A Carboxyl Group-Functionalized Ionic Liquid Hybrid Adsorbent for Solid-Phase Extraction and Determination of Trace Diclofenac Sodium in Milk Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PS-IL-COOH
2.2. Optimization of Adsorption Performance
2.2.1. Effects of pH and Temperature
2.2.2. Adsorption Capacity
2.2.3. Extraction of Diclofenac Sodium at the Ppb Level
2.2.4. Selectivity of the Proposed Extraction Strategy
2.2.5. Reusability of PS-IL-COOH
2.2.6. Method Validation
2.2.7. Real Sample Analysis
2.2.8. Comparison with Other Adsorbents
2.2.9. Adsorption Mechanism
3. Experimental Section
3.1. Reagents and Materials
3.2. Apparatus
3.3. Preparation of the Hybrid Solid-Phase Adsorbent
3.4. Preparation of the Solid-Phase Extraction Column Filled with PS-IL-COOH
3.5. Solid-Phase Extraction and Determination of Diclofenac Sodium
3.6. Real Sample Pretreatment and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jedziniak, P.; Szprengier-Juszkiewicz, T.; Pietruk, K.; Sledzinska, E.; Zmudzki, J. Determination of non-steroidal anti-inflammatory drugs and their metabolites in milk by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 403, 2955–2963. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ou, Y.; Xie, S.; Chen, D.; Wang, X.; Pan, Y.; Wang, Y.; Huang, L.; Cheng, G.; Qu, W.; et al. Magnetic Graphene Solid-Phase Extraction for the Determination of 47 Kinds of Non-steroidal Anti-inflammatory Drug Residues in Animal Food with Liquid Chromatography Tandem Mass Spectrometry. Food Anal. Methods 2019, 12, 1346–1368. [Google Scholar] [CrossRef]
- Oral, O.; Kantar, C. Diclofenac removal by pyrite-Fenton process: Performance in batch and fixed-bed continuous flow systems. Sci. Total Environ. 2019, 664, 817–823. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Zhou, J.; Xi, Q.; Li, X.; Nie, E.; Piao, X.; Sun, Z. Fabricating I doped TiO2 photoelectrode for the degradation of diclofenac: Performance and mechanism study. Chem. Eng. J. 2019, 369, 968–978. [Google Scholar] [CrossRef]
- Dowling, G.; Malone, E.; Harbison, T.; Martin, S. Analytical strategy for the determination of non-steroidal anti-inflammatory drugs in plasma and improved analytical strategy for the determination of authorized and non-authorized non-steroidal anti-inflammatory drugs in milk by LC-MS/MS. Food Addit. Contam. 2010, 27, 962–982. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.; Lu, N.; Wu, X.; Zhang, Y.; Hou, X. Development and application of metal-organic framework@GA based on solid-phase extraction coupling with UPLC-MS/MS for the determination of five NSAIDs in water. Talanta 2021, 225, 121846. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, S.; Zhang, N.; Xu, X.; Bao, T. Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residues. J. Chromatogr. A 2021, 1652, 462349. [Google Scholar] [CrossRef]
- Shishov, A.; Gerasimov, A.; Nechaeva, D.; Volodina, N.; Bessonova, E.; Bulatov, A. An effervescence-assisted dispersive liquid–liquid microextraction based on deep eutectic solvent decomposition: Determination of ketoprofen and diclofenac in liver. Microchem. J. 2020, 156, 104837. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Y.; Xu, X.; Bao, T.; Wang, S. Hydrophilic carboxyl supported immobilization of UiO-66 for novel bar sorptive extraction of non-steroidal anti-inflammatory drugs in food samples. Food Chem. 2021, 355, 129623. [Google Scholar] [CrossRef]
- Liang, X.; Zou, Y.; Liu, S.; Chen, C.; Wang, J.; Hu, H.; Yao, S. Facile and robust dual interaction modification of hexadecyldimethyl amine magnetic nanoparticles for the ultrasensitive analysis of perfluorinated compounds in environmental water. J. Sep. Sci. 2015, 38, 1394–1401. [Google Scholar] [CrossRef]
- Qin, S.B.; Fan, Y.H.; Li, X.S.; Zhang, Y.; Qi, S.H. Rapid preparation of methyltrimethoxy-modified magnetic mesoporous silica as an effective solid-phase extraction adsorbent. J. Sep. Sci. 2018, 41, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Han, Y.; Qiao, F.; Yan, H. Improved Solid-Phase Extraction for Simple, Sensitive, and Efficient Determination of Trace Plant Growth Regulators in Cherry Tomatoes by High-Performance Liquid Chromatography. J. Agric. Food Chem. 2020, 68, 8447–8454. [Google Scholar] [CrossRef] [PubMed]
- Soheili-Azad, P.; Yaftian, M.R.; Dorraji, M.S.S. Application of zinc/aluminum layered double hydroxide nanosorbent in a fixed-bed column for SPE-preconcentration followed by HPLC determination of diclofenac in biological and hospital wastewater samples. Microchem. J. 2019, 148, 270–276. [Google Scholar] [CrossRef]
- Prasetya, N.; Li, K. MOF-808 and its hollow fibre adsorbents for efficient diclofenac removal. Chem. Eng. J. 2021, 417, 129216. [Google Scholar] [CrossRef]
- Huang, L.; Shen, R.; Liu, R.; Xu, S.; Shuai, Q. Facile fabrication of magnetic covalent organic frameworks for magnetic solid-phase extraction of diclofenac sodium in milk. Food Chem. 2021, 347, 129002. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, J.; Huang, C.; Lei, Z. Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chem. Rev. 2017, 117, 6929–6983. [Google Scholar] [CrossRef]
- Cheng, M.; Jiang, J.; Wang, J.; Fan, J. Highly Salt Resistant Polymer Supported Ionic Liquid Adsorbent for Ultrahigh Capacity Removal of p-Nitrophenol from Water. ACS Sustain. Chem. Eng. 2019, 7, 8195–8205. [Google Scholar] [CrossRef]
- Lu, Y.; Li, P.; Yan, H.; Shen, S. Ionic Liquid Modified Porous Polymer as a Dispersive Filter Extraction Adsorbent for Simple, Sensitive, and Efficient Determination of Chlorotriazine Herbicides in Irrigation Water. J. Agric. Food Chem. 2022, 70, 1327–1334. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Sun, Y.; Qiu, F.; Xiang, Y.; Fu, G. Synthesis of thermo-responsive bovine hemoglobin imprinted nanoparticles by combining ionic liquid immobilization with aqueous precipitation polymerization. J. Sep. Sci. 2018, 41, 765–773. [Google Scholar] [CrossRef]
- Durga, G.; Kalra, P.; Kumar Verma, V.; Wangdi, K.; Mishra, A. Ionic liquids: From a solvent for polymeric reactions to the monomers for poly(ionic liquids). J. Mol. Liq. 2021, 335, 116540. [Google Scholar] [CrossRef]
- Valverde, D.; Porcar, R.; Lozano, P.; García-Verdugo, E.; Luis, S.V. Multifunctional Polymers Based on Ionic Liquid and Rose Bengal Fragments for the Conversion of CO2 to Carbonates. ACS Sustain. Chem. Eng. 2021, 9, 2309–2318. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, X.; Yuan, Y.; Han, D.; Qiao, F.; Yan, H. An ionic liquid functionalized graphene adsorbent with multiple adsorption mechanisms for pipette-tip solid-phase extraction of auxins in soybean sprouts. Food Chem. 2018, 265, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huang, W.; Chen, B.; Zhao, Y.; Liu, D.; Sun, Y.; Gong, B. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism. J. Hazard. Mater. 2017, 339, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 2015, 259, 53–61. [Google Scholar] [CrossRef]
- Goyne, K.W.; Chorover, J.; Kubicki, J.D.; Zimmerman, A.R.; Brantley, S.L. Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. J. Colloid Interface Sci. 2005, 283, 160–170. [Google Scholar] [CrossRef]
- Zheng, X.; He, L.; Duan, Y.; Jiang, X.; Xiang, G.; Zhao, W.; Zhang, S. Poly(ionic liquid) immobilized magnetic nanoparticles as new adsorbent for extraction and enrichment of organophosphorus pesticides from tea drinks. J. Chromatogr. A 2014, 1358, 39–45. [Google Scholar] [CrossRef]
- Zhao, G.; Huang, X.; Tang, Z.; Huang, Q.; Niu, F.; Wang, X. Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: A review. Polym. Chem. 2018, 9, 3562–3582. [Google Scholar] [CrossRef]
- Zhang, K.G.R.; Wang, Y.; Nie, Q.; Zhu, G. One-step derivatization and temperature-controlled vortex-assisted liquid-liquid microextraction based on the solidification of floating deep eutectic solvents coupled to UV–Vis spectrophotometry for the rapid determination of total iron in water and food samples. Food Chem. 2022, 384, 132414. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, S.; Xia, M.; Wang, F. Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: Experimental and adsorption mechanism study. J. Hazard. Mater. 2021, 402, 123815. [Google Scholar] [CrossRef]
- Li, S.; Cui, J.; Wu, X.; Zhang, X.; Hu, Q.; Hou, X. Rapid in situ microwave synthesis of Fe3O4@MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation. J. Hazard. Mater. 2019, 373, 408–416. [Google Scholar] [CrossRef]
- Godiya, C.B.; Kumar, S.; Xiao, Y. Amine functionalized egg albumin hydrogel with enhanced adsorption potential for diclofenac sodium in water. J. Hazard. Mater. 2020, 393, 122417. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Huang, H.; Jiang, R.; Wang, N.; Xu, H.; Wang, Y.G.; Ouyang, X.K. Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite. J. Hazard. Mater. 2019, 369, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.X.; Omer, A.M.; Hu, Z.H.; Wang, Y.G.; Yu, D.; Ouyang, X.K. Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan. Chemosphere 2019, 217, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Yuan, X.; Wang, H.; Wu, Z.; Jiang, L.; Leng, L.; Xi, K.; Cao, X.; Zeng, G. Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite. Chem. Eng. J. 2019, 366, 83–91. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Li, X.; Sun, B.; Wang, C. Synthesis of beta-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue. ACS Appl. Mater. Interfaces 2015, 7, 26649–26657. [Google Scholar] [CrossRef]
- Ye, Z.; Huang, Y.; Luo, Q.; Wang, L.; Huang, X. Preparation of highly fluorinated and boron-rich adsorbent for magnetic solid-phase extraction of fluoroquinolones in water and milk samples. J. Chromatogr. A 2019, 1601, 86–94. [Google Scholar] [CrossRef]
Eluent | R% | Eluent | R% |
---|---|---|---|
6 mol/L HCl | 16.5 | 6 mol/L HCl-C2H5OH (5:5) | 61.5 |
3 mol/L HCl | 27.8 | 1 mol/L NaOH | 13.3 |
C2H5OH | 49.8 | 1 mol/L NaOH-C2H5OH (1:9) | 88.7 |
6 mol/L HCl-C2H5OH (1:9) | 94.8 | 1 mol/L NaOH-C2H5OH (2:8) | 80.8 |
6 mol/L HCl-C2H5OH (2:8) | 91.5 | 1 mol/L NaOH-C2H5OH (3:7) | 73.1 |
6 mol/L HCl-C2H5OH (3:7) | 80.0 | 1 mol/L NaOH-C2H5OH (4:6) | 70.6 |
6 mol/L HCl-C2H5OH (4:6) | 71.3 | 1 mol/L NaOH-C2H5OH (5:5) | 67.1 |
Coexisting Substances | Concentration (μg/mL) | Permit Ratio | RSD (%) |
---|---|---|---|
K+ | 100,000 | 10,000 | 1.6 |
Na+ | 100,000 | 10,000 | 2.3 |
Mg2+ | 10,000 | 1000 | 1.7 |
Ca2+ | 10,000 | 1000 | 1.5 |
Cl− | 100,000 | 10,000 | 1.3 |
H2PO4− | 100,000 | 10,000 | 1.9 |
CO32− | 10,000 | 1000 | 1.7 |
SO42− | 10,000 | 1000 | 2.4 |
glucose | 18,000 | 1800 | 3.9 |
starch | 3500 | 350 | 4.9 |
acetaminophen | 4000 | 400 | 4.1 |
sulfanilamide | 2000 | 200 | 2.6 |
citric acid | 1000 | 100 | 1.9 |
L-alanine | 1000 | 100 | 3.8 |
L-proline | 1000 | 100 | 4.6 |
Sample | Added Values (μg/mL) | Detected (μg/mL) | Recovery (%) | RSD (n = 3) |
---|---|---|---|---|
Milk sample 1 | 0.0 | ND | ND | ND |
0.01 | 0.0091 | 91.0 | 2.9 | |
1.0 | 0.96 | 96.0 | 3.7 | |
10.0 | 9.41 | 94.1 | 5.2 | |
Milk sample 2 | 0.0 | ND | ND | ND |
0.01 | 0.0103 | 103.0 | 2.5 | |
1.0 | 1.02 | 102.0 | 3.4 | |
10.0 | 10.1 | 101.1 | 2.9 | |
Milk sample 3 | 0.0 | ND | ND | ND |
0.01 | 0.0098 | 98.0 | 3.1 | |
1.0 | 0.89 | 89.0 | 5.8 | |
10.0 | 8.82 | 88.2 | 7.3 |
Sample | Spiked (μg/mL) | UV-Vis Detected (μg/mL) | HPLC Detected (μg/mL) | t-Value a |
---|---|---|---|---|
0.01 | 0.0092 | 0.0091 | ||
Milk sample 1 | 0.01 | 0.0089 | 0.0097 | 2.92 |
0.01 | 0.0093 | 0.0092 |
Adsorbent | qe | teq | RN | EF | tdt | Ref. |
---|---|---|---|---|---|---|
CS@PANI@LDH composite | 618.2 | 120 | 5 | - | - | [29] |
Fe3O4@MIL-100 (Fe) | 400 | 60 | 5 | - | - | [30] |
Amine-functionalized egg albumin hydrogel | 232.5 | 180 | 4 | - | - | [31] |
Bilayer amino-functionalized cellulose nanocrystals/chitosan composite | 444.4 | 50 | 5 | - | - | [32] |
Amine-functionalized chitosan | 469.5 | 60 | 4 | - | - | [33] |
Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite | 588 | 2 | 3 | - | - | [34] |
MOF-808 and its hollow fibre | 833 | 300 | 4 | - | - | [14] |
Magnetic covalent organic frameworks | - | 60 | 3 | 37.2 | 5 | [15] |
PS-IL-COOH | 934.1 | 30 | 16 | 620.0 | 10 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Wang, C.; Zhu, W.; Jin, P.; Li, F.; Fan, J. A Carboxyl Group-Functionalized Ionic Liquid Hybrid Adsorbent for Solid-Phase Extraction and Determination of Trace Diclofenac Sodium in Milk Samples. Molecules 2023, 28, 6216. https://doi.org/10.3390/molecules28176216
Yang H, Wang C, Zhu W, Jin P, Li F, Fan J. A Carboxyl Group-Functionalized Ionic Liquid Hybrid Adsorbent for Solid-Phase Extraction and Determination of Trace Diclofenac Sodium in Milk Samples. Molecules. 2023; 28(17):6216. https://doi.org/10.3390/molecules28176216
Chicago/Turabian StyleYang, Hongrui, Chen Wang, Wenjuan Zhu, Pingning Jin, Fei Li, and Jing Fan. 2023. "A Carboxyl Group-Functionalized Ionic Liquid Hybrid Adsorbent for Solid-Phase Extraction and Determination of Trace Diclofenac Sodium in Milk Samples" Molecules 28, no. 17: 6216. https://doi.org/10.3390/molecules28176216
APA StyleYang, H., Wang, C., Zhu, W., Jin, P., Li, F., & Fan, J. (2023). A Carboxyl Group-Functionalized Ionic Liquid Hybrid Adsorbent for Solid-Phase Extraction and Determination of Trace Diclofenac Sodium in Milk Samples. Molecules, 28(17), 6216. https://doi.org/10.3390/molecules28176216