Adsorption Behavior of a Ternary Covalent Organic Polymer Anchored with SO3H for Ciprofloxacin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of COP-SO3H
2.2. Batch-Wise Adsorption Experiments
2.2.1. Effect of Adsorbent Dosage on Adsorption Performance
2.2.2. Effect of pH on Adsorption Performance
2.2.3. Influence of Contact Time on Adsorption/Adsorption Kinetics
2.2.4. Adsorption Isotherms and Thermodynamics
2.2.5. Influence of Inorganic Ion Type and Ionic Strength on Adsorption
2.2.6. Recyclability
2.2.7. Adsorption Selectivity
3. Synthesis of COP-SO3H
4. Experimental Materials and Methodology
4.1. Experimental Materials
4.2. COP-SO3H Characterization
4.3. Synthesis of COP-SO3H
4.4. Adsorption Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ezelarab, H.A.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.A. Recent Updates of Fluoroquinolones as Antibacterial Agents. Arch. Pharm. 2018, 351, 1800141. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Bello, O.S.; Fadiji, A.E.; Inyinbor, H.E. Threats from Antibiotics: A Serious Environmental Concern. J. Environ. Chem. Eng. 2018, 6, 784–793. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Jia, Y.Y.; Khanal, S.K.; Lu, H.; Fang, H.T.; Zhao, Q. Understanding the Role of Extracellular Polymeric Substances on Ciprofloxacin Adsorption in Aerobic Sludge, Anaerobic Sludge, and Sulfate-Reducing Bacteria Sludge Systems. Environ. Sci. Technol. 2018, 52, 6476–6486. [Google Scholar] [CrossRef]
- Zhang, B.P.; Han, X.L.; Gu, P.J.; Fang, S.Q.; Bai, J. Response Surface Methodology Approach for Optimization of Ciprofloxacin Adsorption Using Activated Carbon Derived from the Residue of Desilicated Rice Husk. J. Mol. Liq. 2017, 238, 316–325. [Google Scholar] [CrossRef]
- Danner, M.C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic Pollution in Surface Fresh Waters: Occurrence and Effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Asadipour, A.; Pournamdari, M.; Behnam, B.; Rahimi, H.R.; Dolatabadi, M. Removal of Ciprofloxacin from Hospital Wastewater Using Electrocoagulation Technique by Aluminum Electrode: Optimization and Modelling through Response Surface Methodology. Process Saf. Environ. Prot. 2017, 109, 538–547. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Bajpai, M.; Rai, N. Sorptive Removal of Ciprofloxacin Hydrochloride from Simulated Wastewater Using Sawdust: Kinetic Study and Effect of pH. Water SA 2012, 38, 673–682. [Google Scholar] [CrossRef]
- Maul, J.D.; Schuler, L.J.; Belden, J.B.; Whiles, M.R.; Lydy, M.J. Effects of the Antibiotic Ciprofloxacin on Stream Microbial Communities and Detritivorous Macroinvertebrates. Environ. Toxicol. Chem. 2006, 25, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Rutgersson, C.; Fick, J.; Marathe, N.; Kristiansson, E.; Janzon, A.; Angelin, M.; Johansson, A.; Shouche, Y.; Flach, C.F.; Larsson, D.G.J. Fluoroquinolones and Qnr Genes in Sediment, Water, Soil, and Human Fecal Flora in an Environment Polluted by Manufacturing Discharges. Environ. Sci. Technol. 2014, 48, 7825–7832. [Google Scholar] [CrossRef] [PubMed]
- Sim, W.J.; Lee, J.W.; Lee, E.S.; Shin, S.K.; Hwang, S.R.; Oh, J.E. Occurrence and Distribution of Pharmaceuticals in Wastewater from Households, Livestock Farms, Hospitals and Pharmaceutical Manufactures. Chemosphere 2011, 82, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Igwegbe, C.A.; Oba, S.N.; Aniagor, C.O.; Adeniyi, A.G.; Ighalo, J.O. Adsorption of Ciprofloxacin from Water: A Comprehensive Review. J. Ind. Eng. Chem. 2021, 93, 57–77. [Google Scholar] [CrossRef]
- Zeng, Y.M.; Zhou, G.M.; He, D.D.; Peng, G.L. Catalytic Degradation of Ciprofloxacin in Aqueous Solution by Peroxymonosulfate Activated with a Magnetic CuFe2O4@Biochar Composite. Int. J. Mol. Sci. 2023, 24, 5702. [Google Scholar] [CrossRef]
- Mohammed, S.J.; Ridha, M.J.M.; Abed, K.M.; Elgharbawy, A.A.M. Removal of Levofloxacin and Ciprofloxacin from Aqueous Solutions and an Economic Evaluation Using the Electrocoagulation Process. Int. J. Environ. Anal. Chem. 2021, 103, 3801–3819. [Google Scholar] [CrossRef]
- Babic, S.; Perisa, M.; Skoric, I. Photolytic Degradation of Norfloxacin, Enrofloxacin and Ciprofloxacin in Various Aqueous Media. Chemosphere 2013, 91, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.B.; Li, B.X.; Zou, R.S.; Dai, Y.; Xie, S.G.; Yuan, B.L. Biodegradation of Antibiotic Ciprofloxacin: Pathways, Influential Factors, and Bacterial Community Structure. Environ. Sci. Pollut. Res. 2016, 23, 7911–7918. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.J.; Deng, Y.; Li, D.S.; Li, H.P.; Yang, H.Y. Role of Magnetic Substances in Adsorption Removal of Ciprofloxacin by Gamma Ferric Oxide and Ferrites Co-Modified Carbon Nanotubes. J. Colloid Interface Sci. 2023, 638, 872–881. [Google Scholar] [CrossRef]
- Das, S.; Sengupta, S. Sustainable Removal of Antibiotic Drugs from Wastewater Using Different Adsorbents—A Concise Review. Water Conserv. Sci. Eng. 2023, 8, 10. [Google Scholar] [CrossRef]
- Thommes, M.; Cychosz, K. Recent Advances in the Textural Characterization of Hierarchically Structured Nanoporous Materials. In Electrochemical Society Meeting Abstracts 233; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2017; p. 2374. [Google Scholar]
- Tian, Y.Y.; Zhu, G.S. Porous Aromatic Frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.T.; Shen, J.C.; Zhuo, N.; Tian, Z.Q.; Xu, P.R.; Yang, Z.; Yang, W.B. Interactions between Antibiotics and Graphene-Based Materials in Water: A Comparative Experimental and Theoretical Investigation. ACS Appl. Mater. Interfaces 2016, 8, 24273–24280. [Google Scholar] [CrossRef] [PubMed]
- Van de Voorde, B.; Bueken, B.; Denayer, J.; De Vos, D. Adsorptive Separation on Metal-Organic Frameworks in the Liquid Phase. Chem. Soc. Rev. 2014, 43, 5766–5788. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, C.X.; Qian, H.L.; Zhao, X.; Yan, X.P. Carboxyl-Functionalized Covalent Organic Frameworks for the Adsorption and Removal of Triphenylmethane Dyes. ACS Appl. Nano Mater. 2019, 2, 7290–7298. [Google Scholar] [CrossRef]
- Wang, T.A.; Azhar, I.F.; Yang, Y.T.; Lu, Y.; Tian, Y.Y.; Gao, N.; Cui, F.C.; Yang, L.; Jing, X.F.; Zhu, G.S. Fine-Tuned Mesoporous Covalent Organic Frameworks for Highly Efficient Low Molecular-Weight Proteins Separation. Nano Res. 2022, 15, 4569–4574. [Google Scholar] [CrossRef]
- Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angew. Chem. Int. Ed. 2008, 47, 3450–3453. [Google Scholar] [CrossRef]
- Wang, T.A.; Du, Y.Y.; Yang, Y.T.; Jing, X.F.; Zhu, G.S. Imidazolium-Functionalized Ionic Porous Aromatic Frameworks For CO2 Capture and in Situ Conversion. Ind. Eng. Chem. Res. 2022, 61, 7284–7291. [Google Scholar] [CrossRef]
- Tan, W.; Xu, X.Y.; Lv, Y.X.; Lei, W.J.; Hu, K.; Ye, F.G.; Zhao, S.L. Sulfonic Acid Functionalized Hierarchical Porous Covalent Organic Frameworks as a SALDI-TOF MS Matrix for Effective Extraction and Detection of Paraquat and Diquat. J. Colloid Interface Sci. 2021, 603, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.L.; Jia, S.; Li, G.K.; Hu, Y.L. Organic Building Block Based Microporous Network Snw-1 Coating Fabricated by Multi Layer Interbridging Strategy for Efficient Enrichment of Trace Volatiles. Anal. Chem. 2015, 87, 3373–3381. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Kundu, T.; Dey, K.; Addicoat, M.; Heine, T.; Banerjee, R. Interplaying Intrinsic and Extrinsic Proton Conductivities in Covalent Organic Frameworks. Chem. Mater. 2016, 28, 1489–1494. [Google Scholar] [CrossRef]
- Zhong, H.; Fu, Z.H.; Taylor, J.M.; Xu, G.; Wang, R.H. Inorganic Acid-Impregnated Covalent Organic Gels as High-Performance Proton-Conductive Materials at Subzero Temperatures. Adv. Funct. Mater. 2017, 27, 1701465. [Google Scholar] [CrossRef]
- Zhang, C.J.; Li, G.K.; Zhang, Z.M. A Hydrazone Covalent Organic Polymer Based Micro-Solid Phase Extraction for Online Analysis of Trace Sudan Dyes in Food Samples. J. Chromatogr. A 2015, 1419, 1–9. [Google Scholar] [CrossRef]
- Jia, S.Z.; Pan, H.Y.; Lin, Q.; Wang, X.S.; Li, C.G.; Wang, M.; Shi, Y.Y. Study on the Preparation and Mechanism of Chitosan-Based Nano-Mesoporous Carbons by Hydrothermal Method. Nanotechnology 2020, 31, 365604. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, W.Q.; Qiao, J.S.; Wang, D.D.; Li, X.; Teo, W.L.; Shi, X.Y.; Wu, H.W.; Di, J.; Wang, H.; et al. Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2d Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. J. Am. Chem. Soc. 2020, 142, 18138–18149. [Google Scholar] [CrossRef]
- Advani, J.H.; Singh, A.S.; Noor-ul, H.K.; Bajaj, H.C.; Biradar, A.V. Black yet Green: Sulfonic Acid Functionalized Carbon as a Catalyst for Highly Selective Isomerization of α-Pinene Oxide to Trans-Carveol. Appl. Catal. B Environ. 2019, 268, 118456. [Google Scholar] [CrossRef]
- Kilic, D.; Sevim, M.; Eroglu, Z.; Metin, O.; Karaca, S. Strontium Oxide Modified Mesoporous Graphitic Carbon Nitride/Titanium Dioxide Nanocomposites (SrO-mpg-CN/TiO2) as Efficient Heterojunction Photocatalysts for the Degradation of Tetracycline in Water. Adv. Powder Technol. 2021, 32, 2743–2757. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Patra, C.; Narayanasamy, S.; Subbiah, S. Adsorptive Removal of Ciprofloxacin and Amoxicillin from Single and Binary Aqueous Systems Using Acid-Activated Carbon from Prosopis juliflora. Environ. Res. 2020, 188, 109825. [Google Scholar] [CrossRef]
- Subramaniyasharma, S.; Shanmugam, S.R.; Bhuvaneswari, V.; Ponnusami, V.; Rangabhashiyam, S. Pyrolysis of an Invasive Weed Prosopis juliflora Wood Biomass for the Adsorptive Removal of Ciprofloxacin. Biomass Convers. Biorefin. 2023, 13, 9435–9450. [Google Scholar] [CrossRef]
- Liang, C.H.; Zhang, X.D.; Feng, P.; Chai, H.X.; Huang, Y.M. ZIF-67 Derived Hollow Cobalt Sulfide as Superior Adsorbent for Effective Adsorption Removal of Ciprofloxacin Antibiotics. Chem. Eng. J. 2018, 344, 95–104. [Google Scholar] [CrossRef]
- Lu, D.W.; Xu, S.; Qiu, W.; Sun, Y.; Liu, X.B.; Yang, J.J.; Ma, J. Adsorption and Desorption Behaviors of Antibiotic Ciprofloxacin on Functionalized Spherical Mcm-41 for Water Treatment. J. Clean. Prod. 2020, 264, 121644. [Google Scholar] [CrossRef]
- Jiang, S.B.; Yu, T.F.; Xia, R.; Wang, X.; Gao, M.Z. Realization of of Super High Adsorption Capability of 2D δ-MnO2/GO through Intra-Particle Diffusion. Mater. Chem. Phys. 2019, 232, 374–381. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, Y.G.; Hu, X.J.; Liu, S.B.; Zeng, G.M.; Zheng, B.H.; Jiang, L.H.; Guo, F.Y.; Ding, Y.; Xu, Y. Decontamination of Methylene Blue from Aqueous Solution by Magnetic Chitosan Lignosulfonate Grafted with Graphene Oxide: Effects of Environmental Conditions and Surfactant. RSC Adv. 2016, 6, 19298–19307. [Google Scholar] [CrossRef]
- Zhao, Z.; Liang, B.; Wang, M.; Yang, Q.; Su, M.; Liang, S.X. Microporous Carbon Derived from Hydroxyl Functionalized Organic Network for Efficient Adsorption of Flumequine: Adsorption Mechanism and Application Potentials. Chem. Eng. J. 2022, 427, 130943. [Google Scholar] [CrossRef]
- Ho, Y.S.; Chiu, W.T.; Wang, C.C. Regression Analysis for the Sorption Isotherms of Basic Dyes on Sugarcane Dust. Bioresour. Technol. 2005, 96, 1285–1291. [Google Scholar] [CrossRef]
- Shang, J.G.; Kong, X.R.; He, L.L.; Li, W.H.; Liao, Q.J.H. Low-Cost Biochar Derived from Herbal Residue: Characterization and Application for Ciprofloxacin Adsorption. Int. J. Environ. Sci. Technol. 2016, 13, 2449–2458. [Google Scholar] [CrossRef]
- Calagui, M.J.C.; Senoro, D.B.; Kan, C.C.; Salvacion, J.W.L.; Futalan, C.M.; Wan, M.W. Adsorption of Indium(III) Ions from Aqueous Solution Using Chitosan-Coated Bentonite Beads. J. Hazard. Mater. 2014, 277, 120–126. [Google Scholar] [CrossRef]
- Chen, A.H.; Huang, Y.Y. Adsorption of Remazol Black 5 from Aqueous Solution by the Templated Crosslinked-Chitosans. J. Hazard. Mater. 2010, 177, 668–675. [Google Scholar] [CrossRef]
- Avci, A.; Inci, I.; Baylan, N. A Comparative Adsorption Study with Various Adsorbents for the Removal of Ciprofloxacin Hydrochloride from Water. Water Air Soil Pollut. 2019, 230, 250. [Google Scholar] [CrossRef]
- Zhao, P.P.; Wu, Y.Q.; Yu, F. Experimental Data and Modeling the Adsorption-Desorption and Mobility Behavior of Ciprofloxacin in Sandy Silt Soil. Water 2022, 14, 1728. [Google Scholar] [CrossRef]
- Chang, F.; Memon, N.; Memon, S.; Chang, A.S. Selective Adsorption of Emerging Contaminants from Aqueous Solution Using Cu-Based Composite by Solvothermal. Int. J. Environ. Sci. Technol. 2022, 19, 11161–11168. [Google Scholar] [CrossRef]
- Chang, F.; Memon, N.; Memon, S.; Chang, A.S. Removal of Emerging Contaminants from Water by Using Fe-MOF Composite as a Sorbent. J. Iran Chem. Soc. 2021, 18, 3249–3255. [Google Scholar] [CrossRef]
- Kaya, G.G.; Aznar, E.; Deveci, H.; Martinez-Manez, R. Low-Cost Silica Xerogels as Potential Adsorbents for Ciprofloxacin Removal. Sustain. Chem. Pharm. 2021, 22, 100483. [Google Scholar] [CrossRef]
- Li, X.N.; Wang, W.Q.; Dou, J.; Gao, J.S.; Chen, S.; Quan, X.; Zhao, H.M. Dynamic Adsorption of Ciprofloxacin on Carbon Nanofibers: Quantitative Measurement by in Situ Fluorescence. J. Water Process. Eng. 2016, 9, E14–E20. [Google Scholar] [CrossRef]
- Wang, C.J.; Li, Z.H.; Jiang, W.T. Adsorption of Ciprofloxacin on 2:1 Dioctahedral Clay Minerals. Appl. Clay Sci. 2011, 53, 723–728. [Google Scholar] [CrossRef]
- Velusamy, K.; Periyasamy, S.; Kumar, P.S.; Jayaraj, T.; Krishnasamy, R.; Sindhu, J.; Sneka, D.; Subhashini, B.; Vo, D.V.N. Analysis on the Removal of Emerging Contaminant from Aqueous Solution Using Biochar Derived from Soap Nut Seeds. Environ. Pollut. 2021, 287, 117632. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Lu, C.C.; Lin, C.W.; Wang, K.S.; Lee, M.W.; Liu, S.H. Waste Expanded Polystyrene Modified with H2SO4/Biodegradable Chelating Agent for Reuse: As a Highly Efficient Adsorbent to Remove Fluoroquinolone Antibiotic from Water. Chemosphere 2022, 288, 132619. [Google Scholar] [CrossRef]
- Jin, J.H.; Yang, Z.H.; Xiong, W.P.; Zhou, Y.Y.; Xu, R.; Zhang, Y.R.; Cao, J.; Li, X.; Zhou, C.Y. Cu and Co Nanoparticles Co-Doped MIL-101 as a Novel Adsorbent for Efficient Removal of Tetracycline from Aqueous Solutions. Sci. Total Environ. 2019, 650, 408–418. [Google Scholar] [CrossRef]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef]
- Zhao, W.J.; Zuo, H.Y.; Guo, Y.; Liu, K.J.; Wang, S.; He, L.J.; Jiang, X.M.; Xiang, G.Q.; Zhang, S.S. Porous Covalent Triazine-Terphenyl Polymer as Hydrophilic-Lipophilic Balanced Sorbent for Solid Phase Extraction of Tetracyclines in Animal Derived Foods. Talanta 2019, 201, 426–432. [Google Scholar] [CrossRef]
- Lin, L.; Guan, H.D.; Zou, D.L.; Dong, Z.J.; Liu, Z.; Xu, F.F.; Xie, Z.G.; Li, Y.X. A Pharmaceutical Hydrogen-Bonded Covalent Organic Polymer for Enrichment of Volatile Iodine. RSC Adv. 2017, 7, 54407–54415. [Google Scholar] [CrossRef]
- Agboola, O.S.; Bello, O.S. Enhanced Adsorption of Ciprofloxacin from Aqueous Solutions Using Functionalized Banana Stalk. Biomass Convers. Biorefin. 2022, 12, 5463–5478. [Google Scholar] [CrossRef]
- Al-Jabari, M.H.; Sulaiman, S.; Ali, S.; Barakat, R.; Mubarak, A.; Khan, S.A. Adsorption Study of Levofloxacin on Reusable Magnetic Nanoparticles: Kinetics and Antibacterial Activity. J. Mol. Liq. 2019, 291, 111249. [Google Scholar] [CrossRef]
Materials | C (wt %) | H (wt %) | N (wt %) | S * (wt %) | ||||
---|---|---|---|---|---|---|---|---|
Calc. | Exp. | Calc. | Exp. | Calc. | Exp. | Calc. | Exp. | |
COP-SO3H | 66.92 | 74.17 | 3.85 | 4.91 | 10.76 | 6.58 | 6.15 | 0.62 |
C0 | qe,exp | Removal | Pseudo-First-Order Dynamics Model | Pseudo-Second-Order Dynamics Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(mg·L−1) | (mg·g−1) | Efficiency | qe,cal | k1 | Δq1 | R2 | qe,cal | k1 | Δq1 | R2 |
(%) | (mg·g−1) | (h−1) | (%) | (mg·g−1) | (h−1) | (%) | ||||
10 | 9.05 | 90.50 | 1.92 | 0.082 | 370.3 | 0.71 | 9.11 | 0.170 | 0.65 | 0.99 |
20 | 15.57 | 77.85 | 4.96 | 0.073 | 214.0 | 0.74 | 15.73 | 0.057 | 1.01 | 0.99 |
30 | 19.76 | 65.87 | 7.83 | 0.081 | 152.3 | 0.96 | 20.12 | 0.033 | 1.79 | 0.99 |
C0 | Intraparticle Diffusion Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
(mg·L−1) | ki,1 | C1 | R2 | ki,2 | C2 | R2 | ki,3 | C3 | R2 |
(mg·g−1·h−1/2) | (mg·g−1) | (mg g−1 h−1/2) | (mg·g−1) | (mg·g−1·h−1/2) | (mg·g−1) | ||||
10 | 3.26 | 2.25 | 0.99 | 0.33 | 7.50 | 0.96 | 0.09 | 8.35 | 0.99 |
20 | 3.94 | 3.92 | 0.99 | 1.37 | 9.72 | 0.89 | 0.27 | 13.47 | 0.91 |
30 | 4.41 | 7.74 | 0.99 | 1.46 | 11.48 | 0.96 | 0.27 | 17.68 | 0.97 |
T | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|
(°C) | qm | KL | R2 | KF | n | R2 |
(mg·g−1) | (L·mg−1) | (mg·g−1) (L·mg−1)1/n | ||||
10 | 30.37 | 0.11 | 0.99 | 8.70 | 3.93 | 0.99 |
20 | 39.11 | 0.11 | 0.99 | 9.73 | 3.44 | 0.98 |
30 | 44.96 | 0.11 | 0.99 | 11.75 | 3.58 | 0.98 |
S.N. | Adsorbents | Adsorption Capacity (mg·g−1) | Conditions | Reference |
---|---|---|---|---|
1 | Montmorillonite | 1.94 | 298 K | [46] |
2 | Alumina | 4.55 | 298 K | [46] |
3 | Modified montmorillonite | 5.10 | 298 K | [46] |
4 | Sandy silt soil | 5.50 | 298 K | [47] |
5 | Activated carbon | 9.87 | 298 K | [46] |
6 | Cu-BTC@Fe3O4 | 12.35 | 298 K | [48] |
7 | Fe3O4@MIL-100 (Fe) | 13.65 | 298 K | [49] |
8 | Amorphous SiO2 | 19.71 | 298 K | [38] |
9 | Silica xerogel | 24.45 | 298 K | [50] |
10 | Carbon nanofibers | 31.26 | 298 K | [51] |
11 | Illite | 33 | / | [52] |
12 | Soapnut seeds biochar | 33.44 | 303 K | [53] |
13 | EPSH2SO4 | 38.61 | / | [54] |
14 | COP-SO3H | 39.11 | 293 K | This work |
Temperature (K) | ∆G0 (kJ·mol−1) | ∆H0 (kJ·mol−1) | ∆S0 (kJ·mol−1·K−1) |
---|---|---|---|
283 | −1.95 | 22.69 | 0.08734 |
293 | −3.06 | ||
303 | −4.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Qin, C.; Zhao, D.; Wang, Z.; Mao, D. Adsorption Behavior of a Ternary Covalent Organic Polymer Anchored with SO3H for Ciprofloxacin. Molecules 2023, 28, 6941. https://doi.org/10.3390/molecules28196941
Wang Z, Qin C, Zhao D, Wang Z, Mao D. Adsorption Behavior of a Ternary Covalent Organic Polymer Anchored with SO3H for Ciprofloxacin. Molecules. 2023; 28(19):6941. https://doi.org/10.3390/molecules28196941
Chicago/Turabian StyleWang, Zhuoran, Chuanyu Qin, Dongyu Zhao, Ziheng Wang, and Dongpeng Mao. 2023. "Adsorption Behavior of a Ternary Covalent Organic Polymer Anchored with SO3H for Ciprofloxacin" Molecules 28, no. 19: 6941. https://doi.org/10.3390/molecules28196941
APA StyleWang, Z., Qin, C., Zhao, D., Wang, Z., & Mao, D. (2023). Adsorption Behavior of a Ternary Covalent Organic Polymer Anchored with SO3H for Ciprofloxacin. Molecules, 28(19), 6941. https://doi.org/10.3390/molecules28196941