Fabrication of AIE Polymer-Functionalized Reduced Graphene Oxide for Information Storage
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Sample Preparation
3.2. Reduction of GO
3.3. Synthesis of PFTC-g-RGO
3.4. Device Preparation and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- AGeim, K.; Novoselov, K.S. The rise of graphene. In Nanoscience and Technology; Co-Published with Macmillan Publishers Ltd.: Cambridge, UK, 2009; pp. 11–19. [Google Scholar]
- Chen, Y.; Zhang, B.; Liu, G.; Zhuang, X.; Kang, E.-T. Graphene and its derivatives: Switching ON and OFF. Chem. Soc. Rev. 2012, 41, 4688–4707. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, T.; Dong, N.; Fan, F.; Zhang, S.; Zhuang, X.; Sun, J.; Zhang, B.; Zhang, X.; Wang, J. Graphene and its derivatives for laser protection. Prog. Mater. Sci. 2016, 84, 118–157. [Google Scholar] [CrossRef]
- Jolly, A.; Miao, D.; Daigle, M.; Morin, J.-F. Emerging Bottom-Up Strategies for the Synthesis of Graphene Nanoribbons and Related Structures. Angew. Chem. 2020, 132, 4652–4661. [Google Scholar] [CrossRef]
- Ahmed, S.; Yi, J. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors. Nano-Micro Lett. 2017, 9, 50. [Google Scholar] [CrossRef]
- Kausar, A. Carbon nano onion as versatile contender in polymer compositing and advance application. Fuller. Nanotub. Carbon Nanostructures 2017, 25, 109–123. [Google Scholar] [CrossRef]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Ponraj, J.S.; Xu, Z.-Q.; Dhanabalan, S.C.; Mu, H.; Wang, Y.; Yuan, J.; Li, P.; Thakur, S.; Ashrafi, M.; Mccoubrey, K. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 2016, 27, 462001. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Zhou, Y.; Bi, H.; Yang, M.; Wang, J.; Liu, Q.; Huang, F. Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Prog. Mater. Sci. 2020, 113, 100665. [Google Scholar] [CrossRef]
- Sagadevan, S.; Shahid, M.M.; Yiqiang, Z.; Oh, W.-C.; Soga, T.; Lett, J.A.; Alshahateet, S.F.; Fatimah, I.; Waqar, A.; Paiman, S. Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnol. Rev. 2021, 10, 605–635. [Google Scholar] [CrossRef]
- Yang, F.; Song, P.; Xu, W. The Applications of 2D Nanomaterials in Energy-Related Process. In Adapting 2D Nanomaterials for Advanced Applications; ACS Publications: New York, NY, USA, 2020; pp. 219–251. [Google Scholar]
- Abbas, A.; Mariana, L.T.; Phan, A.N. Biomass-waste derived graphene quantum dots and their applications. Carbon 2018, 140, 77–99. [Google Scholar] [CrossRef]
- Saeidi, M.; Lee, M.; Okello, O.F.N.; Choi, S.-Y.; Oh, S.S.; Simchi, A. Ultrafast Graphitization and Reduction of Spongy Graphene Oxide by Low-Energy Electromagnetic Radiation to Boost the Performance and Stability of Carbon-Based Supercapacitors. ACS Appl. Energy Mater. 2021, 5, 367–379. [Google Scholar] [CrossRef]
- Englert, J.M.; Dotzer, C.; Yang, G.; Schmid, M.; Papp, C.; Gottfried, J.M.; Steinrück, H.-P.; Spiecker, E.; Hauke, F.; Hirsch, A. Covalent bulk functionalization of graphene. Nat. Chem. 2011, 3, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W.R.W. Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterization. Chem. Eng. J. 2014, 251, 422–434. [Google Scholar] [CrossRef]
- Chouhan, A.; Mungse, H.P.; Khatri, O.P. Surface chemistry of graphene and graphene oxide: A versatile route for their dispersion and tribological applications. Adv. Colloid Interface Sci. 2020, 283, 102215. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Shen, X. Graphene–inorganic nanocomposites. RSC Adv. 2012, 2, 64–98. [Google Scholar] [CrossRef]
- Khan, Z.U.; Kausar, A.; Ullah, H.; Badshah, A.; Khan, W.U. A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques. J. Plast. Film. Sheeting 2016, 32, 336–379. [Google Scholar] [CrossRef]
- Karki, N.; Tiwari, H.; Tewari, C.; Rana, A.; Pandey, N.; Basak, S.; Sahoo, N.G. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J. Mater. Chem. B 2020, 8, 8116–8148. [Google Scholar] [CrossRef]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Stergiou, A.; Cantón-Vitoria, R.; Psarrou, M.N.; Economopoulos, S.P.; Tagmatarchis, N. Functionalized graphene and targeted applications–Highlighting the road from chemistry to applications. Prog. Mater. Sci. 2020, 114, 100683. [Google Scholar] [CrossRef]
- Alhazmi, H.A.; Ahsan, W.; Mangla, B.; Javed, S.; Hassan, M.Z.; Asmari, M.; Al Bratty, M.; Najmi, A. Graphene-based biosensors for disease theranostics: Development, applications, and recent advancements. Nanotechnol. Rev. 2022, 11, 96–116. [Google Scholar] [CrossRef]
- Babu, S.S.; Praveen, V.K.; Ajayaghosh, A. Functional π-gelators and their applications. Chem. Rev. 2014, 114, 1973–2129. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fu, Y.; Li, D.; Zhu, C.; Zhang, B.; Chen, Y. Organophosphorus-based polymer covalently functionalized reduced graphene oxide: In-situ synthesis and nonvolatile memory effect. Carbon 2019, 141, 758–767. [Google Scholar] [CrossRef]
- Kagatikar, S.; Sunil, D. Aggregation-induced emission of azines: An up-to-date review. J. Mol. Liq. 2019, 292, 111371. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, W.; Sun, L.; Du, L.; Xuan, X.; Zhang, J. Molecular motions of a tetraphenylethylene-derived AIEgen directly monitored through in situ variable temperature single crystal X-ray diffraction. CrystEngComm 2022, 24, 231–234. [Google Scholar] [CrossRef]
- RBhosale, S.; Aljabri, M.; La, D.D.; Bhosale, S.V.; Jones, L.A.; Bhosale, S.V. Tetraphenylethene Derivatives: A Promising Class of AIE Luminogens—Synthesis, Properties, and Applications, In Principles and Applications of Aggregation-Induced Emission; Springer: Berlin/Heidelberg, Germany, 2019; pp. 223–264. [Google Scholar]
- Islam, M.M.; Hu, Z.; Wang, Q.; Redshaw, C.; Feng, X. Pyrene-based aggregation-induced emission luminogens and their applications. Mater. Chem. Front. 2019, 3, 762–781. [Google Scholar] [CrossRef]
- Yang, J.; Chi, Z.; Zhu, W.; Tang, B.Z.; Li, Z. Aggregation-induced emission: A coming-of-age ceremony at the age of eighteen. Sci. China Chem. 2019, 62, 1090–1098. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.-L.; Chen, Y.; Neoh, K.-G.; Li, Y.-X.; Zhu, C.-X.; Tok, E.-S.; Kang, E.-T. Nonvolatile Rewritable Memory Effects in Graphene Oxide Functionalized by Conjugated Polymer Containing Fluorene and Carbazole Units. Chem.–A Eur. J. 2011, 17, 10304–10311. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Chen, Y.; Wang, L.; Neoh, K.-G.; Kang, E.-T.; Wang, C. A solution-processable polymer-grafted graphene oxide derivative for nonvolatile rewritable memory. Polym. Chem. 2014, 5, 2010–2017. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Y.; Liu, G.; Xu, L.-Q.; Chen, J.; Zhu, C.-X.; Neoh, K.-G.; Kang, E.-T. Push–Pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 378–387. [Google Scholar] [CrossRef]
- Sun, S.; Zhuang, X.; Liu, B.; Wang, L.; Gu, L.; Song, S.; Zhang, B.; Chen, Y. In Situ Synthesis and Characterization of Poly(aryleneethynylene)-Grafted Reduced Graphene Oxide. Chem.–A Eur. J. 2016, 22, 2247–2252. [Google Scholar] [CrossRef]
- Liu, G.; Ling, Q.-D.; Teo, E.Y.H.; Zhu, C.-X.; Chan, D.S.-H.; Neoh, K.-G.; Kang, E.-T. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)−Carbon Nanotube Composite Films. ACS Nano 2009, 3, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Gua, M.; Zhao, Z.; Lie, J.; Liu, G.; Zhang, B.; El-Khouly, M.E.; Chen, Y. Conjugated polymer covalently modified multi-walled carbon nanotubes for flexible nonvolatile RRAM devices. Eur. Polym. J. 2021, 142, 110153. [Google Scholar] [CrossRef]
- Cao, L.; Sun, Q.; Wang, H.; Zhang, X.; Shi, H. Enhanced stress transfer and thermal properties of polyimide composites with covalent functionalized reduced graphene oxide. Compos. Part A Appl. Sci. Manuf. 2015, 68, 140–148. [Google Scholar] [CrossRef]
- Wróbel, D.; Graja, A. Photoinduced electron transfer processes in fullerene–organic chromophore systems. Coord. Chem. Rev. 2011, 255, 2555–2577. [Google Scholar]
- Liu, B.; Bazan, G.C. Synthesis of cationic conjugated polymers for use in label-free DNA microarrays. Nat Protoc. 2006, 1, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Fei, T.; Palma-Cando, A.; Scherf, U. Aggregation induced emission and amplified explosive detection of tetraphenylethylene-substituted polycarbazoles. Polym. Chem. 2014, 5, 4048–4053. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
Active Layer | ON/OFF Ratio | ON (V) | OFF (V) | Ref |
---|---|---|---|---|
GO-PFCz | 103 | −1.30 | 3.30 | 31 |
GO-PTHF | 103 | −1.20 | 2.80 | 32 |
RGO-PFTPA | 103 | −1.40 | 1.65 | 33 |
PAE-g-RGO | 103 | −2.80 | 3.17 | 34 |
CNT/PVK | 103 | −1.85 | 2.90 | 35 |
PDDF-g-MWNTs | 104 | 2.07 | −2.45 | 36 |
PFTC-g-RGO | 103 | 0.60 | −2.30 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Li, W.; Wang, X.; Sun, S.; Zhang, B. Fabrication of AIE Polymer-Functionalized Reduced Graphene Oxide for Information Storage. Molecules 2023, 28, 6271. https://doi.org/10.3390/molecules28176271
Gao K, Li W, Wang X, Sun S, Zhang B. Fabrication of AIE Polymer-Functionalized Reduced Graphene Oxide for Information Storage. Molecules. 2023; 28(17):6271. https://doi.org/10.3390/molecules28176271
Chicago/Turabian StyleGao, Kai, Wei Li, Xiaoyang Wang, Sai Sun, and Bin Zhang. 2023. "Fabrication of AIE Polymer-Functionalized Reduced Graphene Oxide for Information Storage" Molecules 28, no. 17: 6271. https://doi.org/10.3390/molecules28176271
APA StyleGao, K., Li, W., Wang, X., Sun, S., & Zhang, B. (2023). Fabrication of AIE Polymer-Functionalized Reduced Graphene Oxide for Information Storage. Molecules, 28(17), 6271. https://doi.org/10.3390/molecules28176271