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Abstract: Two new compounds named 4,4′-bis(β-D-glucopyranosyloxy)biphenyl (1) and spirostane-
25(27)-en-2α,3β-diol-3-O-β-D-xylopyranosyl(1→3)-β-D-glucopyranosyl(1→4)-β-D-galactopyranoside
(2) were isolated from n-butanol extraction part of 80% ethanol extract of Allii Macrostemonis Bul-
bus. Alongside these, ten known compounds (3–12) were also identified, including a flavonoid
glycoside (3), seven steroids (4–10), a nucleoside (11), and a phenylpropanoid glycoside (12) were
found. Notably, compounds 3–6 were isolated from this plant for the first time. The structures of
all compounds were confirmed using high-resolution electrospray ionization mass spectrometry
(HR-ESI-MS), 1D, and 2D NMR spectroscopy. Some of these compounds showed strong antioxidant
activity, and compound 1 demonstrated the most potent reduction of ferric ions (Fe3+) with an IC50

value of 0.59 ± 0.18 mg/mL. Compounds 2 and 3 exhibited the highest scavenging activity against
superoxide anion radicals (O2

−·) with an IC50 value of 0.02 ± 0.01 mg/mL. Additionally, compound
3 displayed substantial scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with IC50 values of 0.21 ± 0.17 mg/mL and
0.02 ± 0.01 mg/mL, respectively. The discovery of these two new compounds is a reference for
identifying Allii Macrostemonis Bulbus quality markers. Moreover, their exceptional antioxidant
activity offers a promising avenue for uncovering novel natural antioxidants.

Keywords: Allii Macrostemonis Bulbus; biphenyl glycoside; steroidal saponin; antioxidant

1. Introduction

Allii Macrostemonis Bulbus (AMB) is the dried bulb of Allium macrostemon Bunge or Al-
lium chinense G. Don from the genus Allium, family Liliaceae, known as “Xiebai” in China [1].
Research on the chemical composition of AMB has never ceased. AMB contains steroidal
saponins, sulfur compounds and alkaloid constituents [2]. The theory of “medicine and
food coming from the same source” has a long history, and more and more attention has
been paid to preventing and treating diseases with natural medicines derived from the same
source of medicine and food. As a typical dual-use plant, AMB is an important traditional
Chinese medicine for the treatment of “chest paralysis and cardiac pain” it often is used to
treat coronary heart disease, myocardial ischemia, angina pectoris, abdominal pain and
diarrhea, and hyperlipidemia [3]. In addition, AMB also has a variety of pharmacological
activities, such as antioxidant [4–6], anti-tumor [7–9], lipid-lowering [10], and inhibition of
platelet aggregation [11–13]. However, unfortunately, the quality markers of AMB have not
been elucidated, which undoubtedly poses a challenge to the quality control of the herb.
Oxidative stress results from an imbalance between intracellular reactive oxygen species
(ROS) production and the antioxidant effects, ultimately leading to damage within the
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body’s biological systems when the organism faces various risk factors [14]. ROS are central
to generating oxidative stress damage and primarily consist of O2

−·, hydrogen peroxide,
and hydroxyl radicals. Low-to-moderate levels of ROS play crucial roles in normal cellular
and mitochondrial signaling and function. However, excessive ROS contribute to oxidative
damage in cells and tissues, triggering various diseases [15]. Discovering safe and effective
natural antioxidants is of paramount importance. Many herbal medicines contain com-
ponents with scavenging ROS. Some components by binding to ROS, reduce the overall
ROS levels in the body. Or they enhance antioxidant enzymes such as superoxide dismu-
tase, glutathione peroxidase enzyme, and catalase while also decreasing the production
of malondialdehyde, thereby reducing oxidative stress damage [16,17]. Therefore, we
studied the n-butanol part of 80% ethanolic extract of AMB and isolated and characterized
12 compounds (Figure 1), of which 1 and 2 were new, 3–12 were known compounds and 3–6
were isolated from the plant for the first time. The structural characterization of the isolated
compounds was determined using comprehensive spectral data analysis. In addition, the
in vitro antioxidant activity of the isolated compounds was investigated. The structural
elucidation of the isolated compounds and their potential antioxidant effects are presented.
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Figure 1. Structures of compounds 1–12, compounds 1–2 are new compounds, and 3–12 are known
ones.

2. Results and Discussion
2.1. Structure Elucidation

Compound 1 is a yellowish-green amorphous powder with a positive Molish reaction.
The m/z value of the positive ion HR-ESI-MS was 533.1657 [M + Na]+ (calculated 533.1635,
C24H30O12Na+, Figure S1), and the combination of its 1H and 13C spectra determined
its molecular formula to be C24H30O12 with an unsaturation degree of 10, so it was hy-
pothesized that two benzene rings and two sugar molecules existed in the structure of
compound 1. The low-field region of 1H-NMR (600 MHz, Methanol-d4) of compound 1
(Table 1 and Figure S2) suggested the presence of two alkenyl hydrogens proton signals
δH 7.91 (4H, d, J = 8.76 Hz, H-3, 5, 3′, 5′), 6.76 (4H, d, J = 8.82 Hz, H-2, 6, 2′, 6′) and one
sugar-terminated proton signal δH 5.32 (2H, d, J = 7.50 Hz, H-1′′, 1′′′). The 13C-NMR
(150 MHz, Methanol-d4) of compound 1 (Table 1 and Figure S3) suggested the presence
of 10 carbon signals, of which four carbon signals were assigned to the aglycone and six
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carbon signals to the sugar molecule, which, combined with the above analysis, suggests
that the compound is a symmetric structure and the aglycone partially biphenyl, which
validates our previous speculation. The type of sugar molecule was determined by the
experiment of acid hydrolysis, and the result showed that only glucose was present in
compound 1, and all of them were β-configuration according to their coupling constants.
According to the HMQC and HMBC spectra (Figure 2, Figures S4 and S5), the proton
signals of the sugar end-groups δH 5.32 (2H, d, J = 7.50 Hz, H-1′′, 1′′′) were correlated
with δC 101.58. So it was attributed to the C-1′′, 1′′′ and remote correlation exists with δC
133.42, so it is attributed to C-4, 4′. Based on the HMBC spectra δH 7.91 (4H, d, J = 8.76 Hz,
H-3, 5, 3′, 5′) and δH 6.76 (4H, d, J = 8.82 Hz, H-2, 6, 2′, 6′) both remotely correlate with
δC 157.42, which was attributed to C-1, 1′, and then summing up with the HMQC, 1H-1H
COSY and NOESY spectra (Figure 2, Figures S4, S6 and S7), we attributed δC 115.57 and δC
131.21 to C-2, 6, 2′, 6′ and C-3, 5, 3′, 5′, respectively. Compound 1 differs from the structure
of the known compound 4,4′-bis-(α-D-mannopyranosyloxy)biphenyl [18] reported in the
literature only by the type of sugar molecule attached to it, and therefore compound 1 was
named 4,4′-bis-(β-D-glucopyranosyloxy)biphenyl.

Table 1. The assignment of carbon and proton signals of compound 1 (in Methanol-d4).

Position δC (ppm) δH (J in Hz)

1, 1′ 157.15 -
2, 6, 2′, 6′ 115.57 6.76 (4H, d, J = 8.82 Hz)
3, 5, 3′, 5′ 131.21 7.91 (4H, d, J = 8.76 Hz)

4, 4′ 133.42 -
Glc-1′′, 1′′′ 101.58 5.32 (2H, d, J = 7.50 Hz)

2′′, 2′′′ 77.92 2.97 (2H, m)
3′′, 3′′′ 76.90 3.11 (2H, m)
4′′, 4′′′ 74.68 3.05 (2H, s)
5′′, 5′′′ 70.27 2.30 (2H, m)
6′′, 6′′′ 61.24 3.45 (4H, d, J = 11.40 Hz)
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of compounds 1–2.

Compound 2 was an amorphous white powder. Molish was positive for reaction
with Liebermann-Burchard, but negative for reaction with dimethylaminobenzaldehyde
hydrochloride, and showed purple-red color after heating with 10% concentrated H2SO4-
EtOH on a thin silica gel plate and finally showed yellow-green color after sitting for
some time, suggesting that the compound might be a spirostanol type saponin. Positive
ion HR-ESI-MS gave its m/z as: 909.4487 [M + Na]+ (calculated 909.4460, C44H70O18Na+,
Figure S8), which, combined with its 1H and 13C spectra, identified its molecular formula
as C44H70O18. 1H-NMR (600 MHz, Pyridine-d5) data of compound 2 (Table 2 and Figure S9)
suggested the presence of two characteristic signals of tertiary methyl protons in the high
field region. at δH 1.10 (3H, s, Me-18), 1.00 (3H, s, Me-19), and a characteristic signal for a
secondary methyl proton at δH 1.42 (3H, d, J = 6.42 Hz, Me-21). The 13C-NMR (150 MHz,
Pyridine-d5) data of compound 2 (Table 2 and Figure S10) suggested the presence of
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44 carbon signals, of which 27 carbon signals were assigned to saponin elements, and
17 carbon signals were assigned to the three sugar molecules. We found the presence of
three methyl signals at δC 17.00, 23.61, and 14.85, which we assigned to C-18, C-19, and
C-21, respectively, based on a previous study [19], while we found that the methyl signal
of C-27 was missing from the parent nucleus of the spirosterane saponin element, and the
two terminal alkene hydrogen proton signals at δH 4.80 (1H, s) and 4.83 (1H. s) were found
and both were remotely correlated with δC 145.03 (C-25), 65.50 (C-26) and 32.34 (C-24),
respectively (HMBC, Figure 2 and Figure S12), thus determining the presence of a double
bond at C25–C27. the proton signal of Me-21 δH 1.42 (3H, d, J = 6.42 Hz) was correlated
with δC 63.46, 41.03, and 110.17, which are remotely correlated to C-17, C-20, and C-22,
respectively; the proton signal δH 1.10 (3H, s) of Me-18 is remotely correlated to δC 40.49,
43.31, 55.71 and 63.46, which are attributed to C-12, C-13, C-14, and C-17, respectively; the
proton signal of Me-19 δH 1.00 (3H, s) is remotely correlated with δC 39.25, 39.81, 36.53, and
37.24, which are assigned to C-1, C-5, C-9, and C-10, respectively. since the hydrogen signal
of Me-18 (δH 1.10) is in a lower field than that of Me-19 (δH 1.00), H-5 is determined to be
in the α-conformation [20]. In the 1H-1H COSY spectrum (Figures 2 and S13), there is a
correlation between H2-1/H-2/H-3, and combined with the HMQC spectrum (Figure S11),
so δC 67.45 is attributed to C-2 and δC 82.27 is attributed to the signal at C-3 position; since
δC 67.45 belongs to for the hypomethyl carbon signals attached to oxygen atoms, suggesting
that there may be a hydroxyl group attached to the C-2 position, meanwhile, considering
that C-3 is affected by the glycosylation shift resulting in a chemical shift to the lower field
of 82.28 ppm, so it is presumed that the C-3 position is attached to the sugar group. The
hydrogen signal at the C-2 position can be seen in the NOESY spectrum (Figures 2 and S14)
associated with the Me-19 (β-conformation) signal, thus identifying the hydroxyl group at
the C-2 position as α-conformation [21].

The type of sugar molecules was determined experimentally by acid hydrolysis, which
showed a 1:1:1 ratio of galactose, glucose, and xylose. Based on the three isomeric proton
signals δH 4.94 (1H, d, J = 7.62 Hz, H-1′), 5.31 (1H, d, J = 7.68 Hz, H-1′′) and 5.34 (1H, d,
J = 7.74 Hz, H-1′′′) inferred the presence of three sugar molecules, and the correlations of
HMQC (Figure S11) with the three isomeric carbons were 103.08, 106.62, and 107.55 ppm,
respectively, verifying this conjecture. All of them could be judged as β-conformation based
on the coupling constants of the three. In the HMBC spectrum (Figures 2 and S12), the
anomeric proton signal δH 4.94 (1H, d, J = 7.62 Hz) of galactose was remotely correlated
with the parent nucleus C-3 (δC 82.27), so it was judged that the sugar was attached to the
C-3 position of the parent nucleus of saponin meta, which was consistent with our previous
judgment. The anomeric proton signal δH 5.31 (1H, d, J = 7.68 Hz) of glucose is remotely
correlated with C-4 (δC 70.33) of galactose, and the linkage is presumed to be 1→4. The
anomeric proton signal δH 5.34 (1H, d, J = 7.74 Hz) of xylose is remotely correlated with C-3
(δC 79.82) of glucose, and the linkage is presumed to be 1→3. In summary, the structure
of compound 2 was identified as spirostane-25(27)-ene-2α,3β-diol-3-O-β-D-xylopyranosyl
(1→3)-β-D-glucopyranosyl (1→4)-β-D-galactopyranoside.

In addition, the structures of quercitrin (3) [22], dongnoside E (4) [23], desgalac-
totigonin (5) [24], smilaxin C (6) [25], macrostemonoside A (7) [26], daucosterol (8) [27],
stigmasterol (9) [28], β-sitosterol (10) [29], adenosine (11) [30] and syringin (12) [31], were
determined by comparison with spectral data reported in the literature (Figure 1, see
Table S1 for carbon spectral data). Among them, compounds 3–6 were first discovered
from the plant.
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Table 2. The assignment of carbon and proton signals of compound 2 (in Pyridine-d5).

Position δC (ppm) δH (J in Hz) Position δC (ppm) δH (J in Hz)

1 39.25 1.37 (1H, m)
0.94 (1H, m) C-3 Gal-1′ 103.08 4.94 (1H, d, J = 7.62 Hz)

2 67.45 3.83 (1H, m) 2′ 82.15 4.48 (1H, m)
3 82.27 4.47 (1H, m) 3′ 75.66 4.25 (1H, m)
4 29.52 1.45 (2H, m) 4′ 70.33 4.55 (1H, m)
5 36.53 1.59 (1H, m) 5′ 77.06 4.06 (1H, m)

6 25.30 0.90 (2H, m) 6′ 62.60 4.52 (1H, m)
4.60 (1H, m)

7 26.48 1.17 (1H, m)
1.74 (1H, m) 4-Glc-1′′ 106.62 5.31 (1H, d, J = 7.68 Hz)

8 35.11 1.63 (1H, m) 2′′ 75.92 4.33 (1H, m)
9 39.81 1.40 (1H, m) 3′′ 79.82 3.83 (1H, m)

10 37.24 - 4′′ 72.10 4.23 (1H, m)

11 21.60 1.29 (1H, m)
2.08 (1H, m) 5′′ 78.45 3.81 (1H, m)

12 40.49 1.27 (1H, m)
2.04 (1H, m) 6′′ 63.16 4.30 (1H, m)

4.38 (1H, m)
13 43.31 - 3-Xyl-1′′′ 107.55 4.70 (1H, d, J = 7.74 Hz)
14 55.71 3.62 (1H, m) 2′′′ 76.11 4.35 (1H, m)

15 31.48 1.80 (1H, m)
1.82 (1H, m) 3′′′ 78.95 4.28 (1H, m)

16 81.69 4.69 (1H, m) 4′′′ 71.17 4.30 (1H, m)

17 63.46 4.43 (1H, m) 5′′′ 63.31 4.45 (1H, m)
4.50 (1H, m)

18 17.00 1.10 (3H, s)
19 23.61 1.00 (3H, s)
20 41.03 2.18 (1H, m)
21 14.85 1.42 (3H, d, J = 6.42 Hz)
22 110.17 -

23 28.64 1.59 (1H, m)
2.21 (1H, m)

24 32.34 1.80 (1H, m)
1.78 (1H, m)

25 145.03 -

26 65.50 4.46 (1H, m)
4.03 (1H, m)

27 109.17 4.83 (1H, s)
4.80 (1H, s)

2.2. Antioxidant Activity

Using VC as a positive control, we evaluated the in vitro antioxidant activities of
compounds 1–12. These evaluations included scavenging capacity assays for DPPH, ABTS,
and O2

−· radicals and reducing capacity assays for Fe3+. As shown in Table 3, the results
indicate that all compounds exhibited strong scavenging ability against ABTS radicals.
Among them, compounds 1 and 2 demonstrated favorable activity in scavenging other
radicals and reducing Fe3+. This may be related to the sugar groups and double bonds to
which they are attached. Moreover, compound 3 displayed the most potent scavenging
ability among all three types of radicals, likely attributed to the presence of phenolic
hydroxyl groups in its structure. Interestingly, we found that these compounds had
relatively poor scavenging activity against DPPH radicals and generally strong scavenging
activity against ABTS radicals, which may be related to the different modes of production
and scavenging mechanisms of the two radicals, suggesting that a single in vitro antioxidant
assay is not capable of elucidating the antioxidant activities of the compounds definitively.
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Table 3. The scavenging ability of compounds 1–12 for DPPH, ABTS and O2
−· radicals and reduction

of Fe3+ (n = 3).

Compounds
IC50

DPPH ABTS O2−· Fe3+

1 (mg/mL) 0.68 ± 0.11 0.03 ± 0.01 0.06 ± 0.02 0.59 ± 0.18
2 (mg/mL) 0.78 ± 0.22 0.05 ± 0.01 0.02 ± 0.01 1.37 ± 0.57
3 (mg/mL) 0.21 ± 0.17 0.02 ± 0.01 0.02 ± 0.01 0.92 ± 0.22
4 (mg/mL) 1.17 ± 0.12 0.26 ± 0.07 0.11 ± 0.03 1.77 ± 0.37
5 (mg/mL) 1.18 ± 0.12 0.28 ± 0.05 0.11 ± 0.05 1.64 ± 0.30
6 (mg/mL) >10 0.23 ± 0.07 0.15 ± 0.05 5.35 ± 1.44
7 (mg/mL) 0.74 ± 0.21 0.04 ± 0.02 0.27 ± 0.07 1.28 ± 0.22
8 (mg/mL) 0.98 ± 0.18 0.09 ± 0.41 7.97 ± 0.27 3.35 ± 0.98
9 (mg/mL) >10 0.17 ± 0.07 2.83 ± 0.17 >10
10 (mg/mL) >10 0.16 ± 0.04 0.45 ± 0.21 >10
11 (mg/mL) 1.47 ± 0.24 0.23 ± 0.05 7.50 ± 1.22 2.11 ± 0.09
12 (mg/mL) >10 0.11 ± 3.48 0.04 ± 0.02 1.37 ± 0.57
VC (µg/mL) 1.94 ± 0.11 1.23 ± 0.14 72.86 ± 3.32 85.45 ± 4.65

IC50 values of compounds 1–12 are in mg/mL, and IC50 values of VC are in µg/mL. IC50 values are expressed as
means ± SD.

3. Materials and Methods
3.1. General Experimental Procedures

NMR spectra were recorded on a Bruker Avance III 600 spectrometer (Bruker, Billerica,
Germany) with 1H-NMR at 600 MHz and 13C-NMR at 150 MHz, with chemical shift values
expressed as δ values, using deuterated solvent signals as an internal reference. HR-ESI-
MS was performed using an LTQ-Orbitrap XL spectrometer (Thermo Fisher Scientific,
Boston, MA, USA). Acchrom S6000 high-performance liquid chromatograph (Acchrom
Tech Technology Co., Ltd., Beijing, China) was used for analysis with an ELSD-UM 5800
Plus (Unimicro Technologies Co., Ltd., Shanghai, China). Column chromatography (CC)
analysis was performed using silica gel (200–300 mesh and 300–400 mesh, Qingdao Ocean
Chemical Factory, Qingdao, China) and C18 reverse silica gel packing (50 µm, YMC Co.,
Ltd., Tokyo, Japan). Analytically pure solvents (petroleum ether, ethyl acetate, ethanol,
methanol, n-BuOH, and dichloromethane) (Beijing Chemical Factory, Beijing, China) were
used for extraction and CC separation. Chromatographically pure methanol (Thermo
Fisher Scientific, Waltham, MA, USA) was used for high-performance liquid phase analysis.
Deuterated solvents (Deuterated methanol, deuterated pyridine, deuterated chloroform,
and deuterated dimethyl sulfoxide) (Aladdin Biochemical Technology Co., Ltd., Shanghai,
China) were used for nuclear magnetic resonance spectroscopy.

3.2. Plant Material

The experimental plants were purchased from Changchun Chinese Herb Shop
(Changchun, China) in 2021. It was identified as Allium macrostemon Bunge from the
genus Allium, family Liliaceae by Prof. Jing Zhang of the College of Traditional Chinese
Medicine, Jilin Agricultural University, and the voucher specimen (20210971) was deposited
in the Herbal Library of the College of Traditional Chinese Medicine, Jilin Agricultural
University.

3.3. Isolation and Purification of Compounds 1–12

The AMB sample (3.0 kg) was pulverized, passed through a 40-mesh sieve, and dried
to obtain AMB powder (2.76 kg). AMB powder (2.76 kg) was extracted by adding 80%
EtOH solution in the ratio of 1:5 (m:V, g:mL) for 1 h, and then extracted for 30 min with
the help of 100 W ultrasonic waves, filtered, and repeated for six times. Then the filtrate
was combined and concentrated under reduced pressure until it was free of alcohol flavor
and then lyophilized to obtain AMB ethanol extract (1401 g). 500 g of AMB ethanol extract
was dissolved in water (m:V = 1:15, g:mL) and then extracted sequentially with petroleum
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ether, CH2Cl2, and n-BuOH in a gradient. Each solvent was extracted four times, the
petroleum ether and CH2Cl2 portions were discarded to remove the fat-soluble and less
polar components, and the n-BuOH portion was concentrated under reduced pressure to
be free of alcohol and then lyophilized to obtain the n-BuOH extract part of AMB (11.3 g).
5 g of n-BuOH extract fraction of AMB was subjected to CC analysis on 200–300 mesh
silica gel, eluted with a gradient of CH2Cl2-MeOH-H2O (5:2:1~13:8:2) to obtain 12 fractions
(Fr. 1~12). Fr. 2 (940 mg) was subjected to CC on 300–400 mesh silica gel, eluted with a
gradient of CH2Cl2-EtOAc (20:1~1:1) to give four subfractions (Fr. 2.1~2.4), Fr. 2.1 (51 mg)
was recrystallized in MeOH to give compound 8 (10 mg), Fr. 2.3 (72 mg) and Fr. 2.4 (83 mg)
were subjected to CC on ODS silica gel (50 µm) eluted with MeOH-H2O (10–30%) gradient
to give compound 9 (54 mg) and compound 10 (56 mg), respectively; Fr. 3 (185 mg) was
subjected to CC on ODS silica gel (50 µm) eluted with MeOH-H2O (10–50%) gradient
elution to give three subfractions (Fr. 3.1~3.3), Fr. 3.2 (81 mg) was subjected to CC on
ODS silica gel (50 µm), eluted with MeOH-H2O (20–40%) gradient to give Compound 12
(22 mg), Compound 6 (23 mg), and Compound 7 (26 mg); Fr. 5 (194 mg) was subjected to
CC on ODS silica gel (50 µm), eluted with MeOH-H2O (20–70%) gradient to afford three
subfractions (Fr. 5.1~5.3), Fr. 5.1 (25 mg) and Fr. 5.2 (33 mg) were recrystallized in MeOH
to afford compound 4 (21 mg) and compound 5 (27 mg), respectively; Fr. 6 (77 mg) was
recrystallized in MeOH to give compound 11 (56 mg); and Fr. 7 (58 mg) was subjected to
CC on ODS silica gel (50 µm) and eluted with a gradient of MeOH-H2O (20–70%) to give
compound 1 (11 mg) and compound 3 (7 mg).

3.4. Antioxidant Activity
3.4.1. Preparation of Sample Solutions

Compounds 1–12 and positive control drug vitamin C (VC) were weighed 6.0 mg each,
add methanol, ultrasound-assisted dissolution was configured into 1 mg·mL−1 master
batch, and each master batch was gradient diluted into 0.5 mg·mL−1, 0.25 mg·mL−1,
0.125 mg·mL−1, 0.0625 mg·mL−1 of sample solution, respectively.

3.4.2. Measurement of DPPH Free Radical Scavenging Capacity

The method of reference [32] was slightly modified. 100 µL of sample solution was
accurately pipetted into a 96-well plate. Then 100 µL of DPPH solution (0.2 M) was added,
and the wells were blown up uniformly; then the reaction was performed in a thermostat
at 25 ◦C for 30 min under light protection. After the reaction, the absorbance value (Ax)
was measured at 517 nm. In the control group, anhydrous ethanol replaced the sample
solution (A0) and DPPH solution (Ay), respectively. VC was used as a positive control, and
the procedure was the same as above. All measurements were set up with three replicate
wells in parallel, and the clearance was calculated according to Equation (1).

3.4.3. Measurement of ABTS Radical Scavenging Capacity

The method of reference [33] was slightly modified. 19.2 mg of ABTS and 3.31 mg
of potassium persulfate were weighed precisely, dissolved with water, and then fixed to
a 5 mL volumetric flask to obtain the mother liquor of ABTS. After 14 h of reaction at
room temperature and protected from light, the mother liquor was diluted with anhydrous
ethanol until the absorbance at 734 nm was 0.7 ± 0.1, which was obtained as ABTS solution.
After 100 µL of sample solution was accurately aspirated into a 96-well plate, 100 µL of
ABTS solution was added. Each well was blown up uniformly and then reacted in a
thermostat at 25 ◦C for 30 min under light protection, and the absorbance value (Ax) was
measured at 734 nm after the reaction was completed. In the control group, anhydrous
ethanol replaced the sample solution (A0) and ABTS solution (Ay). VC was used as a
positive control, and the procedure was the same as above. All measurements were set
up with three replicate wells in parallel, and the clearance was calculated according to
Equation (1).
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3.4.4. Measurement of O2
−· Scavenging Capacity

The method of reference [34] was slightly modified. Accurately aspirate 90 µL Tris-HCl
solution (50 mM, pH 8.2) in a 96-well plate, let it stand for 30 min at 25 ◦C in a thermostat,
then add 50 µL of the sample solution, and quickly add eight µL of pyrogallic gallic acid
solution (25 mM). The reaction was carried out for 5 min at 25 ◦C in a thermostat. Then
20 µL of HCl solution (10 M) was added to terminate the reaction, and the absorbance
values (Ax) were measured at 325 nm. In the control group, HCl solution (10 M) was
used instead of pyrogallic gallic acid solution (Ay), and distilled water was used instead of
sample solution (A0), respectively. VC was used as a positive control, and the procedure
was the same as above. All measurements were set up with three replicate wells in parallel,
and the clearance was calculated according to Equation (1).

3.4.5. Measurement of Fe3+ Reduction Capacity

The method of reference [35] was slightly modified. Precisely 200 µL of sample
solution was aspirated into a 2 mL centrifuge tube, and phosphate buffer solution (pH 6.6)
and 200 µL of 1% potassium hexacyanoferrate solution were added sequentially. After
mixing, the reaction was carried out in a thermostat at 50 ◦C for 30 min. The reaction was
terminated by adding 200 µL of 10% trichloroacetic acid solution after cooling at room
temperature and then centrifuged at 3500 r/m for 15 min. 400 µL of the supernatant was
drawn, and 400 µL of distilled water was added. This was followed by adding 80 µL of
0.1% ferric chloride solution. The mixture was then thoroughly mixed, and 200 µL of the
supernatant was drawn into a 96-well plate. Absorbance values (Ax) were measured at
700 nm. In the control group, distilled water was used instead of the sample solution
(A0). VC was used as a positive control, and the procedure was the same as above. All
measurements were set up with three replicate wells in parallel, and the clearance was
calculated according to Equation (2).

DPPH, ABTS or O2
−· radical scavenging rate (%) = [A0 − (Ax − Ay)]/A0 × 100% (1)

Fe3+ reduction rate (%) = (Ax − A0) × 100% (2)

3.4.6. Statistical Analysis

IC50 values (concentration of test sample required to scavenge 50% of free radicals
or reduce 50% of Fe3+) were determined by non-linear regression using GraphPad Prism
software and expressed as mean ± SD.

4. Conclusions

AMB is extensively distributed throughout the Asian region and has found widespread
use in various traditional Chinese medicine formulations and dishes due to its significant
medicinal and nutritional value. Its chemical composition is intricate, contributing to its
versatile efficacy. However, the investigation into its active ingredients and mechanism of
action remains insufficiently explored. In the present study, twelve compounds, including
two new compounds (1, 2), four compounds (3–6) first identified in the AMB, and six
known compounds (7–12), were isolated from the n-butanol part of 80% ethanol extract
of AMB. The results of in vitro antioxidant assay showed that compounds 1 and 2 have
potential biological activities, which will be elucidated in detail in our next study. The
present study provides a theoretical basis for the further exploitation of AMB and the
discovery of its quality markers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28176176/s1, Table S1: The assignment of carbon signals
of compound 3–12; Figure S1: HR-ESI-MS spectrum of compound 1; Figure S2: 1H-NMR spectrum
of compound 1 (in Methanol-d4, 600 MHz); Figure S3: 13C-NMR-APT spectrum of compound 1 (in
Methanol-d4, 150 MHz); Figure S4: HMQC spectrum of compound 1; Figure S5: HMBC spectrum of
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compound 1; Figure S6: COSY spectrum of compound 1; Figure S7: NOESY spectrum of compound
1; Figure S8: HR-ESI-MS spectrum of compound 2; Figure S9: 1H-NMR spectrum of compound
2 (in Pyridine-d5, 600 MHz); Figure S10: 13C-NMR-APT spectrum of compound 2 (in Pyridine-d5,
150 MHz); Figure S11: HMQC spectrum of compound 2; Figure S12: HMBC spectrum of compound
2; Figure S13: COSY spectrum of compound 2; Figure S14: NOESY spectrum of compound 2.
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