Excited-State Dynamics Leading Either to Triplet Formation or Coordinative Expansion following Photolysis of Cu(II)-Porphyrins: A DFT, TD-DFT, Luminescence and Femtosecond Time-Resolved Absorbance Study
Abstract
:1. Introduction
2. Results
2.1. The Photophysical Properties of CuPh in Toluene
2.1.1. The Luminescence Studies
2.1.2. DFT and TD-DFT Calculations for CuPh in Toluene
2.2. The Photophysical Properties of CuPy in Water
2.2.1. The UV/Vis. Absorption of CuPy in Water
2.2.2. DFT and TD-DFT Calculations for CuPy in Water
2.3. Femtosecond Time-Resolved Absorbance Studies of CuPy in Aqueous Environments
2.3.1. Femtosecond Time-Resolved Absorbance Studies of CuPy in Water
2.3.2. Femtosecond Time-Resolved Absorbance Studies of CuPy in Water plus d(GC)5
3. Discussion
4. Materials and Methods
4.1. Transient Absorption (TA) Spectroscopy
4.2. Luminescence Studies
4.3. Materials
4.4. Sample Preparation
4.5. Computational Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Boyle, N.M.; Rochford, J.; Pryce, M.T. Thienyl-Appended porphyrins: Synthesis, photophysical and electrochemical properties, and their applications. Coord. Chem. Rev. 2010, 254, 77–102. [Google Scholar] [CrossRef]
- O’Neill, J.S.; Kearney, L.; Brandon, M.P.; Pryce, M.T. Design components of porphyrin-based photocatalytic hydrogen evolution systems: A review. Coord. Chem. Rev. 2022, 467, 214599. [Google Scholar] [CrossRef]
- O’Neill, J.S.; Boyle, N.M.; Passos, T.M.; Heintz, K.; Browne, W.R.; Quilty, B.; Pryce, M.T. Photophysical and electrochemical properties of meso-tetrathien-2′-yl porphyrins compared to meso-tetraphenylporphyrin. J. Photochem. Photobiol. A 2023, 438, 114573. [Google Scholar] [CrossRef]
- Rochford, J.; Botchway, S.; McGarvey, J.J.; Rooney, A.D.; Pryce, M.T. Photophysical and Electrochemical Properties of meso-Substituted Thien-2-yl Zn(II) Porphyrins. J. Phys. Chem. A 2008, 112, 11611–11618. [Google Scholar] [CrossRef] [PubMed]
- Bram, O.; Cannizzo, A.; Chergui, M. Ultrafast Broadband Fluorescence Up-conversion Study of the Electronic Relaxation of Metalloporphyrins. J. Phys. Chem. A 2019, 123, 1461–1468. [Google Scholar] [CrossRef]
- Yu, H.Z.; Baskin, J.S.; Zewail, A.H. Ultrafast dynamics of porphyrins in the condensed phase: II. Zinc tetraphenylporphyrin. J. Phys. Chem. A 2002, 106, 9845–9854. [Google Scholar] [CrossRef]
- Parson, W.W. Electron-Transfer Dynamics in a Zn-Porphyrin-Quinone Cyclophane: Effects of Solvent, Vibrational Relaxations, and Conical Intersections. J. Phys. Chem. B 2018, 122, 3854–3863. [Google Scholar] [CrossRef] [PubMed]
- Horvath, O.; Valicsek, Z.; Harrach, G.; Lendvay, G.; Fodor, M.A. Spectroscopic and photochemical properties of water-soluble metalloporphyrins of distorted structure. Coord. Chem. Rev. 2012, 256, 1531–1545. [Google Scholar] [CrossRef]
- Lopes, J.M.S.; Sampaio, R.N.; Ito, A.S.; Batista, A.A.; Machado, A.E.H.; Araujo, P.T.; Neto, N.M.B. Evolution of electronic and vibronic transitions in metal(II) meso-tetra(4-pyridyl)porphyrins. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2019, 215, 327–333. [Google Scholar] [CrossRef]
- Rury, A.S.; Sension, R.J. Broadband ultrafast transient absorption of iron (III) tetraphenylporphyrin chloride in the condensed phase. Chem. Phys. 2013, 422, 220–228. [Google Scholar] [CrossRef]
- Inamo, M.; Okabe, C.; Nakabayashi, T.; Nishi, N.; Hoshino, M. Femtosecond time-resolved photo-absorption studies on the excitation dynamics of chromium(III) porphyrin complexes in solution. Chem. Phys. Lett. 2007, 445, 167–172. [Google Scholar] [CrossRef]
- Velate, S.; Liu, X.; Steer, R.P. Does the radiationless relaxation of Soret-excited metalloporphyrins follow the energy gap law? Chem. Phys. Lett. 2006, 427, 295–299. [Google Scholar] [CrossRef]
- Yeon, K.Y.; Jeong, D.; Kim, S.K. Intrinsic lifetimes of the Soret bands of the free-base tetraphenylporphine (H2TPP) and Cu(II)TPP in the condensed phase. Chem. Commun. 2010, 46, 5572–5574. [Google Scholar] [CrossRef]
- Gouterman, M.; Mathies, R.A.; Smith, B.E.; Caughey, W.S. Porphyrins 19. Tripdoublet and Quartet Luminescence in Cu and VO Complexes. J. Chem. Phys. 1970, 52, 3795–3802. [Google Scholar] [CrossRef]
- Magde, D.; Windsor, M.W.; Holten, D.; Gouterman, M. Picosecond Flash-Photolysis—Transient Absorption in Sn(IV), Pd(II) and Cu(II) Porphyrins. Chem. Phys. Lett. 1974, 29, 183–188. [Google Scholar] [CrossRef]
- Chirvony, V.S.; Galievsky, V.A.; Sazanovich, I.V.; Turpin, P.Y. Dynamics of formation and decay of the exciplex created between excited Cu(II)-5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin and thymine C=O groups in short oligothymidylates and double-stranded [poly(dA–dT)]2. J. Photochem. Photobiol. B 1999, 52, 43–50. [Google Scholar] [CrossRef]
- Kruglik, S.G.; Mojzes, P.; Mizutani, Y.; Kitagawa, T.; Turpin, P.-Y. Time-Resolved Resonance Raman Study of the Exciplex Formed between Excited Cu-Porphyrin and DNA. J. Phys. Chem. B 2001, 105, 5018–5031. [Google Scholar] [CrossRef]
- Turpin, P.Y.; Chinsky, L.; Laigle, A.; Tsuboi, M.; Kincaid, J.R.; Nakamoto, K. A Porphyrin-DNA Exciplex: Resonance Raman Spectra of Electronically Excited Cu(TMpy-P4) Bound to Poly(dA-dT).Poly(dA-dT). Photochem. Photobiol. 1990, 51, 519–525. [Google Scholar] [CrossRef]
- Mojzes, P.; Praus, P.; Baumruk, V.; Turpin, P.Y.; Matousek, P.; Towrie, M. Structural features of two distinct molecular complexes of copper(II) cationic porphyrin and deoxyribonucleotides. Biopolymers 2002, 67, 278–281. [Google Scholar] [CrossRef]
- Novy, J.; Urbanova, M. Vibrational and electronic circular dichroism study of the interactions of cationic porphyrins with (dG-dC)(10) and (dA-dT)(10). Biopolymers 2007, 85, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Gaier, A.J.; McMillin, D.R. Binding Studies of G-Quadruplex DNA and Porphyrins: Cu(T4) vs. Sterically Friendly Cu(tD4). Inorg. Chem. 2015, 54, 4504–4511. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.M.; Swavey, S. Photoinduced DNA binding of a multi-metallic (Cu(II)/Ru(II)/Pt(II)) porphyrin complex. Inorg. Chem. Commun. 2011, 14, 882–883. [Google Scholar] [CrossRef]
- Vashurin, A.S.; Pukhovskaya, S.G.; Garasko, E.V.; Voronina, A.A.; Golubchikov, O.A. Formation and Bacteriostatic Properties of AgII and Cu-II Complexes of meso-Tetrakis(N-methyl-4-pyridyl)-porphyrin Tetratosylate. Macroheterocycles 2014, 7, 272–275. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, G.J.; Lee, D.J.; Kim, S.K.; Kim, J.M. Interaction of Cu(II)-meso-tetrakis(n-N-methylpyridiniumyl)porphyrin (n = 2,3,4) with native and synthetic polynucleotides probed by polarized spectroscopy. Bull. Korean Chem. Soc. 2005, 26, 1728–1734. [Google Scholar]
- Monaselidze, J.R.; Kiladze, M.T.; Gorgoshidze, M.Z.; Khachidze, D.G.; Bregadze, V.G.; Lomidze, E.M.; Lezhava, T.A. Microcalorimetric study of DNA-Cu(II)TOEPyP(4) porphyrin complex. J. Therm. Anal. Calorim. 2012, 108, 127–131. [Google Scholar] [CrossRef]
- Li, J.; Wei, Y.L.; Guo, L.M.; Zhang, C.H.; Jiao, Y.; Shuang, S.M.; Dong, C. Study on spectroscopic characterization of Cu porphyrin/Co porphyrin and their interactions with ctDNA. Talanta 2008, 76, 34–39. [Google Scholar] [CrossRef]
- Barkhudaryan, V.G.; Ananyan, G.V. Development of viscometric methods for studying the interaction of various porphyrins with DNA. Part II: Meso-tetra-(3N-hydroxyethylpyridyl) porphyrin and its Ni-, Cu-,Co -and Zn-containing derivatives. J. Porphyr. Phthalocyanines 2016, 20, 766–772. [Google Scholar] [CrossRef]
- Tears, D.K.C.; McMillin, D.R. Duplex hydrogen banding promotes intercalation of Cu(T4) in DNA hairpins (Cu(T4) = meso-tetrakis(4-(N-methylpyridyl))porphyrincopper(II)). Chem. Commun. 1998, 2517–2518. [Google Scholar] [CrossRef]
- Avetisyan, A.A.; Vardanyan, I.V.; Dalyan, Y.B. Thermodynamics of interaction of meso-tetra-(4N-oxyethylpyridyl) porphyrin and its Cu(II)- and Co(II)-containing derivatives with A and B forms of DNA. J. Porphyr. Phthalocyanines 2017, 21, 731–738. [Google Scholar] [CrossRef]
- Xu, Z.M.; Swavey, S. Light induced photoreactions with plasmid DNA by Cu/Ru and Cu/Ru/Pt multi-metallic porphyrins. Dalton Trans. 2011, 40, 7319–7326. [Google Scholar] [CrossRef]
- Nguyen, T.; Hakansson, P.; Edge, R.; Collison, D.; Goodman, B.A.; Burns, J.R.; Stulz, E. EPR based distance measurement in Cu-porphyrin-DNA. New J. Chem. 2014, 38, 5254–5259. [Google Scholar] [CrossRef]
- Pasternack, R.F.; Gibbs, E.J.; Gaudemer, A.; Antebi, A.; Bassner, S.; Depoy, L.; Turner, D.H.; Williams, A.; Laplace, F.; Lansard, M.H.; et al. Molecular-Complexes of Nucleosides and Nucleotides with a Monomeric Cationic Porphyrin and some of its Metal Derivatives. J. Am. Chem. Soc. 1985, 107, 8179–8186. [Google Scholar] [CrossRef]
- Kruglik, S.G.; Apanasevich, P.A.; Chirvony, V.S.; Kvach, V.V.; Orlovich, V.A. Resonance Raman, CARS, and Picosecond Absorption-Spectroscopy of Copper Porphyrins—The Evidence for the Exciplex Formation with Oxygen-Containing Solvent Molecules. J. Phys. Chem. 1995, 99, 2978–2995. [Google Scholar] [CrossRef]
- Kim, D.H.; Holten, D.; Gouterman, M. A Picosecond Study of Rapid Excited-State Relaxation via Charge-Transfer States in Ligated Cu(II) Porphyrins. In Abstracts of Papers of The American Chemical Society; American Chemical Society: Washington, DC, USA, 1984. [Google Scholar]
- Zhang, Z.Q.; Duan, Y.; Zhang, L.; Yu, M.M.; Li, J. Synthesis, crystal structure of two new Zn(II), Cu(II) porphyrins and their catalytic activities to ethylbenzene oxidation. Inorg. Chem. Commun. 2015, 58, 53–56. [Google Scholar] [CrossRef]
- Kuramochi, Y.; Hashimoto, S.; Kawakami, Y.; Asano, M.S.; Satake, A. Visualization of nonemissive triplet species of Zn(II) porphyrins through Cu(II) porphyrin emission via the reservoir mechanism in a porphyrin macroring. Photochem. Photobiol. Sci. 2018, 17, 883–888. [Google Scholar] [CrossRef] [PubMed]
- AsanoSomeda, M.; Ichino, T.; Kaizu, Y. Triplet-triplet intramolecular energy transfer in a covalently linked copper(II) porphyrin-free base porphyrin hybrid dimer: A time-resolved ESR study. J. Phys. Chem. A 1997, 101, 4484–4490. [Google Scholar] [CrossRef]
- Dong, Z.C.; Kar, A.; Dorozhkin, R.; Amemiya, K.; Uchihashi, T.; Yokoyama, S.; Kamikado, I.; Mashiko, S.; Okamoto, T. Tunneling electron induced luminescence from monolayered Cu-TBP porphyrin molecules adsorbed on Cu(100). Thin Solid Films 2003, 438, 262–267. [Google Scholar] [CrossRef]
- Ivashin, N.V.; Terekhov, S.N. Resonance Raman Scattering Spectra of Co(II)- and Cu-5,10,15,20-Tetrakis 4-(N-methylpyridyl) porphyrin in the dd Excited State and Mechanisms of Its Deactivation in a Solution and in Complexes with DNA. Opt. Spectrosc. 2020, 128, 1768–1777. [Google Scholar] [CrossRef]
- Shvedko, A.G.; Kruglik, S.G.; Ermolenkov, V.V.; Orlovich, V.A.; Turpin, P.Y.; Greve, J.; Otto, C. Mechanism of exciplex formation between Cu-porphyrin and calf-thymus DNA as revealed by saturation resonance Raman spectroscopy. J. Raman Spec. 1999, 30, 677–684. [Google Scholar] [CrossRef]
- Chirvony, V.S.; Negrerie, M.; Martin, J.-L.; Turpin, P.-Y. Picosecond Dynamics and Mechanisms of Photoexcited Cu(II)-5,10,15,20-meso-tetrakis(4-N-methylpyridyl)porphyrin Quenching by Oxygen-Containing Lewis-Base Solvents. J. Phys. Chem. A 2002, 106, 5760–5767. [Google Scholar] [CrossRef]
- Inamo, M.; Aoki, K.; Ono, N.; Takagi, H.D. Electron transfer reaction of Cu(II) porphyrin complex: Effect of structural deformation on the electron self-exchange rate. Inorg. Chem. Commun. 2005, 8, 979–982. [Google Scholar] [CrossRef]
- Li, R.L.; Yuan, Y.Q.; Liang, L.; Lu, J.F.; Cui, C.X.; Niu, H.Y.; Wu, Z.R.; Liu, G.C.; Hu, Z.C.; Xie, R.H.; et al. Cu(ii)-Porphyrin based near-infrared molecules: Synthesis, characterization and photovoltaic application. New J. Chem. 2021, 45, 1601–1608. [Google Scholar] [CrossRef]
- Venkatesh, B.; Hori, H.; Miyazaki, G.; Nagatomo, S.; Kitagawa, T.; Morimoto, H. Coordination geometry of Cu-porphyrin in Cu(II)-Fe(II) hybrid hemoglobins studied by Q-band EPR and resonance Raman spectroscopies. J. Inorg. Biochem. 2002, 88, 310–315. [Google Scholar] [CrossRef]
- Jeong, D.; Kang, D.-G.; Joo, T.; Kim, S.K. Femtosecond-Resolved Excited State Relaxation Dynamics of Copper (II) Tetraphenylporphyrin (CuTPP) After Soret Band Excitation. Sci. Rep. 2017, 7, 16865. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Li, S.Y.; Zhao, L.; Xu, C.M.; Gao, J.S. A DFT and TD-DFT study on electronic structures and UV-spectra properties of octaethyl-porphyrin with different central metals (Ni, V, Cu, Co). Chin. J. Chem. Eng. 2020, 28, 532–540. [Google Scholar] [CrossRef]
- Atanasov, M.; Daul, C.A.; Rohmer, M.M.; Venkatachalam, T. A DFT based ligand field study of the EPR spectra of Co(II) and Cu(II) porphyrins. Chem. Phys. Lett. 2006, 427, 449–454. [Google Scholar] [CrossRef]
- Sorgues, S.; Poisson, L.; Raffael, K.; Krim, L.; Soep, B.; Shafizadeh, N. Femtosecond electronic relaxation of excited metalloporphyrins in the gas phase. J. Chem. Phys. 2006, 124, 114302. [Google Scholar] [CrossRef]
- Liu, F.; Cunningham, K.L.; Uphues, W.; Fink, G.W.; Schmolt, J.; McMillin, D.R. Luminescence Quenching of Copper(II) Porphyrins with Lewis Bases. Inorg. Chem. 1995, 34, 2015–2018. [Google Scholar] [CrossRef]
- Kim, D.; Holten, D.; Gouterman, M. Evidence from Picosecond Transient Absorption and Kinetic-Studies of Charge-Transfer States in Copper(II) Porphyrins. J. Am. Chem. Soc. 1984, 106, 2793–2798. [Google Scholar] [CrossRef]
- De Paula, J.C.; Walters, V.A.; Jackson, B.A.; Cardozo, K. Transient Resonance Raman Spectroscopy of Copper(II) Complexes of meso-Tetraphenylporphine and meso-Tetraphenylchlorin. J. Phys. Chem. 1995, 99, 4373–4379. [Google Scholar] [CrossRef]
- Jeoung, S.C.; Kim, D.H.; Cho, D.W.; Yoon, M.J. Time-Resolved Resonance Raman Spectroscopic Study on Copper(II) Porphyrin in Various Solvents: Solvent Effects on the Charge-Transfer States. J. Phys. Chem. 1995, 99, 5826–5833. [Google Scholar] [CrossRef]
- Jeoung, S.C.; Eom, H.S.; Kim, D.; Cho, D.W.; Yoon, M. Exciplex formation dynamics of photoexcited copper(II) tetrakis(4-N-methylpyridyl)porphyrin with synthetic polynucleotides probed by transient absorption and Raman spectroscopic techniques. J. Phys. Chem. A 1997, 101, 5412–5417. [Google Scholar] [CrossRef]
- Mojzes, P.; Chinsky, L.; Turpin, P.Y. Interaction of Electronically Excited Copper(II) Porphyrin with Oligonucleotides and Polynucleotides—Exciplex Building Process by Photoinitiated Axial Ligation of Porphyrin to Thymine and Uracil Residues. J. Phys. Chem. 1993, 97, 4841–4847. [Google Scholar] [CrossRef]
- Mojzes, P.; Kruglik, S.G.; Baumruk, V.; Turpin, P.Y. Interactions of electronically excited Copper(II)-porphyrin with DNA: Resonance Raman evidence for the exciplex formation with adenine and cytosine residues. J. Phys. Chem. B 2003, 107, 7532–7535. [Google Scholar] [CrossRef]
- Kruglik, S.G.; Galievsky, V.A.; Chirvony, V.S.; Apanasevich, P.A.; Ermolenkov, V.V.; Orlovich, V.A.; Chinsky, L.; Turpin, P.Y. Dynamics and Mechanism of the Exciplex Formation Between Cu(TMPY-P4) and DNA Model Compounds Revealed by Time-Resolved Transient Absorption and Resonance Raman Spectroscopies. J. Phys. Chem. 1995, 99, 5732–5741. [Google Scholar] [CrossRef]
- Hudson, B.P.; Sou, J.; Berger, D.J.; McMillin, D.R. Luminescence Studies of the Intercalation of Cu(TMpyP4) into DNA. J. Am. Chem. Soc. 1992, 114, 8997–9002. [Google Scholar] [CrossRef]
- Miller, J.R.; Dorough, G.D. Pyridinate Complexes of some Metallo-Derivatives of Tetraphenylporphine and Tetraphenylchlorin. J. Am. Chem. Soc. 1952, 74, 3977–3981. [Google Scholar] [CrossRef]
- Ha-Thi, M.H.; Shafizadeh, N.; Poisson, L.; Soep, B. An Efficient Indirect Mechanism for the Ultrafast Intersystem Crossing in Copper Porphyrins. J. Phys. Chem. A 2013, 117, 8111–8118. [Google Scholar] [CrossRef]
- Lipscomb, L.A.; Zhou, F.X.; Presnell, S.R.; Woo, R.J.; Peek, M.E.; Plaskon, R.R.; Williams, L.D. Structure of a DNA—Porphyrin complex. Biochemistry 1996, 35, 2818–2823. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kirmaier, C.; Holten, D. Optical-Properties of MetalloPorphyrin Excited-States. J. Am. Chem. Soc. 1989, 111, 6500–6506. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry 3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Dunning, T.H., Jr.; Hay, P.J. Modern Theoretical Chemistry. In Modern Theoretical Chemistry; Schaefer, H.F., III, Ed.; Plenum Press: New York, NY, USA, 1977; Volume 3. [Google Scholar]
- Hay, P.J.; Wadt, W.R. Ab Initio Effective Core Potentials for Molecular Calculations—Potentials for the Transition-Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab Initio Effective Core Potentials for Molecular Calculations—Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439–4449. [Google Scholar] [CrossRef]
- Stratmann, R.E.; Scuseria, G.E.; Frisch, M.J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218–8224. [Google Scholar] [CrossRef]
- Van Caillie, C.; Amos, R.D. Geometric derivatives of excitation energies using SCF and DFT. Chem. Phys. Lett. 1999, 308, 249–255. [Google Scholar] [CrossRef]
- Furche, F.; Ahlrichs, R. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 2002, 117, 7433–7447. [Google Scholar] [CrossRef]
- Scalmani, G.; Frisch, J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys. 2006, 124, 094107–094114. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab initio study of solvated molecules: A new implementation of the polarizable continuum mode. Chem. Phys. Lett. 1996, 255, 327–335. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef] [PubMed]
- Dennington II, R.D.; Keith, T.A.; Millam, J.M. GaussView; Semichem, Inc.: Shawnee, KS, USA, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGarry, R.J.; Varvarezos, L.; Pryce, M.T.; Long, C. Excited-State Dynamics Leading Either to Triplet Formation or Coordinative Expansion following Photolysis of Cu(II)-Porphyrins: A DFT, TD-DFT, Luminescence and Femtosecond Time-Resolved Absorbance Study. Molecules 2023, 28, 6310. https://doi.org/10.3390/molecules28176310
McGarry RJ, Varvarezos L, Pryce MT, Long C. Excited-State Dynamics Leading Either to Triplet Formation or Coordinative Expansion following Photolysis of Cu(II)-Porphyrins: A DFT, TD-DFT, Luminescence and Femtosecond Time-Resolved Absorbance Study. Molecules. 2023; 28(17):6310. https://doi.org/10.3390/molecules28176310
Chicago/Turabian StyleMcGarry, Ross J., Lazaros Varvarezos, Mary T. Pryce, and Conor Long. 2023. "Excited-State Dynamics Leading Either to Triplet Formation or Coordinative Expansion following Photolysis of Cu(II)-Porphyrins: A DFT, TD-DFT, Luminescence and Femtosecond Time-Resolved Absorbance Study" Molecules 28, no. 17: 6310. https://doi.org/10.3390/molecules28176310
APA StyleMcGarry, R. J., Varvarezos, L., Pryce, M. T., & Long, C. (2023). Excited-State Dynamics Leading Either to Triplet Formation or Coordinative Expansion following Photolysis of Cu(II)-Porphyrins: A DFT, TD-DFT, Luminescence and Femtosecond Time-Resolved Absorbance Study. Molecules, 28(17), 6310. https://doi.org/10.3390/molecules28176310