Optimization of Enzyme−Assisted Aqueous Extraction of Polysaccharide from Acanthopanax senticosus and Comparison of Physicochemical Properties and Bioactivities of Polysaccharides with Different Molecular Weights
Abstract
:1. Introduction
2. Results
2.1. Compound Enzyme Ratio Optimization
2.1.1. Enzyme Dosage Screening
- (1)
- The effect of cellulase dosage on polysaccharide yield
- (2)
- The effect of pectinase dosage on polysaccharide yield
- (3)
- The effect of hemicellulase dosage on polysaccharide yield
2.1.2. Orthogonal Optimization of Complex Enzyme Ratios
2.2. Response Surface Assay
2.2.1. Single−Factor Test
- (1)
- The effect of enzyme dosage on polysaccharide yield
- (2)
- The effect of pH on polysaccharide yield
- (3)
- The effect of enzymatic digestion temperature on polysaccharide yield
- (4)
- The effect of extraction time on polysaccharide yield
- (5)
- The effect of solid–liquid ratio on polysaccharide yield
2.2.2. Model Fitting Analysis
2.2.3. Analysis of Response Surface Plots
2.2.4. Model Validation
2.3. Ethanol−Graded Precipitation of Polysaccharides
2.4. Fourier Transform Infrared (FT−IR) Analysis
2.5. UV Assay
2.6. TGA Analysis
2.7. SEM Assay
2.8. X-ray Diffraction (XRD) Analysis
2.9. Congo Red and I2−KI Test
2.10. In Vitro Antioxidant Activity Assay
2.10.1. ABTS Free Radical Scavenging Capacity
2.10.2. DPPH Free Radical Scavenging Capacity
2.10.3. Fe2+ Chelating Activity of ASPSs
2.10.4. H2O2 Radical Scavenging Activity Assay
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of A. senticosus Polysaccharide
3.3. Experimental Design
3.3.1. Single Factor Experiment
3.3.2. Compound Enzyme Ratios Optimized by Orthogonal Experiment
3.3.3. Single−Factor Experiment
3.3.4. Response Surface Test
3.3.5. Validation Tests
3.4. Ethanol−Graded Precipitation of Polysaccharides
3.5. Component Analysis
3.6. Molecular Weight Determination
3.7. Monosaccharide Composition Analysis
3.8. Fourier Transform Infrared (FT−IR) Analysis
3.9. UV−Vis Spectroscopy
3.10. Thermogravimetric Analysis
3.11. SEM Analysis
3.12. X-ray Diffraction (XRD) Analysis of ASPSs
3.13. Congo Red and I2−KI Test
3.14. Analysis of Antioxidant Activity
3.14.1. ABTS Radical Scavenging Activity Assay
3.14.2. DPPH Radical Scavenging Activity Assay
3.14.3. Fe2+ Chelating Activity
3.14.4. H2O2 Radical Scavenging Activity Assay
3.15. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yang, S.B.; Shan, C.L.; Ma, X.; Qin, Y.J.; Ju, A.Q.; Duan, A.Y.; Luan, W.M.; Zhang, Y.N. Immunomodulatory effect of Acanthopanax senticosus polysaccharide on immunosuppressed chickens. Poult. Sci. 2021, 100, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Liu, Z. Effects of Acanthopanax senticosus supplementation on innate immunity and changes of related immune factors in healthy mice. Innate Immun. 2021, 27, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Liu, L.; Yu, N.; Chen, J.; Liu, B.; Yang, D.; Shen, G. Polysaccharides from Acanthopanax senticosus enhances intestinal integrity through inhibiting TLR4/NF−κB signaling pathways in lipopolysaccharide−challenged mice. Anim. Sci. J. Nihon Chikusan Gakkaiho 2016, 87, 1011–1018. [Google Scholar]
- Meng, Q.; Pan, J.; Liu, Y.; Chen, L.; Ren, Y. Anti−tumour effects of polysaccharide extracted from Acanthopanax senticosus and cell−mediated immunity. Exp. Ther. Med. 2018, 15, 1694–1701. [Google Scholar] [PubMed]
- Long, L.; Zhang, H.; Wang, F.; Yin, Y.; Yang, L.; Chen, J. Research Note: Effects of polysaccharide−enriched Acanthopanax senticosus extract on growth performance, immune function, antioxidation, and ileal microbial populations in broiler chickens. Poult. Sci. 2021, 100, 101028. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, M.; Zhou, X.; Chen, H. Optimization of Extraction Process of Polysaccharides MAP−2 from Opuntia Milpa Alta by Response Surface Methodology and Evaluation of Its Potential as α−Glucosidase Inhibitor. Foods 2022, 11, 3530. [Google Scholar] [CrossRef]
- Song, Y.; Sung, S.; Jang, M.; Lim, T.; Cho, C.; Han, C.; Hong, H. Enzyme−assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer). Int. J. Biol. Macromol. 2018, 116, 1089–1097. [Google Scholar] [CrossRef]
- Nagendra Chari, K.; Manasa, D.; Srinivas, P.; Sowbhagya, H. Enzyme−assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chem. 2013, 139, 509–514. [Google Scholar] [CrossRef]
- Khamassi, A.; Dumon, C. Enzyme synergy for plant cell wall polysaccharide degradation. Essays Biochem. 2023, 67, 521–531. [Google Scholar]
- Gao, S.; Yan, S.; Zhou, Y.; Feng, Y.; Xie, X.; Guo, W.; Shen, Q.; Chen, C. Optimisation of enzyme−assisted extraction of Erythronium sibiricum bulb polysaccharide and its effects on immunomodulation. Glycoconj. J. 2022, 39, 357–368. [Google Scholar] [CrossRef]
- Shi, M.; Shi, Y.; Jin, H.; Cao, J. An efficient mixed enzymes−assisted mechanical bio−extraction of polysaccharides from Dendrobium officinale and determination of monosaccharides by HPLC−Q−TOF/MS. Int. J. Biol. Macromol. 2023, 227, 986–1000. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, L.; Liu, F.; Li, T.; Yu, Z.; Xu, Y.; Yang, Y. Optimization of Ultrasound−Assisted Extraction and Structural Characterization of the Polysaccharide from Pumpkin (Cucurbita moschata) Seeds. Molecules 2018, 23, 1207. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.G.; Xiao, R.X.; Zhou, X. Study on the extraction, purification, partial chemical characterization and anti−alcohol liver injury activity of Mori Fructus polysaccharides. New J. Chem. 2020, 44, 20060–20070. [Google Scholar] [CrossRef]
- Feng, L.; Yin, J.; Nie, S.; Wan, Y.; Xie, M. Fractionation, physicochemical property and immunological activity of polysaccharides from Cassia obtusifolia. Int. J. Biol. Macromol. 2016, 91, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Chen, B.; Yi, F.; Zou, S. Optimization of extraction of polysaccharide from dandelion root by response surface methodology: Structural characterization and antioxidant activity. Int. J. Biol. Macromol. 2019, 140, 907–919. [Google Scholar] [CrossRef]
- Long, H.; Gu, X.; Zhou, N.; Zhu, Z.; Wang, C.; Liu, X.; Zhao, M. Physicochemical characterization and bile acid−binding capacity of water−extract polysaccharides fractionated by stepwise ethanol precipitation from Caulerpa lentillifera. Int. J. Biol. Macromol. 2020, 150, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; You, G.; Zhou, X.; Fan, H.; Liu, X. Physicochemical properties and in vitro hypoglycemic activities of hsian−tsao polysaccharide fractions by gradient ethanol precipitation method. Int. J. Biol. Macromol. 2023, 231, 123274. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.H.; Zhang, P.L.; Lin, P.Z.; Zeng, X.A.; Brennan, M.A. Comparison of litchi polysaccharides extracted by four methods: Composition, structure and in vitro antioxidant activity. Int. J. Food Sci. Technol. 2020, 55, 1343–1350. [Google Scholar] [CrossRef]
- Agoda−Tandjawa, G.; Durand, S.; Gaillard, C.; Garnier, C.; Doublier, J. Properties of cellulose/pectins composites: Implication for structural and mechanical properties of cell wall. Carbohydr. Polym. 2012, 90, 1081–1091. [Google Scholar] [CrossRef]
- Chen, R.; Li, S.; Liu, C.; Yang, S.; Li, X. Ultrasound complex enzymes assisted extraction and biochemical activities of polysaccharides from Epimedium leaves. Process Biochem. 2012, 47, 2040–2050. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, X.; Zhang, J. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus. Carbohydr. Polym. 2014, 111, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, Q.; Mao, G.; Zou, Y.; Feng, W.; Zheng, D.; Wang, W.; Zhou, L.; Zhang, T.; Yang, J. Optimization of enzyme−assisted extraction and characterization of polysaccharides from Hericium erinaceus. Carbohydr. Polym. 2014, 101, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; You, Q.; Jiang, Z. Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydr. Polym. 2011, 86, 1358–1364. [Google Scholar] [CrossRef]
- Wang, S.; Dong, X.; Tong, J. Optimization of enzyme−assisted extraction of polysaccharides from alfalfa and its antioxidant activity. Int. J. Biol. Macromol. 2013, 62, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jia, S.; Liu, Y.; Wu, S.; Ran, J. Optimization of enzyme−assisted extraction of the Lycium barbarum polysaccharides using response surface methodology. Carbohydr. Polym. 2011, 86, 1089–1092. [Google Scholar] [CrossRef]
- Jiao, J.; Fu, Y.-J.; Zu, Y.-G.; Luo, M.; Wang, W.; Zhang, L.; Li, J. Enzyme−assisted microwave hydro−distillation essential oil from Fructus forsythia, chemical constituents, and its antimicrobial and antioxidant activities. Food Chem. 2012, 134, 235–243. [Google Scholar] [CrossRef]
- Liu, J.; Miao, S.; Wen, X.; Sun, Y. Optimization of polysaccharides (ABP) extraction from the fruiting bodies of Agaricus blazei Murill using response surface methodology (RSM). Carbohydr. Polym. 2009, 78, 704–709. [Google Scholar] [CrossRef]
- Yin, G.; Dang, Y. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box–Behnken statistical design. Carbohydr. Polym. 2008, 74, 603–610. [Google Scholar] [CrossRef]
- Xiao, W.; Han, L.; Shi, B. Microwave−assisted extraction of flavonoids from Radix Astragali. Sep. Purif. Technol. 2008, 62, 614–618. [Google Scholar] [CrossRef]
- Qi, H.; Zhao, T.; Zhang, Q.; Li, Z.; Zhao, Z.; Xing, R. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J. Appl. Phycol. 2005, 17, 527–534. [Google Scholar] [CrossRef]
- Jeong, J.H.; Hong, S.Y.; Cho, J.-S.; Cho, D.-H.; Park, E.Y. Impact of Enzyme Modification on Physicochemical Properties of Oat Flake and Starch. Starch−Stärke 2022, 74, 2100292. [Google Scholar] [CrossRef]
- Lv, L.; Cheng, Y.; Zheng, T.; Li, X.; Zhai, R. Purification, antioxidant activity and antiglycation of polysaccharides from Polygonum multiflorum Thunb. Carbohydr. Polym. 2014, 99, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Li, Y.; Zhang, G.; Gao, Y.; Ye, H.; Gao, J.; Wang, P. Effect of extraction techniques on properties of polysaccharides from Enteromorpha prolifera and their applicability in iron chelation. Carbohydr. Polym. 2018, 181, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Wang, Z. Structural characterization and antioxidant activity of polysaccharide from Hohenbuehelia serotina. Int. J. Biol. Macromol. 2017, 98, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Zhu, S. Purification, characterization, antioxidant and anticancer activities of novel polysaccharides extracted from Bachu mushroom. Int. J. Biol. Macromol. 2018, 107, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Sheng, Y.; Wang, F.; Pan, H.; Chen, W.; Kong, F. Characterization and biological activity of acidic sugarcane leaf polysaccharides by microwave−assisted hot alkali extraction. Food Biosci. 2023, 54, 102852. [Google Scholar] [CrossRef]
- Jeddou, K.B.; Chaari, F.; Maktouf, S.; Nouri−Ellouz, O.; Helbert, C.B.; Ghorbel, R.E. Structural, functional, and antioxidant properties of water−soluble polysaccharides from potatoes peels. Food Chem. 2016, 205, 97–105. [Google Scholar] [CrossRef]
- Wang, D.; Wang, D.; Yan, T.; Jiang, W.; Han, X.; Yan, J.; Guo, Y. Nanostructures assembly and the property of polysaccharide extracted from Tremella Fuciformis fruiting body. Int. J. Biol. Macromol. 2019, 137, 751–760. [Google Scholar] [CrossRef]
- Qin, C.; Huang, K.; Xu, H. Isolation and characterization of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus. Carbohydr. Polym. 2002, 49, 367–371. [Google Scholar] [CrossRef]
- Mohammed, J.K.; Mahdi, A.A.; Ahmed, M.I.; Ma, M.; Wang, H. Preparation, deproteinization, characterization, and antioxidant activity of polysaccharide from Medemia argun fruit. Int. J. Biol. Macromol. 2020, 155, 919–926. [Google Scholar] [CrossRef]
- Guo, R.; Ai, L.; Cao, N.; Ma, J.; Wu, Y.; Wu, J.; Sun, X. Physicochemical properties and structural characterization of a galactomannan from Sophora alopecuroides L. seeds. Carbohydr. Polym. 2016, 140, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, X.; Zhang, L. Dynamic viscoelastic behavior of triple helical Lentinan in water: Effect of temperature. Carbohydr. Polym. 2008, 73, 26–34. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, C.; Han, Z.; Chen, Z.; Wei, X.; Wang, Y. Comparative analysis of existence form for selenium and structural characteristics in artificial selenium−enriched and synthetic selenized green tea polysaccharides. Int. J. Biol. Macromol. 2020, 154, 1408–1418. [Google Scholar] [CrossRef]
- Sun, M.; Li, Y.; Wang, T.; Sun, Y.; Xu, X.; Zhang, Z. Isolation, fine structure and morphology studies of galactomannan from endosperm of Gleditsia japonica var. delavayi. Carbohydr. Polym. 2018, 184, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Yang, L.; Chen, M.; Yu, J.; Zhang, S.; Ju, Y. The hypoglycemic effect of a polysaccharide (GLP) from Gracilaria lemaneiformis and its degradation products in diabetic mice. Food Funct. 2015, 6, 2542–2549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Zhao, M.; Qi, H. Free−radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis. Carbohydr. Polym. 2014, 112, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, C.; Zheng, Q.; Wu, J.; Zhu, K.; Shen, X.; Cao, J. Effect of simulated gastrointestinal digestion in vitro on the antioxidant activity, molecular weight and microstructure of polysaccharides from a tropical sea cucumber (Holothuria leucospilota). Food Hydrocoll. 2019, 89, 735–741. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein−dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bitter, T.; Muir, H. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice−Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef]
- Li, X.; Zhou, A.; Han, Y. Anti−oxidation and anti−microorganism activities of purification polysaccharide from Lygodium japonicum in vitro. Carbohydr. Polym. 2006, 66, 34–42. [Google Scholar] [CrossRef]
- Lin, X.; Ji, X.; Wang, M.; Yin, S.; Peng, Q. An alkali−extracted polysaccharide from Zizyphus jujuba cv. Muzao: Structural characterizations and antioxidant activities. Int. J. Biol. Macromol. 2019, 136, 607–615. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Pang, X.; Yao, W.; Gao, X. Characterization and antioxidant activity of two low−molecular−weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 2010, 46, 451–457. [Google Scholar] [CrossRef]
No. | Cellulase (U/g) | Pectinase (U/g) | Hemicellulase (U/g) | Polysaccharide Yield (%) |
---|---|---|---|---|
1 | 800 | 100 | 200 | 8.43 |
2 | 100 | 100 | 400 | 7.91 |
3 | 400 | 200 | 400 | 9.07 |
4 | 800 | 200 | 100 | 8.57 |
5 | 400 | 50 | 200 | 8.43 |
6 | 400 | 100 | 100 | 8.81 |
7 | 100 | 200 | 200 | 8.40 |
8 | 100 | 50 | 100 | 8.14 |
9 | 800 | 50 | 400 | 9.04 |
K1 | 24.44 | 25.61 | 25.52 | |
K2 | 26.30 | 25.14 | 25.26 | |
K3 | 26.04 | 26.04 | 26.01 | |
k1 | 8.15 | 8.54 | 8.51 | |
k2 | 8.77 | 8.38 | 8.42 | |
k3 | 8.68 | 8.68 | 8.67 | |
R | 0.62 | 0.30 | 0.25 |
Run | A | B | C | D | Polysaccharide Yield Y (%) | |
---|---|---|---|---|---|---|
Real Value Y | Predicted Value Y’ | |||||
1 | −1 | −1 | 0 | 0 | 9.03 | 9.12 |
2 | 0 | 0 | −1 | −1 | 8.41 | 8.40 |
3 | 0 | 1 | 1 | 0 | 9.27 | 9.49 |
4 | 0 | −1 | −1 | 0 | 10.16 | 10.09 |
5 | −1 | 0 | −1 | 0 | 9.46 | 9.41 |
6 | 0 | 0 | −1 | 1 | 10.47 | 10.72 |
7 | 0 | 0 | 0 | 0 | 10.02 | 10.03 |
8 | 0 | −1 | 0 | −1 | 8.21 | 8.20 |
9 | 1 | 1 | 0 | 0 | 8.55 | 8.38 |
10 | 0 | −1 | 0 | 1 | 11.19 | 11.08 |
11 | 1 | 0 | 0 | 1 | 9.11 | 9.21 |
12 | −1 | 0 | 0 | 1 | 10.27 | 10.16 |
13 | 1 | 0 | −1 | 0 | 9.20 | 9.10 |
14 | 0 | 0 | 0 | 0 | 10.05 | 10.03 |
15 | 0 | 1 | −1 | 0 | 9.62 | 9.60 |
16 | −1 | 1 | 0 | 0 | 9.50 | 9.49 |
17 | 0 | 1 | 0 | −1 | 8.98 | 9.02 |
18 | −1 | 0 | 1 | 0 | 9.20 | 9.23 |
19 | 0 | 0 | 1 | −1 | 9.18 | 8.85 |
20 | 0 | 0 | 0 | 0 | 9.8 | 10.03 |
21 | 0 | 1 | 0 | 1 | 9.53 | 9.47 |
22 | −1 | 0 | 0 | −1 | 7.82 | 7.88 |
23 | 1 | −1 | 0 | 0 | 9.62 | 9.55 |
24 | 0 | 0 | 0 | 0 | 10.25 | 10.03 |
25 | 0 | 0 | 0 | 0 | 10.05 | 10.03 |
26 | 1 | 0 | 1 | 0 | 8.88 | 8.86 |
27 | 1 | 0 | 0 | −1 | 7.88 | 8.15 |
28 | 0 | 0 | 1 | 1 | 10.62 | 9.87 |
29 | 0 | −1 | 1 | 0 | 9.62 | 9.79 |
Source | SS | DF | MS | F | Pr > F | Sig |
---|---|---|---|---|---|---|
Model | 16.45 | 14 | 1.18 | 30.7 | <0.0001 | significant |
A | 0.3468 | 1 | 0.3468 | 9.06 | 0.0094 | ** |
B | 0.472 | 1 | 0.472 | 12.33 | 0.0035 | ** |
C | 0.1261 | 1 | 0.1261 | 3.29 | 0.091 | |
D | 8.38 | 1 | 8.38 | 219.07 | <0.0001 | *** |
AB | 0.5929 | 1 | 0.5929 | 15.49 | 0.0015 | ** |
AC | 0.0009 | 1 | 0.0009 | 0.0235 | 0.8803 | |
AD | 0.3721 | 1 | 0.3721 | 9.72 | 0.0076 | ** |
BC | 0.009 | 1 | 0.009 | 0.2358 | 0.6347 | |
BD | 1.48 | 1 | 1.48 | 38.58 | <0.0001 | *** |
CD | 0.4225 | 1 | 0.4225 | 11.04 | 0.005 | ** |
A2 | 3.63 | 1 | 3.63 | 94.79 | <0.0001 | *** |
B2 | 0.1515 | 1 | 0.1515 | 3.96 | 0.0665 | |
C2 | 0.121 | 1 | 0.121 | 3.16 | 0.0971 | |
D2 | 1.25 | 1 | 1.25 | 32.68 | <0.0001 | *** |
Residual | 0.5358 | 14 | 0.0383 | |||
Lack of Fit | 0.4336 | 10 | 0.0434 | 1.7 | 0.3216 | not significant |
Pure Error | 0.1021 | 4 | 0.0255 | |||
Cor Total | 16.99 | 28 |
Physicochemical Properties | ASPS−40 | ASPS−60 | ASPS−80 |
---|---|---|---|
Yields (w%) a | 29.167 ± 0.567 | 45.602 ± 0.866 | 22.917 ± 0.327 |
Total polysaccharides (w%) a | 41.811 ± 2.462 | 40.131 ± 0.881 | 67.182 ± 0.311 |
Reducing sugar (w%) a | 5.514 ± 2.089 | 34.491 ± 0.438 | 25.171 ± 0.686 |
Galacturonic acid (w%) a | 2.562 ± 0.041 | − c | − c |
Total proteins (w%) a | − c | 4.708 ± 0.157 | 4.222 ± 0.165 |
Molecular weights (Mw, kDa) | 11.762 | 7.890 | 6.433 |
Monosaccharide composition (mol%) b | |||
Arabinose | 0.034 | − c | − c |
Glucose | 0.702 | 0.716 | 0.656 |
Galacturonic | 0.023 | − c | − c |
Fructose | 0.242 | 0.284 | 0.344 |
No. | Cellulase (U/g) | Pectinase (U/g) | Hemicellulase (U/g) |
---|---|---|---|
1 | 800 | 100 | 200 |
2 | 100 | 100 | 400 |
3 | 400 | 200 | 400 |
4 | 800 | 200 | 100 |
5 | 400 | 50 | 200 |
6 | 400 | 100 | 100 |
7 | 100 | 200 | 200 |
8 | 100 | 50 | 100 |
9 | 800 | 50 | 400 |
Factors | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
A pH | 5 | 6 | 7 |
B Temperature (°C) | 30 | 50 | 70 |
C Time (min) | 60 | 80 | 100 |
D Solid–liquid ratio (g/mL) | 1:30 | 1:40 | 1:50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Su, Y.; Su, J.; Xue, J.; Zhang, R.; Li, X.; Li, Y.; Ding, Y.; Chu, X. Optimization of Enzyme−Assisted Aqueous Extraction of Polysaccharide from Acanthopanax senticosus and Comparison of Physicochemical Properties and Bioactivities of Polysaccharides with Different Molecular Weights. Molecules 2023, 28, 6585. https://doi.org/10.3390/molecules28186585
Wang X, Su Y, Su J, Xue J, Zhang R, Li X, Li Y, Ding Y, Chu X. Optimization of Enzyme−Assisted Aqueous Extraction of Polysaccharide from Acanthopanax senticosus and Comparison of Physicochemical Properties and Bioactivities of Polysaccharides with Different Molecular Weights. Molecules. 2023; 28(18):6585. https://doi.org/10.3390/molecules28186585
Chicago/Turabian StyleWang, Xueyan, Yuanyuan Su, Jianqing Su, Jiaojiao Xue, Rui Zhang, Xiaoli Li, Ying Li, Yi Ding, and Xiuling Chu. 2023. "Optimization of Enzyme−Assisted Aqueous Extraction of Polysaccharide from Acanthopanax senticosus and Comparison of Physicochemical Properties and Bioactivities of Polysaccharides with Different Molecular Weights" Molecules 28, no. 18: 6585. https://doi.org/10.3390/molecules28186585
APA StyleWang, X., Su, Y., Su, J., Xue, J., Zhang, R., Li, X., Li, Y., Ding, Y., & Chu, X. (2023). Optimization of Enzyme−Assisted Aqueous Extraction of Polysaccharide from Acanthopanax senticosus and Comparison of Physicochemical Properties and Bioactivities of Polysaccharides with Different Molecular Weights. Molecules, 28(18), 6585. https://doi.org/10.3390/molecules28186585