The Effect of Organic Matter from Sewage Sludge as an Interfacial Layer on the Surface of Nano-Al and Fluoride
Abstract
:1. Introduction
2. Results
2.1. Characteristics of PBSP
2.2. After Ball Milling for PBSP
2.3. The Properties of n-Al@PBSP and n-Al@PBSP/PFOA
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Experiment Detailed Information
- (a)
- Protein-based mixture extracting and separation
- (b)
- Ball milling process
- (c)
- n-Al coating with PBSP
- (d)
- n-Al@PBSB/PFOA
4.3. Characterization
5. Conclusions
- (1)
- The organic matter was successfully extracted from SS using the DES (KOH and urea) method.
- (2)
- The ball milling method can effectively destroy the secondary structure of proteins to release more active functional groups. During the pretreatment, the Maillard reaction broke the proteins’ structure to form more active low molecular weight compounds.
- (3)
- It was confirmed that n-Al can be coated by PBSP under mild conditions to form a uniform core-shell structure. PFOA can effectively be coated on the surface of the n-Al@PBSP to form n-Al@PBSP/PFOA, which can improve the gas phase flame temperature.
- (4)
- The reaction mechanism between n-Al and the coating was analyzed.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yu, H.Q. Molecular insights into extracellular polymeric substances in activated sludge. Environ. Sci. Technol. 2020, 54, 7742–7750. [Google Scholar] [CrossRef] [PubMed]
- Seviour, T.; Derlon, N.; Dueholm, M.S.; Flemming, H.C.; Girbal-Neuhauser, E.; Horn, H.; Kjelleberg, S.; Van Loosdrecht, M.C.M.; Lotti, T.; Malpei, M.F.; et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis. Water Res. 2019, 151, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.B.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Xu, Z.X.; Song, H.; Li, P.J.; He, Z.X.; Wang, Q.; Wang, K.; Duan, P.G. Hydrothermal carbonization of sewage sludge: Effect of aqueous phase recycling. Chem. Eng. J. 2020, 387, 123410. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.B.; Zhu, Y.; Li, C.T.; Zeng, G.M. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Xu, Z.X.; Ma, X.Q.; Zhou, J.; Duan, P.G.; Zhou, W.Y.; Ahmad, A.; Luque, R. The influence of key reactions during hydrothermal carbonization of sewage sludge on aqueous phase properties: A review. J. Anal. Appl. Pyrolysis 2022, 167, 105678. [Google Scholar] [CrossRef]
- Feng, W.M.; Ye, Y.L.; Lei, Z.C.; Feng, C.H.; Wei, C.H.; Chen, S.W. Phenol-degrading sludge as a promising precursor for a capacitive carbon material: Disclosing key factors for the nanostructure and high capacitance. Carbon 2018, 134, 53–61. [Google Scholar] [CrossRef]
- Xu, Z.X.; Deng, X.Q.; Zhang, S.; Shen, Y.F.; Shan, Y.Q.; Zhang, Z.M.; Luque, R.; Duan, P.G.; Hu, X. Benign-by-design N-doped carbonaceous materials obtained from the hydrothermal carbonization of sewage sludge for supercapacitor applications. Green Chem. 2020, 22, 3885–3895. [Google Scholar] [CrossRef]
- Feng, C.; Lotti, T.; Lin, Y.M.; Malpei, F. Extracellular polymeric substances extraction and recovery from anammox granules: Evaluation of methods and protocol development. Chem. Eng. J. 2019, 374, 112–122. [Google Scholar] [CrossRef]
- Feng, C.J.; Lotti, T.; Canziani, R.; Lin, Y.M.; Tagliabue, C.; Malpei, F. Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: A critical review. Sci. Total Environ. 2021, 753, 142051. [Google Scholar] [CrossRef]
- Sundaram, D.; Yang, V.; Yetter, R.A. Metal-based nanoenergetic materials: Synthesis, properties, and applications. Prog. Energy Combust. Sci. 2017, 61, 293–365. [Google Scholar] [CrossRef]
- Wang, J.; Qu, Y.Y.; Gong, F.Y.; Shen, J.P.; Zhang, L. A promising strategy to obtain high energy output and combustion properties by self-activation of nano-Al. Combust. Flame 2019, 204, 220–226. [Google Scholar] [CrossRef]
- Sundaram, D.S.; Yang, V.; Zarko, V.E. Combustion of nano aluminum particles (Review). Combust. Explos. Shock. Waves 2015, 51, 173–196. [Google Scholar] [CrossRef]
- Mench, M.M. Fuel Cell Engines; John Wiley & Sons: Hoboken, NJ, USA, 2008; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470209769 (accessed on 4 September 2023).
- He, Z.C.; Xia, Z.X.; Hu, J.X.; Li, Y. Effect of aluminum powder on sensitivity of perchlorate-based electrical controlling solid propellant. Chin. J. Energ. Mater. 2020, 28, 52–55. [Google Scholar] [CrossRef]
- Zhao, F.Q.; Yang, Y.J.; Yuan, Z.F.; Zhao, Q. Application of Nano Metal Powder in Solid Propellants; National Defense Industry Press: Beijing, China, 2020. [Google Scholar]
- Zhou, X.Y.; Gong, L.; Huang, F.L.; Yang, R.; Li, J.M. Mechanism of the organic fluoride effect on the formation of agglomerates and condensed products in the combustion of aluminised solid propellants. Combust. Theor. Model. 2020, 24, 1–14. [Google Scholar] [CrossRef]
- Dreizin, E.L.; Schoenitz, M. Correlating ignition mechanisms of aluminum-based reactive materials with thermoanalytical measurements. Prog. Energy Combust. Sci. 2015, 50, 81–105. [Google Scholar] [CrossRef]
- Ao, W.; Liu, P.J.; Lv, X.; Yang, W.J. Review of aluminum agglomeration during the combustion of solid propellamts. J. Astronaut. 2016, 37, 371–380. Available online: http://www.yhxb.org.cn/CN/Y2016/V37/I4/371 (accessed on 4 September 2023).
- Xiao, L.Q.; Fan, X.Z.; Wang, H.; Li, J.Z.; Tang, Q.F. Research progress on the agglomeration phenomenon of aluminum powder in the combustion of aluminized solid propellants. Chin. J. Explos. Propellants 2018, 41, 7–25. [Google Scholar] [CrossRef]
- Atmane, Y.A.; Sicard, L.; Lamouri, A.; Pinson, J.; Sicard, M.; Masson, C.; Nowak, S.; Decorse, P.; Piquemal, J.Y.; Galtayries, A.; et al. Functionalization of aluminum nanoparticles using a combination of aryl diazonium salt chemistry and iniferter method. J. Phys. Chem. C 2013, 117, 26000–26006. [Google Scholar] [CrossRef]
- Fogliazza, M.; Sicard, L.; Decorse, P.; Chevillot-Biraud, A.; Mangeney, C.; Pinson, J. Powerful surface chemistry approach for the grafting of alkyl multilayers on aluminum nanoparticles. Langmuir 2015, 31, 6092–6098. [Google Scholar] [CrossRef] [PubMed]
- Mccollum, J.; Pantoya, M.L.; Iacono, S.T. Activating aluminum reactivity with fluoropolymer coatings for improved energetic composite combustion. ACS Appl. Mater. Interfaces 2015, 7, 18742–18749. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.A.; Kusel, B.S.; Danielson, S.T.; Neat, J.W.; Avjian, E.K.; Pierson, S.N.; Budy, S.M.; Ball, D.W.; Iacono, S.T.; Kettwich, S.C. Metastable nanostructured metallized fluoropolymer composites for energetics. J. Mater. Chem. A 2013, 1, 7050–7058. [Google Scholar] [CrossRef]
- He, W.; Liu, P.J.; Gong, F.Y.; Tao, B.W.; Gu, J.; Yang, Z.J.; Yan, Q.L. Tuning the reactivity of metastable intermixed composite n-Al/PTFE by polydopamine interfacial control. ACS Appl. Mater. Interfaces 2018, 10, 32849–32858. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Tao, B.W.; Yang, Z.J.; Yang, G.C.; Guo, X.; Liu, P.J.; Yan, Q.L. Mussel-inspired polydopamine-directed crystal growth of core-shell n-Al@PDA@CuO metastable intermixed composites. Chem. Eng. J. 2019, 369, 1093–1101. [Google Scholar] [CrossRef]
- He, W.; Lyu, J.Y.; Tang, D.Y.; He, G.Q.; Liu, P.J.; Yan, Q.L. Control the combustion behavior of solid propellants by using core-shell Al-based composites. Combust. Flame 2020, 221, 441–452. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Yang, G.Q.; Lin, J.; Zeng, E.Y.; Zhuang, L. Extraction and characterization of stratified extracellular polymeric substances in Geobacter biofilms. Bioresour. Technol. 2019, 276, 119–126. [Google Scholar] [CrossRef]
- Boleij, M.; Seviour, T.; Wong, L.L.; Van Loosdrecht, M.C.M.; Lin, Y. Solubilization and characterization of extracellular proteins from anammox granular sludge. Water Res. 2019, 164, 114952. [Google Scholar] [CrossRef]
- Wang, W.G.; Yan, Y.; Wang, J.J.; Zhu, Y.J.; Ma, J.; Jiang, Z.W.; Wang, Y.Y. Comparison and optimization of extraction methods of extracellular polymeric substances in anammox granules: From maintaining protein secondary structure perspective. Chemosphere 2020, 259, 127539. [Google Scholar] [CrossRef]
- Tracy, E.A.; Helene, G.G.; Sophie, F. Basics and properties of deep eutectic solvents: A review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Bangde, P.S.; Jain, R.; Dandekar, P. Alternative approach to synthesize methylated chitosan using deep eutectic solvents, biocatalyst and “green” methylating agents. ACS Sustain. Chem. Eng. 2016, 4, 3552–3557. [Google Scholar] [CrossRef]
- Mohite, S.V.; Kim, S.; Lee, C.S.; Bae, J.; Kim, Y. Z-scheme heterojunction photocatalyst: Deep eutectic solvents-assisted synthesis of Cu2O nanocluster improved hydrogen production of TiO2. J. Alloys Compd. 2022, 928, 167168. [Google Scholar] [CrossRef]
- Ye, S.J.; Xiong, W.P.; Liang, J.; Yang, H.L.; Wu, H.P.; Zhou, C.Y.; Du, L.; Guo, J.Y.; Wang, W.J.; Xiang, L.; et al. Refined regulation and nitrogen doping of biochar derived from ramie fiber by deep eutectic solvents (DESs) for catalytic persulfate activation toward non-radical organics degradation and disinfection. J. Colloid Interface Sci. 2021, 601, 544–555. [Google Scholar] [CrossRef]
- Xu, Z.X.; Ma, X.Q.; Liao, J.J.; Osman, S.M.; Wu, S.Y.; Luque, R. Effects on the physicochemical properties of hydrochar originating from deep eutectic solvent (urea and ZnCl2)-assisted hydrothermal carbonization of sewage sludge. ACS Sustain. Chem. Eng. 2022, 10, 4258–4268. [Google Scholar] [CrossRef]
- Xu, Z.X.; Tan, Y.; Ma, X.Q.; Wu, S.Y.; Zhang, B.; Luque, R. A novel method to remove nitrogen from sewage sludge during hydrothermal carbonization via inhibiting Maillard reaction. J. Environ. Chem. Eng. 2023, 11, 109342. [Google Scholar] [CrossRef]
- Wang, Z.T.; Chen, Y.; Chen, S.P.; Chu, F.X.; Zhang, R.; Wang, Y.; Fan, D.B. Preparation and characterization of a soy protein based bio-adhesive crosslinked by waterborne epoxy resin and polyacrylamide. RSC Adv. 2019, 9, 35273–35279. [Google Scholar] [CrossRef] [PubMed]
- Castro-Díaz, M.; Uguna, C.N.; Florentino, L.; Díaz-Faes, E.; Stevens, L.A.; Barriocanal, C.; Snape, C.E. Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization. J. Anal. Appl. Pyrolysis 2017, 124, 742–751. [Google Scholar] [CrossRef]
- Menzies, D.J.; Jasieniak, M.; Griesser, H.J.; Forsythe, J.S.; Johnson, G.; Mcfarland, G.A.; Muir, B.W. A ToF-SIMS and XPS study of protein adsorption and cell attachment across PEG-like plasma polymer films with lateral compositional gradients. Surf. Sci. 2012, 606, 1798–1807. [Google Scholar] [CrossRef]
- Nelson, G.W.; Perry, M.; He, S.M.; Zechel, D.L.; Horton, J.H. Characterization of covalently bonded proteins on poly(methyl methacrylate) by X-ray photoelectron spectroscopy. Colloid. Surf. B 2010, 78, 61–68. [Google Scholar] [CrossRef]
- Ahimou, F.; Boonaert, C.J.P.; Adriaensen, Y.; Jacques, P.; Thonart, P.; Paquot, M.; Rouxhet, P.G. XPS analysis of chemical functions at the surface of Bacillus subtilis. J. Colloid Interface Sci. 2007, 309, 49–55. [Google Scholar] [CrossRef]
- Torres-Ceron, D.A.; Amaya-Roncancio, S.; Riva, J.S.; Vargas-Eudor, A.; Escobar-Rincon, D.; Restrepo-Parra, E. Incorporation of P5+ and P3− from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study. Surf. Coat. Technol. 2021, 421, 127437. [Google Scholar] [CrossRef]
- Škvarlová, A.; Kaňuchová, M.; Kozáková, Ľ.; Valušová, E.; Holub, M.; Škvarla, J. Preparation and characterization of ultramarine blue pigments from fly ash by using the X-ray photoelectron spectroscopy (XPS) for the determination of chemical states of sulphur in chromophores. Microporous Mesoporous Mater. 2019, 284, 283–288. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhu, H.T.; Zhang, B.W.; Chen, J.; Ao, Q.; Wang, X.Y. XRD, SEM, and XPS analysis of soybean protein powders obtained through extraction involving reverse micelles. J. Am. Oil Chem. Soc. 2015, 92, 975–983. [Google Scholar] [CrossRef]
- Dong, A.; Kendrick, B.; Kreilgård, L.; Matsuura, J.; Manning, M.C.; Carpenter, J.F. Spectroscopic Study of secondary structure and thermal denaturation of recombinant human factor xiii in aqueous solution. Arch. Biochem. Biophys. 1997, 347, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.C.; Huang, P.; Caughey, W.S. Redox-dependent changes in beta-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra. Biochemistry 1992, 31, 182–189. [Google Scholar] [CrossRef]
- Chang, Z.W.; Zhang, S.F.; Li, F.; Wang, Z.; Li, J.Z.; Xia, C.L.; Yu, Y.L.; Cai, L.P.; Huang, Z.H. Self-healable and biodegradable soy protein-based protective functional film with low cytotoxicity and high mechanical strength. Chem. Eng. J. 2021, 404, 126505. [Google Scholar] [CrossRef]
- Xu, Z.X.; Xu, L.; Cheng, J.H.; He, Z.X.; Wang, Q.; Hu, X. Investigation of pathways for transformation of N-heterocycle compounds during sewage sludge pyrolysis process. Fuel Process. Technol. 2018, 182, 37–44. [Google Scholar] [CrossRef]
- Rogers, D.M.; Jasim, S.B.; Dyer, N.T.; Auvray, F.; Réfrégiers, M.; Hirst, J.D. Electronic circular dichroism spectroscopy of proteins. Chem 2019, 5, 2751–2774. [Google Scholar] [CrossRef]
- Xiao, B.Y.; Liu, Y.; Luo, M.; Yang, T.; Guo, X.S.; Yi, H. Evaluation of the secondary structures of protein in the extracellular polymeric substances extracted from activated sludge by different methods. J. Environ. Sci. 2019, 80, 128–136. [Google Scholar] [CrossRef]
- Hershewe, J.M.; Wiseman, W.D.; Kath, J.E.; Buck, C.C.; Gupta, M.K.; Dennis, P.B.; Naik, R.R.; Jewett, M.C. Characterizing and controlling nanoscale self-assembly of suckerin-12. ACS Synth. Biol. 2020, 9, 3388–3399. [Google Scholar] [CrossRef]
- Tamamizu-Kato, S.; Wong, J.Y.; Jairam, V.; Uchida, K.; Raussens, V.; Kato, H.; Ruysschaert, J.M.; Narayanaswami, V. Modification by acrolein, a component of tobacco smoke and age-related oxidative stress, mediates functional impairment of human apolipoprotein E. Biochemistry 2007, 46, 8392–8400. [Google Scholar] [CrossRef]
- Zhao, W.J.; Jiao, Q.J.; Ou, Y.P.; Yang, R.J.; Zhu, Y.L.; Wang, F. Perfluoroalkyl acid-functionalized aluminum nanoparticles for fluorine fixation and energy generation. ACS Appl. Nano Mater. 2021, 4, 6337–6344. [Google Scholar] [CrossRef]
- Ou, Y.P.; Jiao, Q.J.; Li, N.; Yan, S.; Yang, R.J. Pyrolysis of ammonium perfluorooctanoate (APFO) and its interaction with nano-aluminum. Chem. Eng. J. 2021, 403, 126367. [Google Scholar] [CrossRef]
- Tang, W.Q.; Yang, R.J.; Li, J.M.; Li, J.J.; Liu, Z.H.; Huo, Z.H.; Hu, J.H.; Zeng, T.; Zhou, X.Y. Core-shell particle of aluminum-copper perfluorooctanoate configurations and its ignition and combustion properties. Combust. Flame 2022, 245, 112270. [Google Scholar] [CrossRef]
- Xiao, F.; Sasi, P.C.; Yao, B.; Kubátová, A.; Golovko, S.A.; Golovko, M.Y.; Soli, D. Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon. Environ. Sci. Technol. Lett. 2020, 7, 343–350. [Google Scholar] [CrossRef]
- Wang, H.Y.; Rehwoldt, M.; Kline, D.J.; Wu, T.; Wang, P.; Zachariah, M.R. Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites. Combust. Flame 2019, 201, 181–186. [Google Scholar] [CrossRef]
- Li, Y.N.; Li, J.; Wang, B.L.; Ma, H.; Han, Z.W. An approach to the induced reaction mechanism of the combustion of the nano-Al/PVDF composite particles. Surf. Coat. Technol. 2022, 429, 127912. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust. Flame 2014, 161, 311–321. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhu, B.Z.; Sun, Y.L. Study on the combustion performance of nano/micro-sized aluminum powders regulated by polydopamine interface. Combust. Flame 2022, 240, 112027. [Google Scholar] [CrossRef]
- Xu, Z.X.; Song, H.; Li, P.J.; Zhu, X.; Zhang, S.; Wang, Q.; Duan, P.G.; Hu, X. A new method for removal of nitrogen in sewage sludge-derived hydrochar with hydrotalcite as the catalyst. J. Hazard. Mater. 2020, 398, 122833. [Google Scholar] [CrossRef]
Samples | N | C | H | S | O * |
---|---|---|---|---|---|
PBSP-3000 | 8.97 | 38.8 | 5.427 | 0.717 | 46.086 |
PBSP-10000 | 8.06 | 38.96 | 5.469 | 0.883 | 46.628 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Ma, X.; Tan, Y.; Zhang, B.; Yang, Y.; Nie, H.; Xu, Z. The Effect of Organic Matter from Sewage Sludge as an Interfacial Layer on the Surface of Nano-Al and Fluoride. Molecules 2023, 28, 6494. https://doi.org/10.3390/molecules28186494
Gao F, Ma X, Tan Y, Zhang B, Yang Y, Nie H, Xu Z. The Effect of Organic Matter from Sewage Sludge as an Interfacial Layer on the Surface of Nano-Al and Fluoride. Molecules. 2023; 28(18):6494. https://doi.org/10.3390/molecules28186494
Chicago/Turabian StyleGao, Fan, Xueqin Ma, Yi Tan, Bo Zhang, Yixing Yang, Hongqi Nie, and Zhixiang Xu. 2023. "The Effect of Organic Matter from Sewage Sludge as an Interfacial Layer on the Surface of Nano-Al and Fluoride" Molecules 28, no. 18: 6494. https://doi.org/10.3390/molecules28186494