scholar] [CrossRef]
- Małachowska, M.; Tomala, K. Effect of Preharvest and Postharvest Application of 1-MCP on the Quality of Gala Schniga® SchniCo Red(s) Apples during Long-Term Storage. Agriculture 2022, 12, 2073. [Google Scholar] [CrossRef]
- Liu, J.; Islam, M.T.; Sherif, S.M. Effects of Aminoethoxyvinylglycine (AVG) and 1-Methylcyclopropene (1-MCP) on the Pre-Harvest Drop Rate, Fruit Quality, and Stem-End Splitting in ‘Gala’ Apples. Horticulturae 2022, 8, 1100. [Google Scholar] [CrossRef]
- Dambros, J.I.; Storch, T.T.; Pegoraro, C.; Crizel, G.R.; Gonçalves, B.X.; Quecini, V.; Fialho, F.B.; Rombaldi, C.V.; Girardi, C.L. Physicochemical Properties and Transcriptional Changes Underlying the Quality of ‘Gala’ Apples (Malus × Domestica Borkh.) under Atmosphere Manipulation in Long-Term Storage. J. Sci. Food Agric. 2023, 103, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Murr, D.P.; Paliyath, G.; DeEll, J.R. Aroma Volatile Biosynthesis in ‘Gala’ Apples Stored in Controlled Atmosphere. Acta Hortic. 2010, 857, 115–122. [Google Scholar] [CrossRef]
- Thewes, F.R.; Both, V.; Brackmann, A.; Ferreira, D.D.F.; Wagner, R. 1-Methylcyclopropene Effects on Volatile Profile and Quality of “Royal Gala” Apples Produced in Southern Brazil and Stored in Controlled Atmosphere. Ciência Rural 2015, 45, 2259–2266. [Google Scholar] [CrossRef]
- Song, J.; Forney, C.F. Flavour Volatile Production and Regulation in Fruit. Can. J. Plant Sci. 2008, 88, 537–550. [Google Scholar] [CrossRef]
- Ferreira, L.; Perestrelo, R.; Caldeira, M.; Câmara, J.S. Characterization of Volatile Substances in Apples from Rosaceae Family by Headspace Solid-Phase Microextraction Followed by GC-Qms. J. Sep. Sci. 2009, 32, 1875–1888. [Google Scholar] [CrossRef]
- Rowan, D.D.; Hunt, M.B.; Alspach, P.A.; Whitworth, C.J.; Oraguzie, N.C. Heritability and Genetic and Phenotypic Correlations of Apple (Malus × Domestica) Fruit Volatiles in a Genetically Diverse Breeding Population. J. Agric. Food Chem. 2009, 57, 7944–7952. [Google Scholar] [CrossRef]
- Dixon, J.; Hewett, E.W. Factors Affecting Apple Aroma/Flavour Volatile Concentration: A Review. N. Z. J. Crop Hortic. Sci. 2000, 28, 155–173. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors Affecting Secondary Metabolite Production in Plants: Volatile Components and Essential Oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Liu, X.; Hao, N.; Feng, R.; Meng, Z.; Li, Y.; Zhao, Z. Transcriptome and Metabolite Profiling Analyses Provide Insight into Volatile Compounds of the Apple Cultivar ‘Ruixue’ and Its Parents during Fruit Development. BMC Plant Biol. 2021, 21, 231. [Google Scholar] [CrossRef] [PubMed]
- Chitarrini, G.; Dordevic, N.; Guerra, W.; Robatscher, P.; Lozano, L. Aroma Investigation of New and Standard Apple Varieties Grown at Two Altitudes Using Gas Chromatography-Mass Spectrometry Combined with Sensory Analysis. Molecules 2020, 25, 3007. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Meng, Z.; Fan, J.; Yan, L.; Yang, Y.; Zhao, Z. Evaluation of the Volatile Profiles in Pulp of 85 Apple Cultivars (Malus Domestica) by HS–SPME Combined with GC–MS. J. Food Meas. Charact. 2021, 15, 4215–4225. [Google Scholar] [CrossRef]
- Atkinson, R.G. Phenylpropenes: Occurrence, Distribution, and Biosynthesis in Fruit. J. Agric. Food Chem. 2018, 66, 2259–2272. [Google Scholar] [CrossRef]
- Anese, R.D.O.; Brackmann, A.; Thewes, F.R.; Schultz, E.E.; Ludwig, V.; Wendt, L.M.; Wagner, R.; Klein, B. Impact of Dynamic Controlled Atmosphere Storage and 1-Methylcyclopropene Treatment on Quality and Volatile Organic Compounds Profile of ‘Galaxy’ Apple. Food Packag. Shelf Life 2020, 23, 100443. [Google Scholar] [CrossRef]
- Cavaco, M. Normas Técnicas Para a Produção Integrada de Pomóideas; DGADR: Lisbon, Portugal. Available online: https://www.dgadr.gov.pt/mediateca/send/8-protecao-e-producao-integradas/110-normas-tecnicas-para-producao-integrada-de-pomoideas-vol-ii (accessed on 22 February 2023).
- ISO 7609:1985; Essential Oils—Analysis by Gas Chromatography on Capillary Columns—General Method. ISO: Geneva Switzerland, 1985.
- Rohlf, J.F. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Owner Manual—ScienceOpen; Applied Biostatistics; State University of New York: Stony Brook, NY, USA, 2000. [Google Scholar]
- Pestana, M.H.; Gageiro, J.N. Análise de Dados para Ciências Sociais; Edições Sílabo: Lisboa, Portugal, 2000. [Google Scholar]
Orchard | F * | S * | |||
---|---|---|---|---|---|
Clone | Venus Fengal | Schniga Schnico | |||
Rootstock | M9 | M9 | |||
Planting date | 2015 | 2014 | |||
Irrigation/Fertilisation treatment | Code | Kg/ha | Total # Samples ** | ||
Regular irrigation and nitrogen fertilisation (Control) | NINN | N | 60 | 16 | 12 |
H2O | EE | ||||
Regular irrigation and excess nitrogen | NIEN | N | 100 | 4 | 11 |
H2O | EE | ||||
Excess irrigation and regular nitrogen | EINN | N | 60 | 16 | 1 |
H2O | EFC | ||||
Excess irrigation and nitrogen fertilisation | EIEN | N | 100 | 12 | 8 |
H2O | EFC | ||||
Storage conditions (8 months) | °C | O2 % | CO2 % | RH % | |
Controlled Atmosphere + 1-methylcyclopropene (CA + 1-MCP ***) | A | 1 | 2 | 2 | 90 |
Dynamic Controlled Atmosphere (DCA) **** | B | 1 | 0.5 | 1 | 95 |
Dynamic Controlled Atmosphere + 1-Methylcyclopropene (DCA + 1-MCP) | C | 1 | 0.5 | 1 | 95 |
HS-SPME-Isolated Volatiles in Control Condition at T0 | ||||
---|---|---|---|---|
Peak # | Components | RI | Min | Max |
1 | isoamyl alcohol | 722 | t | 0.4 |
2 | butyl acetate | 854 | 1.5 | 6.2 |
3 | n-hexanol | 881 | t | 0.6 |
4 | 2-methyl butyl acetate | 882 | 0.9 | 3.4 |
5 | propionic acid butyl ester (=butyl propionate) | 899 | t | 0.4 |
6 | amyl acetate | 900 | t | 0.3 |
7 | butyl butyrate | 973 | 0.6 | 1.8 |
8 | hexyl acetate | 995 | 5.2 | 23.0 |
9 | 2-methyl butyric acid butyl ester (=2-methylbutyl 2-methylbutyrate) | 1017 | 0.5 | 1.5 |
10 | isoamyl butanoate | 1030 | t | |
11 | amyl butanoate | 1066 | t | 0.3 |
12 | propionic acid hexyl ester (=hexyl propionate) | 1079 | 0.5 | 1.1 |
13 | butyl tiglate | 1105 | t | |
14 | 2-methyl butyric acid pentyl ester (=pentyl 2-methylbutyrate) | 1116 | t | 0.1 |
15 | hexyl isobutanoate | 1127 | 0.2 | |
16 | 2-ethyl hexyl ester | 1144 | t | 0.4 |
17 | methyl chavicol (=estragole) | 1163 | t | 1.2 |
18 | butyl hexanoate | 1173 | 1.8 | 5.7 |
19 | hexyl butanoate | 1173 | 2.1 | 5.7 |
20 | octyl acetate (=octanol acetate) | 1189 | 0.1 | |
21 | 2-methyl butyric acid hexyl ester (=hexyl 2-methyl butyrate) | 1220 | 2.9 | 6.1 |
22 | isoamyl hexanoate | 1240 | t | 1.0 |
23 | pentyl hexanoate | 1270 | t | 0.3 |
24 | butyl heptanoate | 1271 | t | 0.3 |
25 | hexyl tiglate | 1316 | t | 0.2 |
26 | decanoic acid | 1356 | t | 0.1 |
27 | n-undecanol | 1366 | t | 0.1 |
28 | hexyl hexanoate | 1375 | 3.0 | 9.3 |
29 | butyl octanoate | 1376 | 2.2 | 5.8 |
30 | n-tetradecane | 1400 | t | 0.4 |
31 | isoamyl octanoate | 1436 | t | 0.7 |
32 | trans-β-farnesene | 1455 | t | 0.2 |
33 | Amyl octanoate | 1472 | t | 0.1 |
34 | cis,trans-α-farnesene * | 1484 | t | 0.5 |
35 | trans,trans-α-farnesene | 1500 | 35.8 | 69.1 |
36 | n-pentadecane | 1500 | t | |
37 | octanoic acid hexyl ester (=hexyl octanoate, hexyl caprylate) | 1559 | 0.2 | 0.9 |
38 | butyl decanoate | 1563 | t | 0.1 |
39 | n-hexadecane | 1600 | t | t |
40 | trans,cis-farnesol | 1648 | t | 0.3 |
% of identification | 97.4 | 99.7 | ||
Grouped components | ||||
Sesquiterpene hydrocarbons | 35.8 | 69.6 | ||
Oxygen-containing sesquiterpenes | t | 0.3 | ||
Phenylpropanoids | t | 1.2 | ||
Fatty acids | t | 0.1 | ||
Alkanes | t | 0.4 | ||
Others | 28.0 | 63.9 |
HS-SPME-Isolated Volatiles in All Growth and Storage Conditions | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster I | Cluster II | ||||||||||||
Ia | Ib | Ic | Id | Ie | |||||||||
Components | RI | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max |
isoamyl alcohol | 722 | t | 0.1 | t | 0.4 | t | t | t | 0.5 | t | 0.7 | t | t |
butyl acetate | 854 | t | t | 0.7 | 3.2 | t | t | 0.9 | 3.2 | t | 6.2 | t | t |
n-hexanol | 881 | t | t | t | 0.2 | t | t | t | 1.1 | t | 1.4 | t | t |
2-methyl butyl acetate | 882 | t | 0.2 | 0.8 | 2.0 | t | t | 0.9 | 2.4 | t | 3.4 | t | t |
propionic acid butyl ester | 899 | t | 1.9 | t | 0.5 | t | t | t | 0.2 | t | 5.9 | t | t |
amyl acetate | 900 | t | 0.4 | t | 0.2 | t | t | t | 0.3 | t | 0.5 | t | t |
butyl butyrate | 973 | t | 0.5 | 0.4 | 0.8 | t | t | 0.6 | 1.1 | t | 1.8 | t | t |
hexyl acetate | 995 | t | 2.5 | 4.3 | 7.3 | t | t | 7.6 | 15.9 | t | 23.3 | t | t |
2-ethyl-1-hexanol | 1004 | t | 6.1 | t | 17.7 | 39.4 | 65.0 | 71.0 | |||||
2-methyl butyric acid butyl ester | 1017 | t | 0.4 | 0.8 | 1.5 | t | t | 0.3 | 0.8 | t | 0.6 | t | t |
isoamyl butanoate | 1030 | t | t | t | t | t | t | t | t | t | t | t | t |
amyl butanoate | 1066 | t | 0.4 | 0.1 | 0.3 | t | 0.2 | t | 0.1 | t | 1.5 | t | 1.7 |
propionic acid hexyl ester | 1079 | t | 0.7 | 0.5 | 1.1 | t | t | 0.2 | 0.7 | t | 6.9 | t | t |
butyl tiglate | 1105 | 0.1 | t | 0.1 | t | ||||||||
2-methyl butyric acid pentyl ester | 1116 | t | t | t | 0.1 | t | t | t | 0.1 | t | t | t | t |
hexyl isobutanoate | 1127 | t | 1.6 | 0.1 | 0.2 | t | t | 0.2 | 0.2 | t | t | t | t |
2-ethyl hexyl ester | 1144 | t | 5.3 | t | 0.4 | t | 6.6 | t | 0.6 | t | 13.8 | t | t |
methyl chavicol | 1163 | t | 2.3 | t | 1.2 | t | t | t | 0.2 | t | 0.3 | t | t |
butyl hexanoate | 1173 | t | 4.1 | 1.8 | 4.2 | t | 1.7 | 3.7 | 4.3 | t | 5.7 | 1.8 | 4.7 |
hexyl butanoate | 1173 | t | 4.1 | 2.1 | 4.2 | t | 1.7 | 4.1 | 7.2 | t | 5.7 | 1.8 | 4.7 |
octyl acetate | 1189 | t | t | t | t | t | t | ||||||
2-methyl butyric acid hexyl ester | 1220 | t | 3.2 | 2.6 | 6.1 | t | 0.6 | 4.2 | 7.0 | t | 7.2 | t | t |
isoamyl hexanoate | 1240 | t | 1.6 | 0.1 | 1.0 | t | 0.3 | t | 0.1 | t | t | t | t |
pentyl hexanoate | 1270 | t | 2.0 | 0.2 | 0.3 | t | t | 0.2 | 0.3 | t | 28.6 | t | t |
butyl heptanoate | 1271 | t | 0.5 | 0.2 | 0.3 | t | t | 0.2 | 0.3 | t | 0.2 | t | t |
hexyl tiglate | 1316 | t | 0.2 | 0.1 | 0.2 | t | t | t | 0.2 | t | 0.2 | t | t |
decanoic acid | 1356 | t | 0.3 | t | 0.1 | t | t | t | 0.1 | t | t | t | t |
n-undecanol | 1366 | t | 0.3 | t | 0.1 | t | t | t | 0.1 | t | t | t | t |
hexyl hexanoate | 1375 | t | 8.1 | 2.9 | 5.0 | t | 7.3 | 5.3 | 9.3 | t | 9.4 | t | t |
butyl octanoate | 1376 | t | 5.8 | 1.8 | 3.2 | t | 7.3 | 3.7 | 5.8 | t | 6.2 | t | t |
n-tetradecane | 1400 | t | 0.3 | t | 0.5 | t | t | 0.1 | 0.4 | t | 0.2 | t | t |
isoamyl octanoate | 1436 | t | 1.4 | t | 0.7 | t | 0.4 | t | 0.2 | t | t | t | t |
trans-β-farnesene | 1455 | t | 1.3 | t | 0.2 | t | 0.3 | t | 0.1 | t | 0.1 | t | t |
amyl octanoate | 1472 | t | 0.2 | t | 0.1 | t | t | 0.1 | 0.1 | t | 0.1 | t | t |
cis,trans-α-farnesene * | 1484 | t | 1.0 | 0.2 | 0.5 | t | 0.8 | 0.1 | 0.3 | t | 0.2 | t | t |
trans,trans-α-farnesene | 1500 | 64.1 | 100.0 | 62.3 | 70.7 | 68.5 | 88.8 | 43.0 | 58.1 | 27.9 | 71.4 | 19.9 | 21.3 |
n-pentadecane | 1500 | t | 0.3 | t | t | t | t | t | t | ||||
octanoic acid hexyl ester | 1559 | t | 3.2 | 0.2 | 0.3 | t | 16.8 | 0.3 | 0.9 | t | 25.7 | t | t |
butyl decanoate | 1563 | t | 0.2 | t | 0.1 | t | t | t | 0.1 | t | 0.1 | t | t |
n-hexadecane | 1600 | t | 0.2 | t | 0.1 | t | t | t | t | t | t | t | t |
trans,cis-farnesol | 1648 | t | 0.7 | t | 0.2 | t | t | 0.1 | 0.3 | t | 0.3 | t | t |
% of identification | 95.0 | 100.0 | 96.9 | 99.6 | 95.8 | 99.9 | 97.3 | 99.1 | 92.4 | 100.0 | 95.7 | 96.2 | |
Grouped components | |||||||||||||
Sesquiterpene hydrocarbons | 64.8 | 100.0 | 62.6 | 71.0 | 68.5 | 88.8 | 43.3 | 58.3 | 27.9 | 71.4 | 19.9 | 21.3 | |
Oxygen-containing sesquiterpenes | t | 0.7 | t | 0.2 | t | t | 0.1 | 0.3 | t | 0.3 | t | t | |
Phenylpropanoids | t | 2.3 | t | 1.2 | t | t | t | 0.2 | t | 0.3 | t | t | |
Fatty acids | t | 0.3 | t | 0.1 | t | t | t | 0.1 | t | t | t | t | |
Alkanes | t | 0.6 | t | 0.6 | t | t | 0.1 | 0.4 | t | 0.2 | t | t | |
Others | t | 28.2 | 25.5 | 35.2 | 10.4 | 31.4 | 40.0 | 55.1 | 27.7 | 69.8 | 74.4 | 76.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, C.; Rodrigues, C.F.; Gonçalves, E.; Machado, A.M.; Pedro, L.; Barroso, J.; Maurício, A.; Franco, N.; Raimundo, D.; Pita, V.; et al. Effects of Different Irrigation Regimes, Nitrogen Levels and Storage Conditions on Volatiles of ‘Gala’ Apple. Molecules 2023, 28, 6610. https://doi.org/10.3390/molecules28186610
Tavares C, Rodrigues CF, Gonçalves E, Machado AM, Pedro L, Barroso J, Maurício A, Franco N, Raimundo D, Pita V, et al. Effects of Different Irrigation Regimes, Nitrogen Levels and Storage Conditions on Volatiles of ‘Gala’ Apple. Molecules. 2023; 28(18):6610. https://doi.org/10.3390/molecules28186610
Chicago/Turabian StyleTavares, Cláudia, Carolina Ferro Rodrigues, Elsa Gonçalves, Alexandra M. Machado, Luís Pedro, José Barroso, Anabela Maurício, Nuno Franco, Délio Raimundo, Valério Pita, and et al. 2023. "Effects of Different Irrigation Regimes, Nitrogen Levels and Storage Conditions on Volatiles of ‘Gala’ Apple" Molecules 28, no. 18: 6610. https://doi.org/10.3390/molecules28186610
APA StyleTavares, C., Rodrigues, C. F., Gonçalves, E., Machado, A. M., Pedro, L., Barroso, J., Maurício, A., Franco, N., Raimundo, D., Pita, V., Sánchez, C., & Figueiredo, A. C. (2023). Effects of Different Irrigation Regimes, Nitrogen Levels and Storage Conditions on Volatiles of ‘Gala’ Apple. Molecules, 28(18), 6610. https://doi.org/10.3390/molecules28186610