Effect of Processing on Reduction in Chiral Pesticide Hexaconazole for Kiwifruit Juice
Abstract
:1. Introduction
2. Results
2.1. Method Validation
2.2. Enantiomeric Separation by HPLC
2.3. Effects of Kiwifruit Juice Processing on Residues of Hexaconazole
2.4. Dietary Risk Assessment of Hexaconazole during Kiwifruit Juice Processing
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Sampling of Kiwifruit
3.3. Kiwifruit Juice Processing
3.4. Extraction and Cleanup
3.5. HPLC Detection
3.6. Method Validation
3.7. Enantiomeric Fraction (EF)
3.8. Determination of Processing Factor (PF)
3.9. Risk Assessment
3.10. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhu, M.T.; Huang, Y.S.; Wang, Y.L.; Shia, T.; Zhang, L.L.; Chen, Y.; Xie, M.Y. Comparison of (poly)phenolic compounds and antioxidant properties of pomace extracts from kiwi and grape juice. Food Chem. 2019, 271, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Suksomboon, N.; Poolsup, N.; Lin, W. Effect of kiwifruit on metabolic health in patients with cardiovascular risk factors: A systematic review and meta-analysis. Diabetes Metab. Syndr. Obes. 2019, 23, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Renée, W.; Jinny, W.; Richard, B.G.; Alan, H.; Blair, L.; Paula, S.; Chris, F.; Elizabeth, F.; Angie, A.; Lizzie, J.; et al. SunGold kiwifruit supplementation of individuals with prediabetes alters gut microbiota and improves vitamin C status, anthropometric and clinical markers. Nutrients 2018, 10, 895. [Google Scholar] [CrossRef]
- Skinner, M.A.; Bentley, H.K.; Rosendale, D.; Naoko, S.; Pernthaner, A. Effects of kiwifruit on innate and adaptive immunity and symptoms of upper respiratory tract infections. Adv. Food Nutr. Res. 2013, 68, 301–320. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, Y.; Dou, P.; Yue, T. Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins. Food Chem. 2017, 232, 552–559. [Google Scholar] [CrossRef]
- Ma, T.T.; Sun, X.Y.; Zhao, J.M.; You, Y.L.; Lei, Y.S.; Gao, G.T. Nutrient compositions and antioxidant capacity of Kiwifruit (Actinidia) and their relationship with flesh color and commercial value. Food Chem. 2017, 218, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.G.; Tao, Q.J.; Zheng, X.J.; Li, Y.; Sun, X.F.; Li, Z.F.; Qi, X.B.; Xu, J.; Zhang, M.; Chen, H.B. Phenotypic and genetic characterization of botrytis cinerea population from kiwifruit in sichuan province, China. Plant Dis. 2019, 103, 748–758. [Google Scholar] [CrossRef]
- Joel, L.V. The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv.actinidiae). Annu. Rev. Phytopathol. 2017, 4, 377–399. [Google Scholar] [CrossRef]
- Berg, D.; Plempel, M.; Büchel, K.H.; Holmwood, G.; Stroech, K. Sterol biosynthesis inhibitors. Secondary effects and enhanced in vivo efficacy. Ann. N. Y. Acad. Sci. 1988, 544, 338–347. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Y.; Wang, D.; Teng, M.; Yan, J.; Yan, S.; Meng, Z.; Li, R.; Zhou, Z.; Zhu, W. The effects of hexaconazole and epoxiconazole enantiomers on metabolic profile following exposure to zebrafish (Danio rerio) as well as the histopathological changes. Chemosphere 2019, 226, 520–533. [Google Scholar] [CrossRef]
- U.S. EPA. Chemicals Evaluated for Carcinogenic Potential; Office of Pesticide Programs, U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- Huang, L.D.; Lu, D.H.; Zhang, P.; Diao, J.L.; Zhou, Z.Q. Enantioselective toxic effects of hexaconazole enantiomers against Scenedesmus obliquus. Chirality 2012, 24, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Jiang, J.; Su, H.; Sun, M.; Wang, P.; Liu, D.; Zhou, Z. Bioactivity, toxicity and dissipation of hexaconazole enantiomers. Chemosphere 2013, 93, 2523–2527. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Kumar, A.; Singh, S.; Kumar, S.; Joshi, R. Multi-residue determination of pesticides in vegetables and assessment of human health risks in Western Himalayan region of India. Environ. Monit. Assess. 2022, 194, 332. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Jung, S.H.; Kwon, S.H.; Kim, S.H.; Yeo, E.Y.; Yeom, M.S.; Seo, S.J.; Joo, K.S.; Heo, M.J.; Hong, G.P. Health risk associated with pesticide residues in vegetables from Incheon region of Korea. Environ. Sci. Pollut. Res. Int. 2022, 29, 65860–65872. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Siddamallaiah, L.; Matadha, N.Y.; Gadigeppa, S.; Raja, D.P.; Udupi, V.R. Persistence and dissipation study of azoxystrobin, buprofezin, dinocap and hexaconazole on mango (Mangifera indica L.). Environ. Sci. Pollut. Res. 2020, 27, 32820–32828. [Google Scholar] [CrossRef] [PubMed]
- Paramasivam, M. Determination of Synthetic Pyrethroids and Hexaconazole Residues in curry leaves and decontamination through household techniques. J. Food Sci. Technol. 2022, 59, 1549–1557. [Google Scholar] [CrossRef]
- Heshmati, A.; Mehri, F.; Mousavi Khaneghah, A. Simultaneous multi-determination of pesticide residues in black tea leaves and infusion: A risk assessment study. Environ. Sci. Pollut. Res. 2021, 28, 13725–13735. [Google Scholar] [CrossRef]
- European Commission. Pesticide Residue(s) and Maximum Residue Levels (mg/kg), No. 899/2012. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:273:0001:0075:EN:PDF (accessed on 26 July 2023).
- The Japan Food Chemical Research Foundation. Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods. Table of MRLs for Agricultural Chemicals. Available online: https://db.ffcr.or.jp/front/pesticide_detail?id=68500 (accessed on 26 July 2023).
- GB 2763-2021; National Standard of the People’s Republic of China, National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. China Agriculture Press: Beijing, China, 2021.
- Kaushik, G.; Satya, S.; Naik, S.N. Food processing a tool to pesticide residue dissipation—A review. Food Res. Int. 2009, 42, 26–40. [Google Scholar] [CrossRef]
- Shakoori, A.; Yazdanpanaha, H.; Kobarfarda, F. The effects of house cooking process on residue concentrations of 41 multi-class pesticides in rice. Iran. J. Pharm. Res. 2018, 17, 571–584. [Google Scholar]
- Ahammed Shabeer, T.P.; Banerjee, K.; Jadhav, M.; Girame, R.; Utture, S.; Hingmire, S.; Oulkar, D. Residue dissipation and processing factor for dimethomorph, famoxadone and cymoxanil during raisin preparation. Food Chem. 2015, 170, 180–185. [Google Scholar] [CrossRef]
- Weber, F.; Lena, R.L. Influence of fruit juice processing on anthocyanin stability. Food Res. Int. 2017, 100, 354–365. [Google Scholar] [CrossRef]
- NY/T 788-2018; Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Agricultural Industry Standards of China: Guideline for the Testing of Pesticide Residues in Crops. China Agriculture Press: Beijing, China, 2018.
- Riccio, R.; Trevisan, M.; Capri, E. Effect of surface waxes on the persistence of chlorpyrifos-methyl in apples, strawberries and grapefruits. Food Addit. Contam. 2006, 23, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Kid, J.; James, D.R. The Agrochemicals Handbook, 3rd ed.; Unwin Brothers Limited: Surney, UK, 1991. [Google Scholar]
- Liu, N.; Pan, X.L.; Zhang, S.; Ji, M.S.; Zhang, Z.H. Enantioselective behavior of tetraconazole during strawberry wine-making process. Chirality 2018, 30, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.B.; Dong, F.S.; Liu, X.G.; Xu, J.; Chen, X.; Han, Y.T.; Liang, X.Y.; Zheng, Y.Q. Studies of enantiomeric degradation of the triazole fungicide hexaconazole in tomato, cucumber, and field soil by chiral liquid chromatography-tandem mass spectrometry. Chirality 2013, 25, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.F.; Ma, L.; Zhan, X.P. Dissipation rates and residue levels of diflubenzuron and difenoconazole on peaches and dietary risk assessment. Regul. Toxic Pharm. 2019, 108, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Zainol, M.; Muhamad, H.; Sahid, I.; Abu, S.I. Dissipation of the fungicide hexaconazole in oil palm plantation. Environ. Sci. Pollut. Res. Int. 2015, 22, 19648–19657. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, C.Z.; Peng, J.; Zhang, Z.Y.; Sun, X.; Xiao, H.; Sun, K.; Pan, L.Q.; Liu, X.J.; Tu, K. Residual behaviors of six pesticides in shiitake from cultivation to postharvest drying process and risk assessment. J. Agric. Food Chem. 2016, 64, 8977–8985. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, D.; Wang, P.; Wang, X.; Zhou, Z. Gender-related in vitro metabolism of hexaconazole and its enantiomers in rats. Chirality 2013, 25, 8521–8527. [Google Scholar] [CrossRef]
- Harner, T.; Wiberg, K.; Norstrom, R. Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environ. Sci. Technol. 2000, 34, 218–220. [Google Scholar] [CrossRef]
- Chen, W.J.; Liu, Y.Y.; Jiao, B.N. Dissipation behavior of five organophosphorus pesticides in kumquat sample during honeyed kumquat candied fruit processing. Food Control 2016, 66, 87–92. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Submission and Evaluation of Pesticide Residues Data for the Estimation of Maximum Residue Levels in Food and Feed, 2nd ed.; Food and Agriculture Organization: Rome, Italy, 2009; ISBN 9251064369. [Google Scholar]
Enantiomers | Fortified Levels (mg/kg) | Recoveries(% ± SD) (n = 5) |
---|---|---|
(+)-hexaconazole | 0.05 | 96.57 ± 8.75 |
2 | 91.55 ± 2.19 | |
5 | 96.86 ± 1.86 | |
(−)-hexaconazole | 0.05 | 94.90 ± 9.40 |
2 | 93.84 ± 3.58 | |
5 | 97.32 ± 1.95 |
Processing | Enantiomer | Residue (mg/kg) | STMR (mg/kg) | HR (mg/kg) | NEDI mg/(kg bw·d) | NESTI mg/(kg bw·d) | RQc (%) | RQa (%) |
---|---|---|---|---|---|---|---|---|
Starting dosage | (+) | 14.17–14.68 | 14.45 | 14.68 | 0.0096 | 0.0123 | 191.69 | - |
(−) | 13.87–14.10 | 13.97 | 14.10 | 0.0093 | 0.0118 | 185.33 | - | |
Peeling | (+) | 1.55–1.70 | 1.60 | 1.70 | 0.0011 | 0.0014 | 21.27 | - |
(−) | 1.45–1.60 | 1.51 | 1.60 | 0.0010 | 0.0013 | 20.08 | - | |
Homogenization | (+) | 1.20–1.22 | 1.21 | 1.22 | 0.0008 | 0.0010 | 16.09 | - |
(−) | 1.15–1.17 | 1.17 | 1.17 | 0.0008 | 0.0010 | 15.48 | - | |
Sterilization | (+) | 1.17–1.25 | 1.21 | 1.25 | 0.0008 | 0.0010 | 16.06 | - |
(−) | 1.08–1.19 | 1.13 | 1.19 | 0.0008 | 0.0010 | 15.06 | - |
Processing | Enantiomer | Residue (mg/kg) | STMR (mg/kg) | HR (mg/kg) | NEDI mg/(kg bw·d) | NESTI mg/(kg bw·d) | RQc (%) | RQa (%) |
---|---|---|---|---|---|---|---|---|
Starting dosage | (+) | 33.29–33.71 | 33.43 | 33.71 | 0.0222 | 0.0283 | 443.58 | - |
(−) | 32.41–33.73 | 32.87 | 33.73 | 0.0218 | 0.0283 | 436.20 | - | |
Peeling | (+) | 3.91–4.19 | 4.06 | 4.19 | 0.0027 | 0.0035 | 53.88 | - |
(−) | 3.65–4.32 | 4.06 | 4.32 | 0.0027 | 0.0036 | 53.81 | - | |
Homogenization | (+) | 3.52–4.40 | 4.04 | 4.40 | 0.0027 | 0.0037 | 53.65 | - |
(−) | 3.45–4.17 | 3.87 | 4.17 | 0.0026 | 0.0035 | 51.38 | - | |
Sterilization | (+) | 3.50–4.33 | 3.92 | 4.33 | 0.0026 | 0.0036 | 52.02 | - |
(−) | 3.38–4.19 | 3.85 | 4.19 | 0.0026 | 0.0035 | 51.08 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, M.; Yang, T.; Wang, Y.; Sun, D.; Pang, J. Effect of Processing on Reduction in Chiral Pesticide Hexaconazole for Kiwifruit Juice. Molecules 2023, 28, 6113. https://doi.org/10.3390/molecules28166113
Wang Z, Wang M, Yang T, Wang Y, Sun D, Pang J. Effect of Processing on Reduction in Chiral Pesticide Hexaconazole for Kiwifruit Juice. Molecules. 2023; 28(16):6113. https://doi.org/10.3390/molecules28166113
Chicago/Turabian StyleWang, Zelan, Min Wang, Tianming Yang, Yao Wang, Dali Sun, and Junxiao Pang. 2023. "Effect of Processing on Reduction in Chiral Pesticide Hexaconazole for Kiwifruit Juice" Molecules 28, no. 16: 6113. https://doi.org/10.3390/molecules28166113
APA StyleWang, Z., Wang, M., Yang, T., Wang, Y., Sun, D., & Pang, J. (2023). Effect of Processing on Reduction in Chiral Pesticide Hexaconazole for Kiwifruit Juice. Molecules, 28(16), 6113. https://doi.org/10.3390/molecules28166113