Investigation of 29 Antimicrobial Compounds in Soil Using Newly Developed UHPLC-MS/MS Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of LC-MS/MS Conditions
2.2. Optimization of Sample Preparation
2.3. Method Validation
2.4. Soil Samples Analysis
3. Materials and Methods
3.1. Samples Collection
3.2. Chemical and Reagents
3.3. Sample Preparation
3.4. Final UHPLC-MS-MS Setup and Parameters
3.5. Method Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Organisation for Animal Health. Annual Report on Antimicrobial Agents Intended for Use in Animals 7th Report; World Organisation for Animal Health: Paris, France, 2019. [Google Scholar]
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018—10th ESVAC Report; European Medicines Agency: Amsterdam, The Netherlands, 2020; pp. 1–104. [Google Scholar]
- Wei, R.; Ge, F.; Zhang, L.; Hou, X.; Cao, Y.; Gong, L.; Chen, M.; Wang, R.; Bao, E. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere 2016, 144, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Robles-Jimenez, L.E.; Aranda-Aguirre, E.; Castelan-Ortega, O.A.; Shettino-Bermudez, B.S.; Ortiz-Salinas, R.; Miranda, M.; Li, X.; Angeles-Hernandez, J.C.; Vargas-Bello-pérez, E.; Gonzalez-Ronquillo, M. Worldwide traceability of antibiotic residues from livestock in wastewater and soil: A systematic review. Animals 2022, 12, 60. [Google Scholar] [CrossRef]
- Eurostat Statistics|Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/tps00202/default/map?lang=en (accessed on 5 June 2023).
- EC Regulation (EU) 1069/2009 Animal By-Products. Off. J. Eur. Union 2019, 53, 1689–1699.
- Zubair, M.; Wang, S.; Zhang, P.; Ye, J.; Liang, J.; Nabi, M.; Zhou, Z.; Tao, X.; Chen, N.; Sun, K.; et al. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. Bioresour. Technol. 2020, 301, 122823. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy 2013, 49, 239–248. [Google Scholar] [CrossRef]
- Li, J.; Xin, Z.; Zhang, Y.; Chen, J.; Yan, J.; Li, H.; Hu, H. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil. Appl. Soil Ecol. 2017, 121, 193–200. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.; Wang, J.; Ma, Z.; Han, P.; Luan, Y.; Lu, A. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci. Total Environ. 2015, 521–522, 101–107. [Google Scholar] [CrossRef]
- Karci, A.; Balcioǧlu, I.A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci. Total Environ. 2009, 407, 4652–4664. [Google Scholar] [CrossRef]
- Li, Y.W.; Wu, X.L.; Mo, C.H.; Tai, Y.P.; Huang, X.P.; Xiang, L. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the pearl river delta area, Southern China. J. Agric. Food Chem. 2011, 59, 7268–7276. [Google Scholar] [CrossRef]
- Kim, J.W.; Hong, Y.K.; Ryu, S.H.; Kwon, O.K.; Lee, Y.B.; Kim, S.C. Development of analytical method for veterinary antibiotics and monitoring of residuals in agricultural environment. Appl. Biol. Chem. 2023, 66, 20. [Google Scholar] [CrossRef]
- Qasim, B.; Razzak, A.A.; Motelica-Heino, M.; Kamil, G.M.; Morabito, D. Quantitative determination of fluoroquinolones in contaminated soils by HPLC with solid-phase extraction. Baghdad Sci. J. 2020, 17, 48–566. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Boxall, A.B.A.; Johnson, P.; Smith, E.J.; Sinclair, C.J.; Stutt, E.; Levy, L.S. Uptake of veterinary medicines from soils into plants. J. Agric. Food Chem. 2006, 54, 2288–2297. [Google Scholar] [CrossRef] [PubMed]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci. Total Environ. 2018, 636, 477–486. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Huang, Y.; Wu, L.; Liu, X.; Luo, Y. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere 2016, 152, 229–237. [Google Scholar] [CrossRef]
- Jechalke, S.; Heuer, H.; Siemens, J.; Amelung, W.; Smalla, K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014, 22, 536–545. [Google Scholar] [CrossRef]
- Aga, D.S.; O’Connor, S.; Ensley, S.; Payero, J.O.; Snow, D.; Tarkalson, D. Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2005, 53, 7165–7171. [Google Scholar] [CrossRef]
- Hamscher, G.; Pawelzick, H.T.; Höper, H.; Nau, H. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ. Toxicol. Chem. 2005, 24, 861–868. [Google Scholar] [CrossRef]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Sonola, V.S.; Katakweba, A.S.; Misinzo, G.; Matee, M.I.N. Occurrence of Multi-Drug-Resistant Escherichia coli in Chickens, Humans, Rodents and Household Soil in Karatu, Northern Tanzania. Antibiotics 2021, 10, 1137. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J. Antibiotic resistance in the food supply chain: Where can sequencing and metagenomics aid risk assessment? Curr. Opin. Food Sci. 2017, 14, 66–71. [Google Scholar] [CrossRef]
- Fang, H.; Han, Y.; Yin, Y.; Pan, X.; Yu, Y. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil. Chemosphere 2014, 96, 51–56. [Google Scholar] [CrossRef]
- Góchez, D.; Raicek, M.; Ferreira, J.P.; Jeannin, M.; Moulin, G.; Erlacher-Vindel, E. OIE annual report on antimicrobial agents intended for use in animals: Methods used. Front. Vet. Sci. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Scott, H.M.; Simjee, S.; et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Kumar Mehata, A.; Lakshmi Suseela, M.N.; Gokul, P.; Kumar Malik, A.; Kasi Viswanadh, M.; Singh, C.; Selvin, J.; Muthu, M.S. Fast and highly efficient liquid chromatographic methods for qualification and quantification of antibiotic residues from environmental waste. Microchem. J. 2022, 179, 107573. [Google Scholar] [CrossRef]
- Chan, C.L.; Wai, H.K.F.; Wu, P.; Lai, S.W.; Chan, O.S.K.; Tun, H.M. A Universal LC-MS/MS Method for Simultaneous Detection of Antibiotic Residues in Animal and Environmental Samples. Antibiotics 2022, 11, 845. [Google Scholar] [CrossRef]
- Kokoszka, K.; Kobus, A.; Bajkacz, S. Optimization of a method for extraction and determination of residues of selected antimicrobials in soil and plant samples using HPLC-UV-MS/MS. Int. J. Environ. Res. Public Health 2021, 18, 1159. [Google Scholar] [CrossRef]
- Schlüsener, M.P.; Spiteller, M.; Bester, K. Determination of antibiotics from soil by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2003, 1003, 21–28. [Google Scholar] [CrossRef]
- Hoff, R.; Pizzolato, T.M.; Diaz-Cruz, M.S. Trends in sulfonamides and their by-products analysis in environmental samples using mass spectrometry techniques. Trends Environ. Anal. Chem. 2016, 9, 24–36. [Google Scholar] [CrossRef]
- Huygens, J.; Rasschaert, G.; Heyndrickx, M.; Dewulf, J.; Van Coillie, E.; Quataert, P.; Daeseleire, E.; Becue, I. Impact of fertilization with pig or calf slurry on antibiotic residues and resistance genes in the soil. Sci. Total Environ. 2022, 822, 153518. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Chhonker, Y.S.; Bisen, A.C.; Prasad, Y.D.; Tulsankar, S.L.; Chandasana, H.; Dey, T.; Verma, S.K.; Bala, V.; Kanojiya, S.; et al. Rapid and Simultaneous Analysis of Multiple Classes of Antimicrobial Drugs by Liquid Chromatography-Tandem Mass Spectrometry and Its Application to Routine Biomedical, Food, and Soil Analyses. ACS Omega 2020, 5, 31584–31597. [Google Scholar] [CrossRef]
- Chen, G.; Li, M.; Liu, X. Fluoroquinolone Antibacterial Agent Contaminants in Soil/Groundwater: A Literature Review of Sources, Fate, and Occurrence. Water. Air. Soil Pollut. 2015, 226, 418. [Google Scholar] [CrossRef]
- Franklin, A.M.; Andrews, D.M.; Williams, C.F.; Watson, J.E. Simultaneous Extraction of Four Antibiotic Compounds from Soil and Water Matrices. Separations 2022, 9, 200. [Google Scholar] [CrossRef]
- Gbylik-Sikorska, M.; Posyniak, A.; Mitrowska, K.; Gajda, A.; Błądek, T.; Şniegocki, T.; Zmudzki, J. Occurrence of veterinary antibiotics and chemotherapeutics in fresh water, sediment, and fish of the rivers and lakes in Poland. Bull. Vet. Inst. Pulawy 2014, 58, 399–404. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Askari Rizvi, S.F. Tetracycline: Classification, Structure Activity Relationship and Mechanism of Action as a Theranostic Agent for Infectious Lesions-A Mini Review. Biomed. J. Sci. Tech. Res. 2018, 7, 5787–5796. [Google Scholar] [CrossRef]
- Commission, E. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to. Off. J. Eur. Union 2021, 180, 84–109. [Google Scholar]
- Holmes, N.E.; Charles, P.G.P. Safety and Efficacy Review of Doxycycline. Clin. Med. Ther. 2009, 1, CMT.S2035. [Google Scholar] [CrossRef]
- Nahler, G.; Nahler, G. Committee for Veterinary Medicinal Products (CVMP). Dict. Pharm. Med. 2009, 32. [Google Scholar] [CrossRef]
- EMA. Categorisation of antibiotics for use in animals for prudent and responsible use. Eur. Med. Agency 2019, 1–73. [Google Scholar]
- SUNU WHO List of Critically Important Antimicrobials for Human Medicine (WHO CIA List). Available online: http://who.int/foodsafety/publications/antimicrobials-fifth/en/ (accessed on 12 June 2023).
- Wenzl, T.; Haedrich, J.; Schaechtele, A.; Robouch, P.; Stroka, J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food 2016; EUR 28099 EN; Publications office of the EU: Luxembourg, 2016; ISBN 978-92-79-61768-3. [Google Scholar] [CrossRef]
Group | Analyte | Ion Transition 1 [m/z] | Ion Transition 2 [m/z] | Retention Time (min) | DP [V] | CE [eV] |
---|---|---|---|---|---|---|
Tetracyclines | OTC | 461/426 | 461/444 | 2.85 | 50 | 28 |
TC | 445/410 | 445/427 | 2.93 | 55 | 27 | |
CTC | 479/444 | 479/462 | 3.09 | 50 | 28 | |
DC | 445/428 | 445/154 | 2.94 | 60 | 23 | |
DMC(IS) | 465/448 | - | 2.83 | 48 | 25 | |
(Fluoro) quinolones | CIP | 332/314 | 332/231 | 2.85 | 65 | 28 |
ENR | 360/342 | 360/286 | 2.93 | 100 | 33 | |
DIF | 400/382 | 400/356 | 3.04 | 50 | 30 | |
DAN | 358/340 | 358/255 | 2.86 | 60 | 33 | |
FLU | 262/244 | 262/202 | 3.63 | 44 | 25 | |
MAR | 363/345 | 363/320 | 2.42 | 70 | 30 | |
SAR | 385/368 | 385/348 | 2.72 | 50 | 31 | |
NOR | 320/302 | 320/231 | 2.82 | 50 | 30 | |
OXO | 262/244 | 262/216 | 3.29 | 53 | 25 | |
NAL | 233/215 | 233/187 | 3.61 | 42 | 30 | |
CIP-d8(IS) | 340/322 | - | 2.89 | 68 | 29 | |
Macrolides | ERY | 734/576 | 734/158 | 3.25 | 75 | 28 |
TYL | 916/ 174 | 916/772 | 3.26 | 110 | 51 | |
TLM | 806/577 | 806/230 | 2.92 | 61 | 33 | |
TIL | 869/696 | 869/174 | 2.83 | 135 | 56 | |
JOS | 828/173 | 828/229 | 3.59 | 80 | 46 | |
SPI | 843/540 | 843/174 | 2.98 | 120 | 44 | |
AZY | 749/591 | 749/158 | 3.01 | 89 | 53 | |
Sulfonamides | SME | 265/156 | 265/108 | 2.90 | 40 | 25 |
SMT | 279/156 | 279/108 | 3.20 | 50 | 25 | |
SDMX | 311/156 | 311/108 | 3.34 | 50 | 23 | |
SMA | 254/107 | 254/155 | 2.79 | 42 | 24 | |
SMM | 281/156 | 281/108 | 3.01 | 50 | 35 | |
SFT | 256/156 | 256/108 | 2.65 | 53 | 20 | |
SDZ | 251/156 | 251/108 | 2.64 | 53 | 22 | |
SFF(IS) | 315/156 | - | 3.37 | 90 | 26 | |
Diaminopirimidines | TMP | 292/262 | 292/231 | 2.85 | 52 | 36 |
TMP-d9(IS) | 300/234 | - | 2.90 | 55 | 32 |
Analyte | Repeatability *, (CV, %) | Within-Lab Reproducibility *, (CV, %) | LOQ [µg/kg] | LOD [µg/kg] | Recovery * (%) | Matrix Effect [%] |
---|---|---|---|---|---|---|
DC | 7.3 ± 0.7 | 10.0 ± 0.9 | 5.0 | 0.5 | 101 ± 1.6 | 93.5 ± 0.9 |
OTC | 11.3 ± 1.3 | 7.5 ± 0.8 | 10.0 | 1.0 | 109 ± 1.8 | 91.7 ± 1.3 |
TC | 1.1 ± 0.8 | 9.3 ± 1.2 | 5.0 | 0.5 | 99.4 ± 1.1 | 104 ± 0.5 |
CTC | 14.6 ± 1.4 | 7.8 ± 1.3 | 10.0 | 1.0 | 106.8 ± 1.0 | 86.7 ± 0.4 |
CIP | 9.3 ± 0.8 | 5.9 ± 0.6 | 20.0 | 2.0 | 104 ± 1.0 | 91.1 ± 1.3 |
ENR | 10.1 ± 1.1 | 14.1 ± 1.5 | 10.0 | 1.0 | 102 ± 1.9 | 93.6 ± 0.8 |
DIF | 3.9 ± 0.7 | 5.1 ± 0.4 | 20.0 | 2.0 | 109 ± 1.5 | 87.7 ± 0.2 |
DAN | 12.2 ± 1.5 | 6.7 ± 0.6 | 10.0 | 1.0 | 107 ± 1.4 | 92.6 ± 0.5 |
FLU | 2.5 ± 0.4 | 6.3 ± 0.6 | 5.0 | 0.5 | 96.7 ± 1.6 | 89.7 ± 0.8 |
MAR | 2.1 ± 0.4 | 9.3 ± 1.2 | 20.0 | 2.0 | 110 ± 1.3 | 93.4 ± 0.7 |
NAL | 6.1 ± 0.9 | 7.9 ± 0.9 | 5.0 | 0.5 | 99.7 ± 1.4 | 117 ± 1.2 |
OXO | 9.9 ±1.2 | 8.5 ± 0.5 | 5.0 | 0.5 | 99.6 ± 0.8 | 112 ± 0.3 |
SAR | 5.8 ± 0.8 | 9.7 ± 1.1 | 20.0 | 2.0 | 102 ± 1.0 | 86.5 ± 0.6 |
NOR | 10.2 ± 1.3 | 9.4 ± 1.4 | 20.0 | 2.0 | 100 ± 1.0 | 94.8 ± 1.1 |
ERY | 6.8 ± 0.8 | 14.2 ± 1.6 | 10.0 | 1.0 | 89.2 ± 0.8 | 83.5 ± 1.3 |
TYL | 8.5 ± 0.4 | 10.3 ± 0.8 | 5.0 | 0.5 | 100 ± 1.4 | 86.4 ± 1.7 |
TIL | 3.8 ± 0.7 | 12.7 ± 1.3 | 5.0 | 0.5 | 95.4 ± 1.2 | 82.6 ± 1.8 |
JOS | 13.4 ± 1.6 | 10.0 ± 1.4 | 5.0 | 1.0 | 106 ± 1.0 | 88.1 ± 1.1 |
SPI | 4.9 ± 0.2 | 10.0 ± 0.8 | 10.0 | 1.0 | 105 ± 1.1 | 87.3 ± 0 4 |
TLM | 12.2 ± 1.3 | 8.7 ± 0.8 | 20.0 | 2.0 | 97.4 ± 1.8 | 92.4 ± 0.9 |
AZY | 1.4 ± 0.4 | 14.8 ± 1.8 | 1.0 | 0.1 | 90.4 ± 1.2 | 96.4 ± 1.0 |
SMT | 3.0 ± 0.4 | 10.1 ± 0.5 | 5.0 | 0.5 | 91.3 ± 0.8 | 99.8 ± 0.4 |
SME | 8.30 ± 1.0 | 4.30 ± 0.4 | 5.0 | 0.5 | 100 ± 1.5 | 101 ± 0.8 |
SDMX | 3.10 ± 0.5 | 9.30 ± 0.6 | 5.0 | 0.5 | 95.3 ± 1.4 | 93.4 ± 0.7 |
SMA | 5.8 ± 0.5 | 10.4 ± 0.4 | 5.0 | 0.5 | 108 ± 1.3 | 92.6 ± 1.0 |
SMM | 11.6 ± 1.1 | 8.8 ± 1.3 | 5.0 | 0.5 | 99.2 ± 1.0 | 95.4 ± 1.3 |
SFT | 4.8 ± 0.4 | 5.7 ± 0.8 | 5.0 | 0.5 | 107 ± 1.0 | 98.8 ± 0.8 |
SMP | 9.4 ± 0.7 | 7.6 ± 0.6 | 5.0 | 0.5 | 93.1 ± 1.1 | 93.5 ± 1.6 |
SDZ | 1.6 ± 0.3 | 6.0 ± 0.7 | 5.0 | 0.5 | 95.6 ± 1.3 | 92.4 ± 1.2 |
TMP | 11.8 ± 1.2 | 7.6 ± 1.3 | 10.0 | 1.0 | 113 ± 1.7 | 118 ± 0.7 |
Country | Sampling Area | Type of Soil | Type of Fertilization | Sampling Site |
---|---|---|---|---|
Austria | The Hydrological Open Air Laboratory (HOAL) is situated in Petzenkirchen | Cambisols Planosols Gleysols | natural fertilizers (swine manure) artificial fertilizers (calcium ammonium nitrate) | Crops (wheat, corn) Forest (control) Meadow (control) |
Czech Republic | Conventional agricultural land | Cambisols | natural fertilizers (swine and cow manure) | Crops (wheat, oilseed rape) Forest (control) Meadow (control) |
Estonia | Conventional agricultural land | Loam soils | natural fertilizers (swine and cow manure) artificial fertilizers | Crops (wheat) Forest (control) Meadow (control) |
Portugal | The Portuguese Open Air Laboratory (OAL) | Loamic Calcaric Cambisol Gleyic Fluvisol | natural fertilizers (swine manure) | Crops (mix of oats and vetch) Forest (control) Meadow (control) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbylik-Sikorska, M.; Gajda, A.; Felipe-Sotelo, M.; Caniça, M.; Cabal-Rosel, A.; Tenson, T.; Kořínková, M.; Arbo, K.; Kisand, V.; Rab, G.; et al. Investigation of 29 Antimicrobial Compounds in Soil Using Newly Developed UHPLC-MS/MS Method. Molecules 2023, 28, 6496. https://doi.org/10.3390/molecules28186496
Gbylik-Sikorska M, Gajda A, Felipe-Sotelo M, Caniça M, Cabal-Rosel A, Tenson T, Kořínková M, Arbo K, Kisand V, Rab G, et al. Investigation of 29 Antimicrobial Compounds in Soil Using Newly Developed UHPLC-MS/MS Method. Molecules. 2023; 28(18):6496. https://doi.org/10.3390/molecules28186496
Chicago/Turabian StyleGbylik-Sikorska, Małgorzata, Anna Gajda, Monica Felipe-Sotelo, Manuela Caniça, Adriana Cabal-Rosel, Tanel Tenson, Marta Kořínková, Krõõt Arbo, Veljo Kisand, Gerhard Rab, and et al. 2023. "Investigation of 29 Antimicrobial Compounds in Soil Using Newly Developed UHPLC-MS/MS Method" Molecules 28, no. 18: 6496. https://doi.org/10.3390/molecules28186496