Can Pharmaceutical Excipients Threaten the Aquatic Environment? A Risk Assessment Based on the Microtox® Biotest
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ecotoxicity of Individual Pharmaceutical Excipients
2.1.1. Sodium Lauryl Sulfate (SLS)—Toxicity Category I
2.1.2. Meglumine and Magnesium Carbonate—Toxicity Category III
2.1.3. Microcrystalline Cellulose and Anhydrous Colloidal Silica
2.1.4. Colloidal Anhydrous Silica—The Effect of Particle Size and Commercial Form
2.1.5. Povidones
2.2. Ecotoxicity of API–Excipient and Excipient–Excipient Mixtures
2.2.1. Ecotoxicity of VAL–Excipient Mixtures
Effects of Colloidal Silica
Effects of Microcrystalline Cellulose and SLS
Effects of Magnesium Carbonate and Povidone K25
2.2.2. Ecotoxicity of LOS-K–Excipient Mixtures
2.2.3. Ecotoxicity of TEL–Excipient Mixtures
Effects of Mannitol and Povidone K25
Effects of Meglumine
2.2.4. Accuracy of CA and IA Model Predictions
2.2.5. Ecotoxicity of Multicomponent Mixtures
3. Materials and Methods
3.1. Chemicals
3.2. Ecotoxicity Studies (Modified Microtox® Basic Solid Phase Test)
3.3. Calculation of Mixtures Toxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wirz, K.C.; Studer, M.; Straub, J.O. Environmental risk assessment for excipients from galenical pharmaceutical production in wastewater and receiving water. Sustain. Chem. Pharm. 2015, 1, 28–35. [Google Scholar] [CrossRef]
- Carlsson, C.; Johansson, A.K.; Alvan, G.; Bergman, K.; Kühler, T. Are pharmaceuticals potent environmental pollutants?: Part I: Environmental risk assessments of selected active pharmaceutical ingredients. Sci. Total Environ. 2006, 364, 67–87. [Google Scholar] [CrossRef]
- Reker, D.; Blum, S.M.; Steiger, C.; Anger, K.E.; Sommer, J.M.; Fanikos, J.; Traverso, G. “Inactive” ingredients in oral medications. Sci. Transl. Med. 2019, 11, 6753. [Google Scholar] [CrossRef] [PubMed]
- Alverson, J.; Cohen, A.C. Effect of antifungal agents on biological fitness of Lygus hesperus (Heteroptera: Miridae). J. Econ. Entomol. 2002, 95, 256–260. [Google Scholar] [CrossRef]
- Cserháti, T.; Forgács, E.; Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef]
- Silva, A.; Santos, L.H.M.L.M.; Delerue-Matos, C.; Figueiredo, S.A. Impact of excipients in the chronic toxicity of fluoxetine on the alga Chlorella vulgaris. Environ. Technol. 2014, 35, 3124–3129. [Google Scholar] [CrossRef]
- Jacob, R.S.; de Souza Santos, L.V.; de Souza, A.F.R.; Lange, L.C. A toxicity assessment of 30 pharmaceuticals using Aliivibrio fischeri: A comparison of the acute effects of different formulations. Environ. Technol. 2016, 37, 2760–2767. [Google Scholar] [CrossRef]
- Grisolia, A.K.; Bilich, M.R.; Formigli, L.M. A comparative toxicologic and genotoxic study of the herbicide arsenal, its active ingredient imazapyr, and the surfactant nonylphenol ethoxylate. Ecotoxicol. Environ. Saf. 2004, 59, 123–126. [Google Scholar] [CrossRef]
- Beggel, S.; Werner, I.; Connon, R.E.; Geist, J.P. Sublethal toxicity of commercial insecticide formulations and their active ingredients to larval feathed minnow (Pimephales promelas). Sci. Total Environ. 2010, 408, 3169–3175. [Google Scholar] [CrossRef]
- Turek, M.; Różycka-Sokołowska, E.; Owsianik, K.; Marciniak, B.; Bałczewski, P. Modification of the Microtox® Basic Solid Phase Test: A new application for the ecotoxicological studies on poorly soluble antihypertensive drugs. J. Hazard. Mater. 2020, 399, 122839. [Google Scholar] [CrossRef]
- United Nations (UN). Globally Harmonized System of Classification and Labeling of Chemicals; ST/SG/AC10/30/Rev.4; United Nations: New York, NY, USA; Geneva, Switzerland, 2011. [Google Scholar]
- European Medicines Agency (EMA). Sodium Lauril Sulfate Used as an Excipient; report EMA/CHMP/351898/2014 corr. 1; European Medicines Agency (EMA): London, UK, 2017. [Google Scholar]
- Rowe, R.C.; Sheskey, P.J.; Cook, W.G.; Quinn, M.E. (Eds.) Handbook of Pharmaceutical Excipients, 7th ed.; Pharmaceutical Press: London, UK, 2012. [Google Scholar]
- Fagundes, P.; Carniel, T.K.; Mazon, L.R.; de Mello, J.M.M.; Silva, L.L.; Dalcanton, F.; Colpani, G.L.; Zanetti, M.; Fiori, M.A. Antimicrobial Activity of the Sodium Lauryl Sulphate Used as Surfactant in the Polymeric Encapsulation Processes. MSF 2020, 1012, 500–505. [Google Scholar] [CrossRef]
- Bondi, C.A.M.; Marks, J.L.; Wroblewski, L.B.; Raatikainen, H.S.; Lenox, S.R.; Gebhardt, K.E. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products. Environ. Health Insights. 2015, 9, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.A. Chronic and sublethal toxicities of surfactants to aquatic animals: A review and risk assessment. Water Res. 1991, 25, 101. [Google Scholar] [CrossRef]
- Lewis, M.A. The effects of mixtures and other environmental modifying factors on the toxicities of surfactants to freshwater and marine life. Water Res. 1992, 26, 1013. [Google Scholar] [CrossRef]
- Abel, P.D. Toxicity of synthetic detergents to fish and aquatic invertebrates. J. Fish. Biol. 1974, 6, 279–298. [Google Scholar] [CrossRef]
- Warne, M.S.; Schifko, A.D. Toxicity of laundry detergent components to a freshwater cladoceran and their contribution to detergent toxicity. Ecotoxicol. Environ. Saf. 1999, 44, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.J.; Chen, L.; Chen, Y.P.; Huang, R. Acute toxicity of sodium dodecyl sulfate (SDS) on selected aquatic organisms. J. Agro-Environ. Sci. 2006, 25, 496–498. [Google Scholar]
- Manley, K.; Bravo-Nuevo, A.; Minton, A.R.; Sedano, S.; Marcy, A.; Reichman, M.; Tobia, A.; Artlett, C.M.; Gilmour, S.K.; Laury-Kleintop, L.D.; et al. Preclinical study of the long-range safety and anti-inflammatory effects of high-dose oral meglumine. J. Cell. Biochem. 2019, 120, 12051–12062. [Google Scholar] [CrossRef]
- Bravo-Nuevo, A.; Marcy, A.; Huang, M.; Kappler, F.; Mulgrew, J.; Laury-Kleintop, L.; Reichman, M.; Tobia, A.; Prendergast, G.C. Meglumine Exerts Protective Effects Against Features of Metabolic Syndrome and Type II Diabetes. PLoS ONE 2014, 9, e90031. [Google Scholar] [CrossRef]
- Flohr, L.; de Castilhos Júnior, A.B.; Matias, W.G. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri. Sci. World J. 2012, 2012, 643904. [Google Scholar] [CrossRef]
- Unluer, C.; Al-Tabbaa, A.A. Characterization of Light and Heavy Hydrated Magnesium Carbonates Using Thermal Analysis. Therm. Anal. Calorim. 2014, 115, 595–607. [Google Scholar] [CrossRef]
- de García, S.A.O.; Pinto, G.P.; García-Encina, P.A.; Irusta-Mata, R. Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 2014, 23, 1517–1533. [Google Scholar] [CrossRef] [PubMed]
- Chaerunisaa, A.Y.; Sriwidodo, S.; Abdassah, M. Microcrystalline Cellulose as Pharmaceutical Excipient. In Pharmaceutical Formulation Design—Recent Practices; Ahman, U., Akhtar, J., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Durjava, M.K.; Kouba, M.; López-Alonso, M.; Puente, S.L.; Marcon, F.; et al. FSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). EFSA J. 2020, 18, 6209. [Google Scholar]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Re-evaluation of celluloses E 460(i), E 460(ii), E 461, E 462, E 463, E 464, E 465, E 466, E 468 and E 469 as food additives. EFSA J. 2018, 16, 5088. [Google Scholar]
- Guha, I.F. Effects of Silica Nanoparticle Surface Treatment and Average Diameter on the Physical and Mechanical Properties of Poly(dimethylsiloxane)-Silica Nanocomposites. Bachelor’s Thesis, Massachusetts Institute of Technology, Cambdrige, MA, USA, 2010. [Google Scholar]
- Safekordi, A.K.; Attar, H.; Binaeian, E. Study on toxicity of manufactured nanoparticles to bacteria Vibrio fischeri using homemade luminometer. ICCEES 2012, 2012, 60–65. [Google Scholar]
- Casado, M.P.; Macken, A.; Byrne, H.J. Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery. Environ. Int. 2013, 51, 97. [Google Scholar] [CrossRef]
- Keller, A.A.; Lazareva, A. Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. Environ. Sci. Technol. Lett. 2014, 1, 65–70. [Google Scholar] [CrossRef]
- Inshakova, E.; Inshakov, O. World market for nanomaterials: Structure and trends. In Proceedings of the MATEC Web of Conferences, Sevastopol, Russia, 11–15 September 2017; Volume 129, p. 02013. [Google Scholar]
- Selvarajan, V.; Obuobi, S.; Ee, R.L.P. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020, 8, 602. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Zhang, A.; Lu, D.; Li, G.; Zhang, Q.; Liu, Q.; Jiang, G. Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning. Nat. Commun. 2019, 10, 1620. [Google Scholar] [CrossRef]
- Müller, A.-K.; Ruppel, J.; Drexel, C.-P.; Zimmermann, I. Precipitated silica as flow regulator. Eur. J. Pharm. Sci. 2008, 4, 303–308. [Google Scholar] [CrossRef]
- Jonat, S.; Albers, P.; Gray, A.; Schmidt, P.C. Investigation of the glidant properties of compacted colloidal silicon dioxide by angle of repose and X-ray photoelectron spectroscopy. Eur. J. Pharm. Biopharm. 2006, 63, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.; Zimmermann, I. Effect of glidants in binary powder mixtures. Powder Technol. 2004, 139, 40. [Google Scholar] [CrossRef]
- Van Hoecke, K.; De Schamphelaere, K.A.C.; Van der Meeren, P.; Lcucas, S.; Janssen, C.R. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: Importance of surface area. Environ. Toxicol. Chem. 2008, 27, 1948. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Samadi, A.; Gwag, E.H.; Park, J.; Kwak, M.; Park, J.; Lee, T.G.; Kim, Y.J. Physiological and Behavioral Effects of SiO2 Nanoparticle Ingestion on Daphnia magna. Micromachines 2021, 12, 1105. [Google Scholar] [CrossRef] [PubMed]
- Rosenbruch, M. Inhalation of amorphous silica: Morphological and morphometric evaluation of lung associated lymph nodes in rats. Exp. Toxicol. Pathol. 1992, 44, 10–14. [Google Scholar] [CrossRef]
- Wang, Y.; Nowack, B. Environmental risk assessment of engineered nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots. Environ. Toxicol. Chem. 2018, 37, 1387–1395. [Google Scholar] [CrossRef]
- Awasthi, R.; Manchanda, S.; Das, P.; Velu, V.; Malipeddi, H.; Pabreja, K.; Pinto, T.D.J.A.; Gupta, G.; Dua, K. 9-Poly(vinylpyrrolidone). In Engineering of Biomaterials for Drug Delivery Systems; Parambath, A., Ed.; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar]
- Gowri, V.S.; Almeida, L.; Amorim, T.; Carneiro, N.; Souto, A.P.; Esteves, M.F. Novel copolymer for SiO2 nanoparticles dispersion. J. Appl. Polym. Sci. 2012, 124, 1553–1561. [Google Scholar] [CrossRef]
- Sala, R.L.; Arantes, T.M.; Longo, E.; Leite, E.R.; Paranhos, C.M.; Camargo, E.R. Evaluation of modified silica nanoparticles in carboxylated nitrile rubber nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2014, 462, 45–51. [Google Scholar] [CrossRef]
- Rezadoost, M.H.; Kordrostami, M.; Kumleh, H.H. An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants. Biotech 2016, 6, 61. [Google Scholar] [CrossRef]
- Ohrem, H.L.; Schornick, E.; Kalivoda, A.; Ognibene, R. Why is mannitol becoming more and more popular as a pharmaceutical excipient in solid dosage forms? Pharm. Dev. Technol. 2014, 19, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Bunting, T.G.; Centrone, D.A.; Sackler, R.S.; Halpern, A. EU Patent, Irradiation of Povidone and Povidone-Iodine. Patent EP 0096474 B2, 27 June 1982. [Google Scholar]
- Białk-Bielińska, A.; Grabarczyk, Ł.; Mulkiewicz, E.; Puckowski, A.; Stolte, S.; Stepnowski, P. Mixture toxicity of six pharmaceuticals towards Aliivibrio fischeri, Daphnia magna, and Lemna minor. Environ. Sci. Pollut. Res. 2022, 29, 26977. [Google Scholar] [CrossRef]
- Drzymała, J.; Kalka, J. Ecotoxic interactions between pharmaceuticals in mixtures: Diclofenac and sulfamethoxazole. Chemosphere 2020, 259, 127407. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, C. The expected effect of a combination of agents: The general solution. J. Theor. Biol. 1985, 114, 413–431. [Google Scholar] [CrossRef]
- Carles, L.; Joly, M.; Bonnemoy, F.; Leremboure, M.; Donnadieu, F.; Batisson, I.; Besse-Hoggan, P. Biodegradation and toxicity of a maize herbicide mixture: Mesotrione, nicosulfuron and S-metolachlor. J. Haz. Mat. 2018, 354, 42. [Google Scholar] [CrossRef] [PubMed]
Pharmaceutical Excipient and Maximum Tested Concentration (Cmax) | EC50 [mg/L]; (95% Confidence Interval); R2 | Toxicity Category [11] (Based on EC50, 30 min) | ||
---|---|---|---|---|
5 min | 15 min | 30 min | ||
Sodium lauryl sulfate (SLS) Cmax = 80.61 mg/L | 1.371 (0.7002–2.686) 0.8893 | 0.8004 (0.2147–2.985) 0.7246 | 0.5544 (0.1138–2.702) 0.6931 | I |
Meglumine Cmax = 1360 mg/L | 28.56 (15.58–52.37) 0.8641 | 19.66 (7.958–48.57) 0.7499 | 18.05 (7.237–45.02) 0.7516 | III |
Magnesium carbonate (heavy) Cmax = 10.15 g/L | 109.8 (55.61–216.6) 0.9360 | 86.42 (58.99–126.6) 0.9678 | 65.60 (44.19–97.37) 0.9738 | |
Silica, nanopowder Cmax = 3.28 g/L | 100.2 (47.07–213.2) 0.8138 | 242.6 (141.7–415.3) 0.8882 | 226.4 (162.7–315.1) 0.9574 | Non-toxic |
Croscarmellose sodium Cmax = 20.44 g/L | 1348 (807.5–2249) 0.9163 | 1325 (808.0–2174) 0.9196 | 1400 (622.2–3150) 0.7960 | |
Talc Cmax = 19.48 g/L | 14,683 (305.1–706,681) 0.2736 | 2229 (829.2–5993) 0.6733 | 494.3 (196.6–1243) 0.7517 | |
Povidone K30 Cmax = 15.49 g/L | 2218 (1879–2619) 0.9915 | 1768 (405.3–7709) 0.7765 | 1130 (228.1–5600) 0.4681 | |
Povidone K25 Cmax = 15.95 g/L | 2120 (1291–3483) 0.9033 | 1749 (689.7–4434) 0.7225 | 1559 (556.7–4287) 0.7872 | |
Microcrystalline cellulose (type PH102) Cmax = 2.99 g/L | 1966 (742.0–5207) 0.8784 | 1908 (741.0–4914) 0.8827 | 1958 (760.8–5037) 0.8848 | |
Colloidal anhydrous silica (Aerosil R200) Cmax = 7.51 g/L | 3294 (1802–6021) 0.9372 | 3108 (1808–5344) 0.9473 | 2681 (1618–4443) 0.9501 | |
Colloidal silica, LUDOX SM-30 Cmax = 29.50 g/L | 8238 (4220–16,081) 0.9016 | 4776 (3078–7408) 0.9421 | 3794 (2481–5800) 0.9400 | |
Mannitol Cmax = 14.85 g/L | 12,563 (1419–111,263) 0.6267 | 5404 (346.9–84,181) 0.3225 | 4253 (209.9–86,162) 0.2195 | |
Sodium starch glycolate (type A) Cmax = 12.16 g/L | 10,184 (4729–21,928) 0.9539 | 11,725 (6045–22,743) 0.9710 | 12,541 [a] (5559–28,296) 0.9601 | |
Lactose monohydrate Cmax = 15.08 g/L | 11,705 (1477–92,754) 0.9880 | 13,999 (227.4–861,937) 0.9596 | 16,363 [a] (186.6–1,434,691) 0.9584 | |
Pregelatinized corn starch Cmax = 14.31 g/L | 46,929 [a] (19,696–111,815) 0.9855 | 39,287 [a] (10,516–146,768) 0.9070 | 42,202 [a] (3925–453,734) 0.7540 | |
Crospovidone (type A) Cmax = 14.88 g/L | 27,795 [a] (274.0–2,819,364) 0.5875 | 64,863 [a] (9.993–421,001,866) 0.6420 | 49,855 [a] (35.11–70,801,223) 0.7010 | |
Sodium stearyl fumarate Cmax = 5.78 g/L | 56,456 [b] | 12,815 [a] (38.84–4,457,999) 0.9221 | 80,534 [a] (2479–2,616,211) 0.8896 | |
Sorbitol Cmax = 31.06 g/L | Non-toxic in tested concentration, hormesis | |||
Magnesium stearate Cmax = 9.57 g/L | Non-toxic in tested concentration, hormesis |
Form of Silica | Particle Size [nm] | EC50, 30 min [mg/L] | Test | Ref. |
---|---|---|---|---|
Nanopowder | 10–15 | 226.4 | A developed modification of the Microtox® Basic Solid Test | This work |
LUDOX SM-30 (30% colloidal solution of amorphous silica) | 7 | 1138.2 [a] | ||
Aerosil R200 (hydrophilic silica dust) | 12 | 2681 | ||
Powder | 60–100 | 333.82 | A method using a luminometer developed by the authors | [30] |
Mesoporous silica | 60–150 | 319.68 | The Microtox® Basic Test for extracts | [31] |
API | Mixture and Maximum Tested Concentration (Cmax) | Composition (wt.%) of the Mixture | EC50 [mg/L]; (95% Confidence Interval); R2 | ||
---|---|---|---|---|---|
5 min | 15 min | 30 min | |||
VAL | Mixtures: VAL + excipient | ||||
VAL + microcrystalline cellulose Cmax = 8.75 g/L | 47% + 23% | 319.0 (132.3–769.0) 0.7959 | 382.5 (103.6–1412) 0.6419 | 307.9 (84.13–1127) 0.5859 | |
VAL + magnesium carbonate Cmax = 3.22 g/L | 47% + 5% | 24,619 [a] (2674–226,629) 0.9616 | 15,105 [a] (1060–215,266) 0.7598 | 7855 [a] (1295–47,651) 0.7972 | |
VAL + povidone K25 Cmax = 4.29 g/L | 47% + 5% | 675.2 (371.7–1226) 0.8966 | 571.3 (289.3–1128) 0.8580 | 1046 (158.5–6907) 0.9717 | |
VAL + sodium lauryl sulfate Cmax = 3.96 g/L | 47% + 1% | 34.75 (29.38–41.10) 0.9936 | 29.39 (22.48–38.41) 0.9898 | 28.91 (19.82–42.16) 0.9802 | |
VAL + colloidal silica Cmax = 3.96 g/L | 47% + 1% | 130.7 [a] (128.3–133.2) 1.0000 | 111.6 (49.01–254.2) 0.9937 | 58.97 (39.42–88.23) 0.9747 | |
Mixtures: excipient + excipient | |||||
Magnesium carbonate + povidone K25 Cmax = 24.75 g/L | 5% + 5% | 240.6 (154.5–374.6) 0.9557 | 154.8 (59.19–404.6) 0.8587 | 85.99 [a] (9.907–746.4) 0.7819 | |
Magnesium carbonate + colloidal silica Cmax = 9.90 g/L | 5% + 1% | 114.1 [a] (24.14–539.1) 0.7982 | 118.3 (83.90–166.8) 0.9662 | 71.10 [a] (4.159–1215) 0.6047 | |
Povidone K25 + colloidal silica Cmax = 19.80 g/L | 5% + 1% | 11 028 (1181–102,957) 0.7085 | 5845 (2560–13,343) 0.7972 | 6199 (3114–12,342) 0.8622 | |
Ternary mixtures | |||||
Povidone K25 + colloidal silica + magnesium carbonate Cmax = 18.15 g/L | 5% + 1% + 5% | 553.4 (385.5–794.4) 0.9563 | 353.1 (206.4–600.7) 0.9238 | 305.8 (171.3–546.0) 0.8825 | |
VAL + povidone K25 + colloidal silica Cmax = 4.37 g/L | 47% + 5% + 1% | 258.4 (115.0–580.4) 0.7962 | 179.6 (66.95–482.0) 0.7297 | 163.8 (74.04–362.3) 0.8299 | |
Multicomponent mixtures | |||||
VAL excipients [b] Cmax = 1.58 g/L | 23% + 12% + 5% + 5% + 5% + 2% + 1% + 2% + 1% | 164.4 (131.0–206.3) 0.9797 | 81.22 (69.57–94.82) 0.9915 | 59.26 (53.52–65.50) 0.9964 | |
VAL + VAL excipients [b] Cmax = 2.91 g/L | 47% + 23% + 12% + 5% + 5% + 5% + 2% + 1% + 2% + 1% | 129.2 (107.9–154.6) 0.9880 | 67.63 (56.89–80.40) 0.9915 | 47.85 (35.84–63.89) 0.9819 | |
LOS-K | Mixtures: LOS-K + excipient | ||||
LOS-K + microcrystalline cellulose Cmax = 10.23 g/L | 24% + 38% | 931.2 (809.2–1072) 0.9945 | 770.0 (167.0–3550) 0.9752 | 771.6 (79.31–7506) 0.9457 | |
LOS-K + mannitol Cmax = 7.26 g/L | 24% + 20% | 691.8 (637.7–750.6) 0.9981 | 618.2 (530.2–720.8) 0.9937 | 546.6 (440.5–678.4) 0.9887 | |
LOS-K + colloidal silica Cmax = 4.12 g/L | 24% + 1% | 391.8 (279.7–548.8) 0.9876 | 294.1 (275.9–313.5) 0.9992 | 278.8 (227.9–341.2) 0.9971 | |
LOS-K + talc Cmax = 4.12 g/L | 24% + 1% | 440.7 (327.2–593.6) 0.9733 | 319.7 (232.4–440.0) 0.9717 | 260.3 (180.9–374.5) 0.9479 | |
Multicomponent mixtures | |||||
LOS-K excipients [c] Cmax = 10.89 g/L | 38% + 20% + 5% + 1% + 1% + 1% | 1519 (1300–1774) 0.9914 | 1838 (1454–2324) 0.9796 | 2101 (1631–2708) 0.9763 | |
LOS-K + LOS-K excipients [c] Cmax = 14.85 g/L | 24% + 38% + 20% + 5% + 1% + 1% + 1% | 800.4 (475.0–1349) 0.9140 | 621.8 (336.9–1148) 0.8510 | 536.9 (268.5–1074) 0.8129 | |
TEL | Mixtures: TEL + excipient | ||||
TEL + mannitol Cmax = 10.23 g/L | 17% + 45% | 13,602 [a] (46.14–4,009,769) 0.8602 | 13,882 [a] (3052–63,153) 0.9893 | 15,401 [a] (2575–92,096) 0.9872 | |
TEL + povidone K25 Cmax = 13.36 g/L | 17% + 5% | 4017 (3018–5347) 0.9859 | 4583 (3454–6080) 0.9856 | 4566 (3455–6034) 0.9861 | |
TEL + meglumine Cmax = 3.87 g/L | 17% + 30% | 66.42 (27.66–159.5) 0.7661 | 53.11 (9.586–294.2) 0.5387 | 48.05 (6.499–355.2) 0.3256 | |
Mixtures: excipient + excipient | |||||
Mannitol + povidone K25 Cmax = 8.25 g/L | 45% + 5% | 9620 [a] (355.2–260,504) 0.6879 | 34 023 [a] (42.72–27,097,494) 0.9664 | no toxicity | |
Mannitol + meglumine Cmax = 6.19 g/L | 45% + 30% | 136.2 (26.70–694.9) 0.9633 | 83.17 (26.37–262.2) 0.7808 | 73.14 (20.99–254.9) 0.7226 | |
Meglumine + povidone 25 Cmax = 0.26 g/L | 30% + 5% | 1.058 [a] (0.5888–1.901) 0.9588 | 0.9118 (0.6509–1.277) 0.9879 | 1.011 [a] (0.7103–1.440) 0.9856 | |
Multicomponent mixtures | |||||
TEL excipients [d] Cmax = 6.85 g/L | 45% + 5% + 30% + 2% + 1% | 85.27 (46.67–155.8) 0.8943 | 57.73 (17.69–188.4) 0.7822 | 48.25 (13.97–166.6) 0.8052 | |
TEL + TEL excipients [d] Cmax = 4.12 g/L | 17% + 45% + 5% + 30% + 2% + 1% | 75.47 (11.90–478.8) 0.7019 | 73.78 (3.562–1528) 0.2907 | 50.19 (6.503–387.3) 0.2873 |
Mixture | EC50, 30 min [mg/L] | MDR | Predicted Effect | ||||
---|---|---|---|---|---|---|---|
Experimental | CA | IA | CA | IA | CA | IA | |
VAL + microcrystalline cellulose | 307.9 | 216.0 | 114.1 | 0.70 | 0.37 | Additive | Antagonistic |
VAL + magnesium carbonate | 7855 | 133.8 | 16.54 | 0.02 | 0.002 | Antagonistic | Antagonistic |
VAL + povidone K25 | 1046 | 164.8 | 184.1 | 0.16 | 0.18 | Antagonistic | Antagonistic |
VAL + sodium lauryl sulfate | 28.91 | 22.68 | 0.06 | 0.78 | 0.002 | Additive | Antagonistic |
VAL + colloidal silica | 58.97 | 153.5 | 122.3 | 2.60 | 2.07 | Synergistic | Synergistic |
Magnesium carbonate + povidone K25 | 85.99 | 125.9 | 55.59 | 1.46 | 0.65 | Additive | Additive |
Magnesium carbonate + colloidal silica | 71.10 | 78.33 | 18.11 | 1.10 | 0.25 | Additive | Antagonistic |
Povidone K25 + colloidal silica | 6199 | 1676 | 530.2 | 0.27 | 0.08 | Antagonistic | Antagonistic |
Povidone K25 + colloidal silica + magnesium carbonate | 305.8 | 137.8 | 44.0 | 0.45 | 0.14 | Antagonistic | Antagonistic |
VAL + povidone K25 + colloidal silica | 163.8 | 167.8 | 155.17 | 1.02 | 0.95 | Additive | Additive |
Mixture | EC50, 30 min [mg/L] | MDR | Predicted Effect | ||||
---|---|---|---|---|---|---|---|
Experimental | CA | IA | CA | IA | CA | IA | |
LOS-K + microcrystalline cellulose | 771.6 | 584.1 | 167.3 | 0.76 | 0.22 | Additive | Antagonistic |
LOS-K + mannitol | 546.6 | 481.2 | 197.5 | 0.88 | 0.36 | Additive | Antagonistic |
LOS-K + colloidal silica | 278.8 | 287.0 | 143.7 | 1.03 | 0.52 | Additive | Additive |
LOS-K + talc | 260.3 | 281.7 | 46.61 | 1.08 | 0.18 | Additive | Antagonistic |
Mixture | EC50, 30 min [mg/L] | MDR | Predicted Effect | ||||
---|---|---|---|---|---|---|---|
Experimental | CA | IA | CA | IA | CA | IA | |
TEL + mannitol | 15,401 | 269.01 | 2.02 | 0.02 | 0.0001 | Antagonistic | Antagonistic |
TEL + povidone K25 | 4566 | 98.61 | 64.81 | 0.02 | 0.01 | Antagonistic | Antagonistic |
TEL + meglumine | 48.05 | 24.97 | 0.54 | 0.52 | 0.01 | Additive | Antagonistic |
Mannitol + povidone K25 | 34,023 [a] | 3626.35 | 815.81 | 0.11 | 0.02 | Antagonistic | Antagonistic |
Mannitol + meglumine | 73.14 | 44.84 | 17.97 | 0.61 | 0.25 | Additive | Antagonistic |
Meglumine + povidone K25 | 1.011 | 21.02 | 41.71 | 20.79 | 41.26 | Synergistic | Synergistic |
Pharmaceutical Excipient | Chemical Structure |
---|---|
Microcrystalline cellulose type PH102 | |
Sodium lauryl sulfate (SLS) | |
Sodium starch glycolate | |
Colloidal anhydrous silica (Aerosil R200) | [SiO2]n |
Povidone K25 | Molecular weight ~24,000 g |
Povidone K30 | Molecular weight ~40,000 g |
Croscarmellose sodium | |
Crospovidone type A | Cross-linked polymer |
Meglumine | |
Talc | Mg3(OH)2Si4O10 |
Magnesium carbonate (heavy) | MgCO3 + Mg(OH)2 |
Magnesium stearate | |
Lactose monohydrate | |
Mannitol | |
Pregelatinized corn starch | |
Sorbitol |
ARB | Chemical Structure |
---|---|
Valsartan (VAL) | |
Losartan potassium (LOS-K) | |
Telmisartan (TEL) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turek, M.; Różycka-Sokołowska, E.; Koprowski, M.; Marciniak, B.; Bałczewski, P. Can Pharmaceutical Excipients Threaten the Aquatic Environment? A Risk Assessment Based on the Microtox® Biotest. Molecules 2023, 28, 6590. https://doi.org/10.3390/molecules28186590
Turek M, Różycka-Sokołowska E, Koprowski M, Marciniak B, Bałczewski P. Can Pharmaceutical Excipients Threaten the Aquatic Environment? A Risk Assessment Based on the Microtox® Biotest. Molecules. 2023; 28(18):6590. https://doi.org/10.3390/molecules28186590
Chicago/Turabian StyleTurek, Marika, Ewa Różycka-Sokołowska, Marek Koprowski, Bernard Marciniak, and Piotr Bałczewski. 2023. "Can Pharmaceutical Excipients Threaten the Aquatic Environment? A Risk Assessment Based on the Microtox® Biotest" Molecules 28, no. 18: 6590. https://doi.org/10.3390/molecules28186590
APA StyleTurek, M., Różycka-Sokołowska, E., Koprowski, M., Marciniak, B., & Bałczewski, P. (2023). Can Pharmaceutical Excipients Threaten the Aquatic Environment? A Risk Assessment Based on the Microtox® Biotest. Molecules, 28(18), 6590. https://doi.org/10.3390/molecules28186590