Stable Loading of TiO2 Catalysts on the Surface of Metal Substrate for Enhanced Photocatalytic Toluene Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Loading Stability of TiO2 on Aluminum Plate
2.1.1. The Loading Efficiency of TiO2 Powder
2.1.2. Analysis of Etching Rate
2.1.3. The Shedding Efficiency of TiO2 Powder
2.2. Surface Morphology of Aluminum Plate
2.3. Photocatalytic Performance of the Monolithic Catalysts
2.4. Analysis of TiO2 Loading Mechanism
2.4.1. Analysis of Substrate Surface
2.4.2. The Interaction between Binder and TiO2
3. Materials and Methods
3.1. Treatment of Honeycomb Aluminum Plate
3.2. The Loading of TiO2 Powder
3.3. Materials Characterization and Loading Stability Test
3.4. Photocatalytic Performance for Toluene Oxidation
3.5. Computational Detail
4. Conclusions
- (1)
- Acid etching of metal substrate has the advantage of high loading stability and photocatalytic activity compared with anodizing etching;
- (2)
- The optimal surface treatment scheme of metal substrate is the acid etching with 15 wt.% HNO3 solution for 15 min impregnation;
- (3)
- The high surface roughness of metal substrate and the strong chemisorption between TiO2 and TiCl4 account for the high loading efficiency and photocatalytic activity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B Environ. 2017, 203, 247–269. [Google Scholar] [CrossRef]
- Simayi, M.; Shi, Y.; Xi, Z.; Ren, J.; Hini, G.; Xie, S. Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives. Sci. Total Environ. 2022, 826, 153994. [Google Scholar] [CrossRef] [PubMed]
- Almaie, S.; Vatanpour, V.; Rasoulifard, M.H.; Koyuncu, I. Volatile organic compounds (VOCs) removal by photocatalysts: A review. Chemosphere 2022, 306, 135655. [Google Scholar] [CrossRef] [PubMed]
- Ge, K.; Zhang, Y.; Zhao, Y.; Zhang, Z.; Wang, S.; Cao, J.; Yang, Y.; Sun, S.; Pan, M.; Zhu, L. Room Temperature Preparation of Two-Dimensional Black Phosphorus@Metal Organic Framework Heterojunctions and Their Efficient Overall Water-Splitting Electrocatalytic Reactions. ACS Appl. Mater. Interfaces 2022, 14, 31502–31509. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, G.; Chen, Z.; Lian, H.; Gan, L.; Pan, M. Hierarchically nanostructured Ag/ZnO/nBC for VOC photocatalytic degradation: Dynamic adsorption and enhanced charge transfer. J. Environ. Chem. Eng. 2022, 10, 108690. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhu, X.; Liu, Y.; Wu, Z. Fluorine-induced oxygen vacancies on TiO2 nanosheets for photocatalytic indoor VOCs degradation. Appl. Catal. B Environ. 2022, 316, 121610. [Google Scholar] [CrossRef]
- Zhou, J.; Li, D.; Zhao, W.; Jing, B.; Ao, Z.; An, T. First-Principles Evaluation of Volatile Organic Compounds Degradation in Z-Scheme Photocatalytic Systems: MXene and Graphitic-CN Heterostructures. ACS Appl. Mater. Interfaces 2021, 13, 23843–23852. [Google Scholar] [CrossRef]
- Shayegan, Z.; Lee, C.-S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef]
- Huang, H.; Huang, H.; Feng, Q.; Liu, G.; Zhan, Y.; Wu, M.; Lu, H.; Shu, Y.; Leung, D.Y.C. Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation. Appl. Catal. B Environ. 2017, 203, 870–878. [Google Scholar] [CrossRef]
- Erjavec, B.; Hudoklin, P.; Perc, K.; Tišler, T.; Dolenc, M.S.; Pintar, A. Glass fiber-supported TiO2 photocatalyst: Efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs. Appl. Catal. B Environ. 2016, 183, 149–158. [Google Scholar] [CrossRef]
- Guo, D.; Feng, D.; Zhang, Y.; Zhang, Y.; Zhao, Y.; Zhou, Z.; Sun, J.; Quan, C.; Chang, G.; Sun, S. Carbon material-TiO2 for photocatalytic reduction of CO2 and degradation of VOCs: A critical review. Fuel Process. Technol. 2022, 231, 107261. [Google Scholar] [CrossRef]
- Shi, Y.; Kong, F.; Wan, J.; Zhou, R. Synergistic Effect of ZSM-5 Zeolite in Pt–CeO2–TiO2/ZSM-5 Catalysts for Highly Efficient Catalytic Oxidation of VOCs. Ind. Eng. Chem. Res. 2023, 62, 3546–3556. [Google Scholar] [CrossRef]
- Forghieri, G.; Ghedini, E.; Menegazzo, F.; Di Michele, A.; Signoretto, M. An investigation on the photo-catalytic oxidation of air pollutants via SiO2-supported TiO2. Appl. Catal. A Gen. 2022, 644, 118813. [Google Scholar] [CrossRef]
- Balzarotti, R.; Cristiani, C.; Francis, L.F. Combined dip-coating/spin-coating depositions on ceramic honeycomb monoliths for structured catalysts preparation. Catal. Today 2019, 334, 90–95. [Google Scholar] [CrossRef]
- Twigg, M.V.; Richardson, J.T. Fundamentals and Applications of Structured Ceramic Foam Catalysts. Ind. Eng. Chem. Res. 2007, 46, 4166–4177. [Google Scholar] [CrossRef]
- Kozhukhova, A.E.; du Preez, S.P.; Shuro, I.; Bessarabov, D.G. Development of a low purity aluminum alloy (Al6082) anodization process and its application as a platinum-based catalyst in catalytic hydrogen combustion. Surf. Coat. Technol. 2020, 404, 126483. [Google Scholar] [CrossRef]
- Tsuchiyama, T.; Yamamoto, S.; Hata, S.; Murayama, M.; Morooka, S.; Akama, D.; Takaki, S. Plastic deformation and dissolution of ε-Cu particles by cold rolling in an over-aged particle dispersion strengthening Fe-2mass% Cu alloy. Acta Mater. 2016, 113, 48–55. [Google Scholar] [CrossRef]
- Lei, Y.B.; Wang, Z.B.; Zhang, B.; Luo, Z.P.; Lu, J.; Lu, K. Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing. Acta Mater. 2021, 208, 116773. [Google Scholar] [CrossRef]
- Gao, Y.K.; Wu, X.R. Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses. Acta Mater. 2011, 59, 3737–3747. [Google Scholar] [CrossRef]
- Sinha Majumdar, S.; Celik, G.; Ozkan, U.S. Investigation of the Effect of Alumina Binder Addition to Pd/SO42−-ZrO2 Catalysts during Sol–Gel Synthesis. Ind. Eng. Chem. Res. 2016, 55, 11445–11457. [Google Scholar] [CrossRef]
- Menezes, P.L.; Kishore; Kailas, S.V. Influence of surface texture and roughness parameters on friction and transfer layer formation during sliding of aluminium pin on steel plate. Wear 2009, 267, 1534–1549. [Google Scholar] [CrossRef]
- Bobrowski, A.; Stypuła, B.; Hutera, B.; Kmita, A.; Starowicz, M. FTIR spectroscopy of water glass—The binder moulding modified by ZnO nanoparticles. Metalurgija 2012, 4, 477–480. [Google Scholar]
- Li, D.; Zhou, J.; Zhang, Z.; Tian, Y.; Qiao, Y.; Li, J.; Wen, L.; Wei, L. Shaping powdered active carbons into monoliths without decreasing mesoporosity by using silica sol as binder. Mater. Lett. 2017, 190, 127–130. [Google Scholar] [CrossRef]
- Mijangos, C.; Martin, J. Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey. Polymers 2023, 15, 525. [Google Scholar] [CrossRef] [PubMed]
- Rath, A.; Theato, P. Advanced AAO Templating of Nanostructured Stimuli-Responsive Polymers: Hype or Hope? Adv. Funct. Mater. 2020, 30, 1902959. [Google Scholar] [CrossRef]
- Manzano, C.V.; Rodríguez-Acevedo, J.; Caballero-Calero, O.; Martín-González, M. Interconnected three-dimensional anodized aluminum oxide (3D-AAO) metamaterials using different waveforms and metal layers for RGB display technology applications. J. Mater. Chem. C 2022, 10, 1787–1797. [Google Scholar] [CrossRef]
- Stępniowski, W.J.; Bojar, Z. Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features. Surf. Coat. Technol. 2011, 206, 265–272. [Google Scholar] [CrossRef]
- Kwakernaak, C.; Sloof, W.G. Work of adhesion of interfaces between M2AlC (M = Ti, V, Cr) MAX phases and α-Al2O3. Ceram. Int. 2018, 44, 23172–23179. [Google Scholar] [CrossRef]
- Król, D.J.; Wymysłowski, A.; Allaf, K.N. Adhesion work analysis through molecular modeling and wetting angle measurement. Microelectron. Reliab. 2015, 55, 758–764. [Google Scholar] [CrossRef]
- Yang, W.; Zaoui, A. Behind adhesion of uranyl onto montmorillonite surface: A molecular dynamics study. J. Hazard. Mater. 2013, 261, 224–234. [Google Scholar] [CrossRef]
- D’Amore, M.; Taniike, T.; Terano, M.; Ferrari, A.M. Effect of Internal Donors on Raman and IR Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT. Materials 2022, 15, 909. [Google Scholar] [CrossRef]
- Yang, F.; Wen, L.; Peng, Q.; Zhao, Y.; Yang, Z. Adsorption structure properties study of Cl2 on a rutile TiO2(110) surface with first-principles calculations. Mater. Tehnol. 2020, 54, 777–784. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Li, R.; Shen, B.; Zhou, Z.; Deng, L.; Liu, L.; Zhu, X. Production of renewable fuel from CO2 by Co3O4/Cr doped MgAl–LDH p-n heterojunction catalyst. Fuel Process. Technol. 2023, 246, 107762. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, B.; Hu, Z.; Zhen, M.; Guo, S.-Q.; Dong, F. Uncovering the synergy between Mn substitution and O vacancy in ZnAl-LDH photocatalyst for efficient toluene removal. Appl. Catal. B Environ. 2021, 296, 120376. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Zhou, Z.; Deng, L.; Liu, L.; Xu, M. Surface defects introduced by metal doping into layered double hydroxide for CO2 photoreduction: The effect of metal species in light absorption, charge transfer and CO2 reduction. Chem. Eng. J. 2022, 442, 136148. [Google Scholar] [CrossRef]
HNO3 Concentration(wt%) | Impregnation Time (min) | Loading Efficiency (%) |
---|---|---|
none | none | 20.8 |
5.00 | 5 | 30.5 |
15.0 | 5 | 36.6 |
25.0 | 5 | 33.5 |
15.0 | 15 | 42.4 |
15.0 | 25 | 39.2 |
15.0 | 35 | 38.0 |
Current (mA) | Anodizing Time (min) | Loading Efficiency (%) |
---|---|---|
none | none | 20.8 |
5 | 5 | 35.2 |
5 | 15 | 40.3 |
5 | 25 | 38.6 |
5 | 35 | 31.4 |
10 | 15 | 34.6 |
15 | 15 | 34.6 |
20 | 15 | 35.5 |
30 | 15 | 36.5 |
40 | 15 | 30.4 |
50 | 15 | 28.5 |
100 | 15 | 28.2 |
Impregnation Time (min) | Contact Angle (°) | Free Energy (J∙m−2) |
---|---|---|
5 | 68.3 | 35.0 |
15 | 61.9 | 37.7 |
25 | 71.1 | 33.7 |
35 | 72.0 | 32.7 |
Current (mA) | Contact Angle (°) | Free Energy (J∙m−1) |
---|---|---|
5 | 76.1 | 31.8 |
10 | 83.4 | 29.8 |
15 | 90.9 | 28.8 |
20 | 77.3 | 30.9 |
30 | 71.3 | 36.5 |
40 | 72.8 | 36.2 |
50 | 74.8 | 36.4 |
100 | 63.0 | 37.2 |
Items | Species | s | p | d | Total | Charge/eV |
---|---|---|---|---|---|---|
TiCl4 adsorbed on the surface of rutile(110) | Ti | 2.16 | 6.26 | 2.44 | 10.87 | 1.13 |
Cl1 | 1.96 | 5.33 | 0 | 7.28 | −0.28 | |
Cl2 | 1.96 | 5.33 | 0 | 7.28 | −0.28 | |
Cl3 | 1.95 | 5.36 | 0 | 7.31 | −0.31 | |
Cl4 | 1.95 | 5.32 | 0 | 7.27 | −0.27 | |
TiCl4 adsorbed on the surface of anatase(101) | Ti | 2.19 | 6.34 | 2.45 | 10.97 | 1.03 |
Cl1 | 1.94 | 5.33 | 0 | 7.27 | −0.27 | |
Cl2 | 1.95 | 5.29 | 0 | 7.24 | −0.24 | |
Cl3 | 1.95 | 5.28 | 0 | 7.23 | −0.23 | |
Cl4 | 1.95 | 5.29 | 0 | 7.24 | −0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Chen, J.; Zhao, P.; Shen, B.; Zhou, Z.; Wang, Z. Stable Loading of TiO2 Catalysts on the Surface of Metal Substrate for Enhanced Photocatalytic Toluene Oxidation. Molecules 2023, 28, 6187. https://doi.org/10.3390/molecules28176187
Xu L, Chen J, Zhao P, Shen B, Zhou Z, Wang Z. Stable Loading of TiO2 Catalysts on the Surface of Metal Substrate for Enhanced Photocatalytic Toluene Oxidation. Molecules. 2023; 28(17):6187. https://doi.org/10.3390/molecules28176187
Chicago/Turabian StyleXu, Le, Jiateng Chen, Pengcheng Zhao, Boxiong Shen, Zijian Zhou, and Zhuozhi Wang. 2023. "Stable Loading of TiO2 Catalysts on the Surface of Metal Substrate for Enhanced Photocatalytic Toluene Oxidation" Molecules 28, no. 17: 6187. https://doi.org/10.3390/molecules28176187
APA StyleXu, L., Chen, J., Zhao, P., Shen, B., Zhou, Z., & Wang, Z. (2023). Stable Loading of TiO2 Catalysts on the Surface of Metal Substrate for Enhanced Photocatalytic Toluene Oxidation. Molecules, 28(17), 6187. https://doi.org/10.3390/molecules28176187