Two New Compounds from Allii Macrostemonis Bulbus and Their In Vitro Antioxidant Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
2.2. Antioxidant Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Isolation and Purification of Compounds 1–12
3.4. Antioxidant Activity
3.4.1. Preparation of Sample Solutions
3.4.2. Measurement of DPPH Free Radical Scavenging Capacity
3.4.3. Measurement of ABTS Radical Scavenging Capacity
3.4.4. Measurement of O2−· Scavenging Capacity
3.4.5. Measurement of Fe3+ Reduction Capacity
3.4.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Part 1; pp. 392–393.
- Yao, Z.H.; Qin, Z.F.; Dai, Y.; Yao, X.S. Phytochemistry and pharmacology of Allii Macrostemonis Bulbus, a traditional Chinese medicine. Chin. J. Nat. Med. 2016, 14, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.F.; Wang, L.L.; Cui, Y.; Liu, F.; Zhang, J. Allii Macrostemonis Bulbus: A comprehensive review of ethnopharmacology, phytochemistry and pharmacology. Molecules 2023, 28, 2485. [Google Scholar] [CrossRef] [PubMed]
- Guan, F.; Zhang, F.L.; Hao, L.Z.; Shi, B.; Yang, Z.R. Antioxidant activity of total spaonion of Allium macrostemon. Plant Physiol. J. 2014, 50, 382–388. [Google Scholar]
- Xia, X.K.; Dou, C.L. Sulfated modification of polysaccharides from Allium macrosttemon Bge. and in vitro antioxidant activity. Nat. Prod. Res. Dev. 2015, 27, 881–885. [Google Scholar]
- Wu, Z.Q.; Li, K.; Ma, J.K.; Huang, Q.; Tian, X.; Li, Z.J. Antioxidant activity of organic sulfides from fresh Allium macrostemon Bunge and their protective effects against oxidative stress in Caenorhabditis elegans. J. Food Biochem. 2020, 44, e13447. [Google Scholar] [CrossRef]
- Wu, Z.M.; Zhang, Q.F.; Xue, Y.W.; Pang, D.; Zhang, Y.B. Apoptosis of human gastric cancer cells included by bulbus Allii Macrostemi volatile oil. Chin. J. Tissue Eng. Res. 2006, 10, 115–117. [Google Scholar]
- Chen, H.F.; Wang, G.H.; Luo, Q.; Wang, N.L.; Yao, X.S. Two new steroidal saponins from Allium macrostemon Bunge and their cytotoxity on different cancer cell lines. Molecules 2009, 14, 2246–2253. [Google Scholar] [CrossRef]
- Luo, T.; Shi, M.Q.; Liu, X.; Zhou, J.G.; Yang, W.Y.; Yang, H.M. Effect of total saponin from Allium macrostemon Bunge on proliferation and apoptosis of cervix cancer HeLa cells. Chin. J. Difficult Complicat. Cases 2012, 11, 762–765. [Google Scholar]
- He, L.H. Applying factorial design to research on the lipid-reducing efficacy of snake-gourd and Allium macrostemon. Guid. J. Tradit. Chin. Med. Pharm. 2002, 8, 205–207. [Google Scholar]
- Wu, Y.; Peng, J.P.; Yao, L.Q.; Yao, X.S. A study on the volatile oils of Allium macrostemon Bunge. J. Shenyang Pharm. Univ. 1993, 10, 45–46+62. [Google Scholar]
- Wang, Z.P.; Feng, H.; Guo, M.; Wang, C.S. Effects of saponins from Allium Macrostemon Bunge bulbs on platelet aggregation and interactions between platelets and neutrophils. Chin. J. Inf. Tradit. Chin. Med. 2018, 25, 33–37. [Google Scholar]
- Feng, H.; Wang, Z.; Wang, C.; Zhu, X.; Liu, Z.; Liu, H.; Guo, M.; Hou, Q.; Chu, Z. Effect of furostanol saponins from Allium Macrostemon Bunge bulbs on platelet aggregation rate and PI3K/Akt pathway in the rat model of coronary heart disease. J. Evid. Based Complement. Altern. Med. 2019, 2019, 9107847. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.N.; Chen, H.Y.; Zhang, Y. Oxidative stress and atherosclerosis. Chin. J. Arterioscler. 2023, 31, 312–321. [Google Scholar]
- Gao, P.P.; Song, X. Research progress of influence of oxidative stress on cardiovascular diseases. Chin. J. Cardiovasc. Rehabil. Med. 2023, 32, 163–166. [Google Scholar]
- Mishra, A.; Kumar, S.; Pandey, A.K. Scientific Validation of the Medicinal Efficacy of Tinospora cordifolia. Sci. World J. 2013, 2013, 292934. [Google Scholar] [CrossRef]
- Mishra, A.; Sharma, A.K.; Kumar, S.; Saxena, A.K.; Pandey, A.K. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Res. Int. 2013, 2013, 915436. [Google Scholar] [CrossRef]
- Bergeron-Brlek, M.; Shiao, T.C.; Trono, M.C.; Roy, R. Synthesis of a small library of bivalent α-d-mannopyranosides for lectin cross-linking. Carbohydr. Res. 2011, 346, 1479–1489. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.L.; Zhang, M.L.; Guo, Y.D.; Zhang, J.; Ma, G.X. Five new spirosterol saponins from Allii Macrostemonis Bulbus. Chin. J. Nat. Med. 2023, 21, 226–232. [Google Scholar] [CrossRef]
- Yang, Y.R. Study on chemical constituents and biological activity of Allium Chinenes G. Don. Master’s Thesis, Jilin University, Jilin, China, 2017. [Google Scholar]
- Chen, H.F. Further Research of Active Components from a Chinese Medicine Allium macrostemon Bunge. Ph.D. Thesis, Shenyang Pharmaceutical University, Shenyang, China, 2005. [Google Scholar]
- Zhong, X.N.; Otsuka, H.; Ide, T.; Hirata, E.; Takushi, A.; Takeda, Y. Three flavonol glycosides from leaves of Myrsine seguinii. Phytochemistry 1997, 46, 943–946. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, Y.Y.; Wang, D.Z.; Yang, C.R. Steroidal saponins from a cultivated form of Agave sisalana. Phytochemistry 1989, 28, 2787–2791. [Google Scholar]
- Nagumo, S.; Kishi, S.; Inoue, T.; Nagai, M. Saponins of anemarrhenae rhizoma. J. Pharm. Soc. Jpn. 1991, 111, 306–310. [Google Scholar] [CrossRef]
- Woo, M.H.; Do, J.C.; Son, K.H. Five new spirostanol glycosides from the subterranean parts of Smilax sieboldii. J. Nat. Prod. 1992, 55, 1129–1135. [Google Scholar] [CrossRef]
- Peng, J.P.; Wu, Y.; Yao, X.S.; Okuyama, T.; Narui, T. Two new steroidal saponins from Allium macrostemon. Acta Pharm. Sin. 1992, 27, 918–922. [Google Scholar]
- Faizi, S.; Ali, M.; Saleem, R.; Irfanullah; Bibi, S. Complete 1H and 13C NMR assignments of stigma-5-en-3-o-β-glucoside and its acetyl derivative. Magn. Reson. Chem. 2001, 39, 399–405. [Google Scholar] [CrossRef]
- Wu, B.; Liu, Y.; Li, Y.X.; Yu, S.H.; Chen, J.; Wu, H.Q.; Li, B. Chenical constituents from the fruits of Decaisnea insignis. J. Chin. Med. Mater. 2022, 45, 2107–2112. [Google Scholar]
- Li, X.; Xu, H.N.; Li, S.X.; Zhang, H.W.; Jiang, W.; Li, Y.Z.; Song, X.M.; Zhang, D.D.; Wang, W. Study on chemical constituents of “Taibai Qi Yao” Fallopia mutiflora var. ciliinervis. Chin. Tradit. Herb. Drugs 2023, 54, 1043–1050. [Google Scholar]
- Weast, R.C.; Grasselli, J.G. Hand Book of Data on Organic Compound; CRC Press Inc.: Boca Raton, FL, USA, 1989; p. 163. [Google Scholar]
- Zhuang, L.G.; Seligmann, O.; Wagner, H. Daphneticin, a coumarinolignoid from Daphne tangutica. Phytochemistry 1983, 22, 617–619. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, K.; Li, X.X.; Bi, K.L.; Zhang, Y.M.; Huang, J.J.; Zhang, R.R. Variation of active constituents and antioxidant activity in Scabiosa tschiliensis Grunning from different stages. J. Food Sci. Technol. 2017, 54, 2288–2295. [Google Scholar] [CrossRef]
- Jie, Z.S.; Liu, J.; Shu, M.C.; Ying, Y.; Yang, H.F. Detection strategies for superoxide anion: A review. Talanta 2022, 236, 122892. [Google Scholar] [CrossRef]
- Sinan, K.I.; Mahomoodally, M.F.; Eyupoglu, O.E.; Etienne, O.K.; Sadeer, N.B.; Ak, G.; Behl, T.; Zengin, G. HPLC-FRAP methodology and biological activities of different stem bark extracts of Cajanus cajan (L.) Millsp. J. Pharm. Biomed. Anal. 2021, 192, 113678. [Google Scholar] [CrossRef] [PubMed]
Position | δC (ppm) | δH (J in Hz) |
---|---|---|
1, 1′ | 157.15 | - |
2, 6, 2′, 6′ | 115.57 | 6.76 (4H, d, J = 8.82 Hz) |
3, 5, 3′, 5′ | 131.21 | 7.91 (4H, d, J = 8.76 Hz) |
4, 4′ | 133.42 | - |
Glc-1″, 1‴ | 101.58 | 5.32 (2H, d, J = 7.50 Hz) |
2″, 2‴ | 77.92 | 2.97 (2H, m) |
3″, 3‴ | 76.90 | 3.11 (2H, m) |
4″, 4‴ | 74.68 | 3.05 (2H, s) |
5″, 5‴ | 70.27 | 2.30 (2H, m) |
6″, 6‴ | 61.24 | 3.45 (4H, d, J = 11.40 Hz) |
Position | δC (ppm) | δH (J in Hz) | Position | δC (ppm) | δH (J in Hz) |
---|---|---|---|---|---|
1 | 39.25 | 1.37 (1H, m) 0.94 (1H, m) | C-3 Gal-1′ | 103.08 | 4.94 (1H, d, J = 7.62 Hz) |
2 | 67.45 | 3.83 (1H, m) | 2′ | 82.15 | 4.48 (1H, m) |
3 | 82.27 | 4.47 (1H, m) | 3′ | 75.66 | 4.25 (1H, m) |
4 | 29.52 | 1.45 (2H, m) | 4′ | 70.33 | 4.55 (1H, m) |
5 | 36.53 | 1.59 (1H, m) | 5′ | 77.06 | 4.06 (1H, m) |
6 | 25.30 | 0.90 (2H, m) | 6′ | 62.60 | 4.52 (1H, m) 4.60 (1H, m) |
7 | 26.48 | 1.17 (1H, m) 1.74 (1H, m) | 4-Glc-1″ | 106.62 | 5.31 (1H, d, J = 7.68 Hz) |
8 | 35.11 | 1.63 (1H, m) | 2″ | 75.92 | 4.33 (1H, m) |
9 | 39.81 | 1.40 (1H, m) | 3″ | 79.82 | 3.83 (1H, m) |
10 | 37.24 | - | 4″ | 72.10 | 4.23 (1H, m) |
11 | 21.60 | 1.29 (1H, m) 2.08 (1H, m) | 5″ | 78.45 | 3.81 (1H, m) |
12 | 40.49 | 1.27 (1H, m) 2.04 (1H, m) | 6″ | 63.16 | 4.30 (1H, m) 4.38 (1H, m) |
13 | 43.31 | - | 3-Xyl-1‴ | 107.55 | 4.70 (1H, d, J = 7.74 Hz) |
14 | 55.71 | 3.62 (1H, m) | 2‴ | 76.11 | 4.35 (1H, m) |
15 | 31.48 | 1.80 (1H, m) 1.82 (1H, m) | 3‴ | 78.95 | 4.28 (1H, m) |
16 | 81.69 | 4.69 (1H, m) | 4‴ | 71.17 | 4.30 (1H, m) |
17 | 63.46 | 4.43 (1H, m) | 5‴ | 63.31 | 4.45 (1H, m) 4.50 (1H, m) |
18 | 17.00 | 1.10 (3H, s) | |||
19 | 23.61 | 1.00 (3H, s) | |||
20 | 41.03 | 2.18 (1H, m) | |||
21 | 14.85 | 1.42 (3H, d, J = 6.42 Hz) | |||
22 | 110.17 | - | |||
23 | 28.64 | 1.59 (1H, m) 2.21 (1H, m) | |||
24 | 32.34 | 1.80 (1H, m) 1.78 (1H, m) | |||
25 | 145.03 | - | |||
26 | 65.50 | 4.46 (1H, m) 4.03 (1H, m) | |||
27 | 109.17 | 4.83 (1H, s) 4.80 (1H, s) |
Compounds | IC50 | |||
---|---|---|---|---|
DPPH | ABTS | O2−· | Fe3+ | |
1 (mg/mL) | 0.68 ± 0.11 | 0.03 ± 0.01 | 0.06 ± 0.02 | 0.59 ± 0.18 |
2 (mg/mL) | 0.78 ± 0.22 | 0.05 ± 0.01 | 0.02 ± 0.01 | 1.37 ± 0.57 |
3 (mg/mL) | 0.21 ± 0.17 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.92 ± 0.22 |
4 (mg/mL) | 1.17 ± 0.12 | 0.26 ± 0.07 | 0.11 ± 0.03 | 1.77 ± 0.37 |
5 (mg/mL) | 1.18 ± 0.12 | 0.28 ± 0.05 | 0.11 ± 0.05 | 1.64 ± 0.30 |
6 (mg/mL) | >10 | 0.23 ± 0.07 | 0.15 ± 0.05 | 5.35 ± 1.44 |
7 (mg/mL) | 0.74 ± 0.21 | 0.04 ± 0.02 | 0.27 ± 0.07 | 1.28 ± 0.22 |
8 (mg/mL) | 0.98 ± 0.18 | 0.09 ± 0.41 | 7.97 ± 0.27 | 3.35 ± 0.98 |
9 (mg/mL) | >10 | 0.17 ± 0.07 | 2.83 ± 0.17 | >10 |
10 (mg/mL) | >10 | 0.16 ± 0.04 | 0.45 ± 0.21 | >10 |
11 (mg/mL) | 1.47 ± 0.24 | 0.23 ± 0.05 | 7.50 ± 1.22 | 2.11 ± 0.09 |
12 (mg/mL) | >10 | 0.11 ± 3.48 | 0.04 ± 0.02 | 1.37 ± 0.57 |
VC (μg/mL) | 1.94 ± 0.11 | 1.23 ± 0.14 | 72.86 ± 3.32 | 85.45 ± 4.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Li, L.; Liu, C.; Li, C.; Cui, Y.; Ding, W.; Zhang, J.; Shi, L. Two New Compounds from Allii Macrostemonis Bulbus and Their In Vitro Antioxidant Activities. Molecules 2023, 28, 6176. https://doi.org/10.3390/molecules28176176
Wu J, Li L, Liu C, Li C, Cui Y, Ding W, Zhang J, Shi L. Two New Compounds from Allii Macrostemonis Bulbus and Their In Vitro Antioxidant Activities. Molecules. 2023; 28(17):6176. https://doi.org/10.3390/molecules28176176
Chicago/Turabian StyleWu, Jianfa, Lei Li, Chang Liu, Chunyi Li, Ying Cui, Weixing Ding, Jing Zhang, and Leiling Shi. 2023. "Two New Compounds from Allii Macrostemonis Bulbus and Their In Vitro Antioxidant Activities" Molecules 28, no. 17: 6176. https://doi.org/10.3390/molecules28176176
APA StyleWu, J., Li, L., Liu, C., Li, C., Cui, Y., Ding, W., Zhang, J., & Shi, L. (2023). Two New Compounds from Allii Macrostemonis Bulbus and Their In Vitro Antioxidant Activities. Molecules, 28(17), 6176. https://doi.org/10.3390/molecules28176176