Study on the Flame Retardancy of Rigid Polyurethane Foam with Phytic Acid-Functionalized Graphene Oxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR of GO and PA-GO
2.2. SEM of GO and PA-GO
2.3. TGA of GO and PA-GO
2.4. Flame Retardancy
2.5. Cone Calorimeter Test
2.6. Thermal Degradation
2.7. Micromorphology of Residual Char
2.8. Proposed Flame-Retardant Mechanism
2.9. Mechanical Properties
3. Materials and Methods
3.1. Materials
3.2. Preparation of GO
3.3. Preparation of PA-GO
3.4. Preparation of RPUF Composites
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sergei, V.L.; Edward, D.W. Thermal decomposition, combustion and fire-retardancy of polyurethanes—A review of the recent literature. Polym. Int. 2002, 53, 1585–1610. [Google Scholar]
- Verdolotti, L.; Lavorgna, M.; Maio, E.D.; Iannace, S. Hydration-induced reinforcement of rigid polyurethane-cement foams: The effect of the co-continuous morphology on the thermal-oxidative stability. Polym. Degrad. Stab. 2013, 98, 64–72. [Google Scholar] [CrossRef]
- Estravís, S.; Tirado-Mediavilla, J.; Santiago-Calvo, M.; Ruiz-Herrero, J.L.; Villafañe, F.; Rodríguez-Pérez, M.Á. Rigid polyurethane foams with infused nanoclays: Relationship between cellular structure and thermal conductivity. Eur. Polym. J. 2016, 80, 1–15. [Google Scholar] [CrossRef]
- Modesti, M.; Lorenzetti, A.; Simioni, F.; Checchin, M. Influence of different flame retardants on fire behaviour of modified PIR/PUR polymers. Polym. Degrad. Stab. 2001, 74, 475–479. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weil, E.D. Thermal decomposition, combustion and flame-retardancy of epoxy resins—A review of the recent literature. Polym. Int. 2004, 53, 1901–1929. [Google Scholar] [CrossRef]
- Tang, Z.; Maroto-Valer, M.M.; Andresen, J.M.; Miller, J.W.; Listemann, M.L.; McDaniel, P.L.; Morita, D.K.; Furlan, W.R. Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents. Polymer 2002, 43, 6471–6479. [Google Scholar] [CrossRef]
- Chen, M.J.; Lin, Y.C.; Wang, X.N.; Zhong, L.; Li, Q.L.; Liu, Z.G. Influence of cuprous oxide on enhancing the flame retardancy and smoke suppression of epoxy resins containing microencapsulated ammonium polyphosphate. Ind. Eng. Chem. Res. 2015, 54, 12705–12713. [Google Scholar] [CrossRef]
- Gao, M.; Chen, S.; Wang, H.; Chai, Z.H. Design, preparation, and application of a novel, microencapsulated, intumescent, flame-retardant-Based mimicking mussel. ACS Omega 2018, 3, 6888–6894. [Google Scholar] [CrossRef]
- Wen, Y.; Cheng, Z.; Li, W.; Li, Z.; Liao, D.; Hu, X.; Hull, T.R. A novel oligomer containing DOPO and ferrocene groups:synthesis, characterization, and its application infire retardant epoxy resin. Polym. Degrad. Stab. 2018, 156, 111–124. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, R.; Wang, X.; Wang, B.B.; Song, L.; Hu, Y.; Gong, X.L. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. J. Macromol. Sci. A. 2013, 50, 255–269. [Google Scholar] [CrossRef]
- Shi, L.; Li, Z.M.; Xie, B.H.; Wang, J.H.; Tian, C.R.; Yang, M.B. Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams. Polym. Int. 2006, 55, 862–871. [Google Scholar] [CrossRef]
- Duan, H.J.; Kang, H.Q.; Zhang, W.Q.; Ji, X.; Li, Z.M.; Tang, J.H. Core-shell structure design of pulverized expandable graphite particles and their application in flame-retardant rigid polyurethane foams. Polym. Int. 2014, 63, 72–83. [Google Scholar] [CrossRef]
- Duquesne, S.; Bras, M.L.; Bourbigot, S.; Delobel, R.; Vezin, H.; Camino, G.; Eling, B.; Lindsay, C.; Roels, T. Expandable graphite: A fire retardant additive for polyurethane coatings. Fire Mater. 2003, 27, 103–117. [Google Scholar] [CrossRef]
- Cai, Y.; Wei, Q.; Huang, F.; Lin, S.; Chen, F.; Gao, W. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew. Energy 2009, 34, 2117–2123. [Google Scholar] [CrossRef]
- Zhang, P.; Song, L.; Lu, H.; Wang, J.; Hu, Y. The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material. Energy Convers. Manag. 2010, 51, 2733–2737. [Google Scholar] [CrossRef]
- Higginbotham, A.L.; Lomeda, J.R.; Morgan, A.B.; Tour, J.M. Graphite oxide flame-retardant polymer nanocomposites. ACS Appl. Mater. Interfaces 2009, 1, 2256–2261. [Google Scholar] [CrossRef]
- Yu, B.; Wang, X.; Qian, X.; Xing, W.; Yang, H.; Ma, L.; Lin, Y.; Jiang, S.; Song, L.; Hu, Y. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 2014, 4, 31782–31794. [Google Scholar] [CrossRef]
- Wang, X.; Kalali, E.N.; Wan, J.T.; Wang, D.Y. Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 2017, 69, 22–46. [Google Scholar] [CrossRef]
- Sang, B.; Li, Z.W.; Li, X.H.; Yu, L.G.; Zhang, Z.J. Graphene-based flame retardants: A review. J. Mater. Sci. 2016, 51, 8271–8295. [Google Scholar] [CrossRef]
- Jamsaz, A.; Goharshadi, E.K. Graphene-based flame-retardant polyurethane: A critical review. Polym. Bull. 2022. [Google Scholar] [CrossRef]
- Liao, S.H.; Liu, P.L.; Hsiao, M.C.; Teng, C.C.; Wang, C.A.; Ger, M.D.; Chiang, C.L. One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind. Eng. Chem. Res. 2012, 51, 4573–4581. [Google Scholar] [CrossRef]
- Long, J.; Liang, B.; Wang, Z. Enhanced mechanical properties of APP flame-retardant epoxy resin by phosphorus-modified graphene oxide. Plast. Rubber Compos. 2020, 49, 91–100. [Google Scholar] [CrossRef]
- Huang, N.J.; Cao, C.F.; Li, Y.; Zhao, L.; Zhang, G.D.; Gao, J.F.; Guan, L.Z.; Jiang, J.X.; Tang, L.C. Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response. Compos. Part B Eng. 2019, 168, 413–420. [Google Scholar] [CrossRef]
- Li, K.Y.; Kuan, C.F.; Kuan, H.C.; Chenc, C.H.; Shen, M.Y.; Yang, J.M. Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) composites functionalized with flame retardant containing phosphorus and silicon. Mater. Chem. Phys. 2014, 146, 354–362. [Google Scholar] [CrossRef]
- Li, Z.Q.; Li, W.; Liao, L.; Li, J.B.; Wu, T.; Ran, L.C.; Zhao, T.B.; Chen, B.S. Preparation and properties of polybutylene-terephthalate/graphene oxide in situ flame-retardant material. J. Appl. Polym. Sci. 2020, 137, e49214. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Deng, C.; Du, Y.Y.; Huang, S.C.; Wang, Y.Z. A novel bio-based flame retardant for polypropylene from phytic acid. Polym. Degrad. Stab. 2019, 161, 298–308. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, S.J.; Liu, M.R.; Wen, P.Y.; Liu, X.Y.; Tang, G.; Xu, X.R. Bio-based trivalent phytate: A novel strategy for enhancing fire performance of rigid polyurethane foam composites. J. Renew. Mater. 2022, 10, 1201–1220. [Google Scholar] [CrossRef]
- Otieno, G.; Kim, J. Conductive graphite/polyurethane composite films using amphiphilic reactive dispersant: Synthesis and characterization. J. Ind. Eng. Chem. 2008, 26, 187–193. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zu, S.Z.; Han, B.H. Inorganic-organic hybrid porous materials based on graphite oxide sheets. Carbon 2009, 47, 2993–3000. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Q.; Bai, X.; Wang, W.; Cooper, P.A. Thermal and burning properties of wood flour-poly(vinyl chloride) composite. J. Therm. Anal. Calorim. 2012, 109, 1577–1585. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, G.; Dong, S.; Zhang, Q.; Kong, J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf. Coat. Technol. 2007, 201, 7835–7841. [Google Scholar] [CrossRef]
- Wei, W.C.; Deng, C.; Huang, S.C.; Wei, Y.X.; Wang, Y.Z. Nickel-Schiff base decorated graphene for simultaneously enhancing the electroconductivity, fire resistance, and mechanical properties of polyurethane elastomer. J. Mater. Chem. A 2018, 6, 8643–8654. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, W.; Shi, Y.Q.; Song, L.; Ma, C.; Hu, Y. The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam. J. Hazard. Mater. 2020, 382, 121028. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Li, J.F.; Zhou, X. A flame retardant rigid polyurethane foam system including functionalized graphene oxide. Polym. Compos. 2019, 40, E1274–E1282. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
Sample | LOI/% | UL-94 |
---|---|---|
RPUF-0 | 18.4 | NR |
RPUF-1 | 25.7 | V-2 |
RPUF-2 | 25.5 | V-2 |
RPUF-3 | 26.5 | V-0 |
Samples | RPUF-0 | RPUF-1 | RPUF-2 | RPUF-3 |
---|---|---|---|---|
PHRR/kW·m−2 | 84.32 | 33.78 | 62.6 | 19.6 |
TPHRR/s | 107 | 186 | 106 | 194 |
FGI/(kW/(m2·s)) | 0.79 | 0.18 | 0.60 | 0.10 |
THR/MJ·m−2 | 18.46 | 13.33 | 16.71 | 9.16 |
YCO2/% | 0.089 | 0.039 | 0.084 | 0.035 |
YCO/% | 0.004 | 0.009 | 0.006 | 0.008 |
TSP (m2/m2) | 2589 | 3457 | 3276 | 2499 |
PSPR (m2/s) | 64.89 | 50.37 | 56.79 | 50.53 |
Residues/% | 4.0 | 22.2 | 18.2 | 24.6 |
Samples | T-5 wt% (°C) | T-10 wt% (°C) | T-50 wt% (°C) | 750 °C (wt%) |
---|---|---|---|---|
RPUF-0 | 198 | 259 | 403 | 3.3 |
RPUF-1 | 161 | 224 | 403 | 25.0 |
RPUF-2 | 168 | 242 | 345 | 23.7 |
RPUF-3 | 156 | 219 | 406 | 27.0 |
Sample | Tensile Strength (Mpa) | Elongation at Break (%) | Compressive Strength (MPa) | Density (kg/m3) |
---|---|---|---|---|
RPUF-0 | 0.16 ± 0.03 | 38.52 ± 0.09 | 3.45 ± 0.02 | 65.4 ± 3.0 |
RPUF-1 | 0.08 ± 0.03 | 23.26 ± 0.11 | 1.19 ± 0.04 | 68.2 ± 4.2 |
RPUF-2 | 0.07 ± 0.02 | 23.47 ± 0.06 | 1.12 ± 0.01 | 75.5 ± 2.1 |
RPUF-3 | 0.09 ± 0.02 | 27.63 ± 0.05 | 1.66 ± 0.05 | 84.2 ± 3.5 |
Samples | Polyether Polyol (wt%) | Diisocyanate (wt%) | EG (wt%) | APP (wt%) | GO (wt%) | PA-GO (wt%) |
---|---|---|---|---|---|---|
RPUF-0 | 50 | 50 | 0 | 0 | 0 | 0 |
RPUF-1 | 44.0 | 44.0 | 9.0 | 3.0 | 0 | 0 |
RPUF-2 | 44.0 | 44.0 | 9.0 | 3.0 | 0.3 | 0 |
RPUF-3 | 44.0 | 44.0 | 9.0 | 3.0 | 0 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Jiang, F.; Hu, Z.; Wu, F.; Gao, M.; Chai, Z.; Wang, Y.; Gu, X.; Wang, Y. Study on the Flame Retardancy of Rigid Polyurethane Foam with Phytic Acid-Functionalized Graphene Oxide. Molecules 2023, 28, 6267. https://doi.org/10.3390/molecules28176267
Zhou X, Jiang F, Hu Z, Wu F, Gao M, Chai Z, Wang Y, Gu X, Wang Y. Study on the Flame Retardancy of Rigid Polyurethane Foam with Phytic Acid-Functionalized Graphene Oxide. Molecules. 2023; 28(17):6267. https://doi.org/10.3390/molecules28176267
Chicago/Turabian StyleZhou, Xuan, Feng Jiang, Zhiyu Hu, Faqun Wu, Ming Gao, Zhihua Chai, Yan Wang, Xiaoyu Gu, and Yanxia Wang. 2023. "Study on the Flame Retardancy of Rigid Polyurethane Foam with Phytic Acid-Functionalized Graphene Oxide" Molecules 28, no. 17: 6267. https://doi.org/10.3390/molecules28176267
APA StyleZhou, X., Jiang, F., Hu, Z., Wu, F., Gao, M., Chai, Z., Wang, Y., Gu, X., & Wang, Y. (2023). Study on the Flame Retardancy of Rigid Polyurethane Foam with Phytic Acid-Functionalized Graphene Oxide. Molecules, 28(17), 6267. https://doi.org/10.3390/molecules28176267